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Abstract: The authors present training and feedforward 
computation for a single layer of a VMM+WTA classifier. 
The experimental demonstration of the one-layer universal 
approximator encourages the use of one-layer networks for 
embedded low-power classification. The results enabling 
correct classification of each novel acoustic signal 
(generator, idle car, and idle truck). The classification 
structure requires, after training, less than 30μW of 
operational power and lower with additional fabrication.  
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This paper focuses on training of classifiers for a single 
layer of a Vector-Matrix Multiplier (VMM) and a single 
layer of a k-Winner-Take-All (WTA), built on our original 
foundational work on VMM + WTA classifiers being 
demonstrated experimentally as a universal approximator 
[1], and recent work demonstrating a single engineer-tuned 
example of wordspotting classification in a recent large-
scale Field Programmable Analog Array (FPAA) [2,3]. The 
experimental demonstration of the one-layer universal 
approximation concept [1], encourages the use of one-layer 
(or multiple layer) networks for embedded low-power 
classification. A universal approximator classifier 
represents any static function (with infinite resources).   

Foundations of VMM+WTA Learning 

The fundamental question is enabling a working supervised 
learning technique for these systems, something not 
explicitly achieved in previous hardware or software 
systems, but is achieved through this work in hardware 
(experimentally) and software by understanding the 
connections of these networks to Self Organizing Maps 
(SOM), Vector Quantitization (VQ), and Gaussian Mixture 
Models (GMM). Training multilayer networks, required for 
universal approximation outside of this approach, often has 
issues with training due to error estimations in all but the 
last layer of classification; avoiding this issue is central in 
most neural network and deep learning theory. A 
fundamental aspect to developing the VMM+WTA 
classifier block is developing a mathematical framework to 
analyze the network capability. We find that a 
VMM+WTA classifier block is equivalent to, among other 
networks, VQ, and with some extensions, to a GMM 
network; this connection leads to developing an on-chip, 
universal approximator learning algorithm on an SoC 
FPAA.  

 

Classifier Data Set: Sound Classification 

Classification focuses on identifying one of multiple 
acoustic sounds as our representative, although not 
exhaustive, example, for a system both macro modeled in 
MATLAB as well as built and measured on our SoC FPAA 
IC. The test input is composed of signals from urban 
environment for 3 objects (generator, idle car, and idle 
truck) randomly turning on for 1-2 seconds in a background 
”quiet” sound setting a typical background noise; the 
process constructs a challenging labeled data set. The 
dataset is derived from urban and rural datasets distributed 
by DARPA as part of the NZero project.  

AVLSI Computation of Classifier Data Set 

The datasets are processed through a using a constant Q 
filterbank (from 1.6Hz to 5KHz), amplitude detection, and 
LPF (5Hz) structure consistent with our Simulink modeling 
for experimental FPAA modeling. The input acoustic 
signal, going through a typical input ac coupling, was 
converted from pressure as 40mV / Pascal, similar to the 
front-end sensors in the testbed measurement (which 
include high-pass corner frequencies around 20Hz). Figure 
2 shows the output signals from the bandpass filter block 
for generator datasets in rural (dirt) conditions, showing the 
strong narrow response just under 100Hz. Figure 2 shows 
the resulting output amplitudes and background noise level 
(from quiet set) showing different resulting spectrums from 

 

Fig. 1: Block diagram for the Vector-Matrix Multiplier (VMM) 
with dynamic k-Winner-Take-All (WTA) Embedded Classifier, 
including the front- end circuitry, VMM (from x(t) → z (t), and k-
WTA (from z(t) → y(t) ) blocks. In this case, we model the front-
end circuitry for an auditory application as constant Q filters, 
amplitude detection, and post filtering for the desired temporal 
response for classification.  
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the three cases. Our classifier uses a number of nulls in the 
space highly reducing the number of false alarm cases, as 
well as enabling typical GMM type operation.  

FPAA VMM+WTA Classifier Operation 

We implemented the first supervised VMM+WTA training 
algorithm, implemented both in MATLAB and on the SoC 
FPAA IC to converge to a weight set for a 12input, 8output 
VMM+WTA block trained on learning to identify the three 
different mechanical systems being activated along with 5 
nulls symbols in the resulting space. The training algorithm 
requires moving the adaptation computation on-chip, 
including partially using the on-chip μP (fixed point 
computation) and Floating-Gate (FG) programming 
infrastructure (14bit ≈ log encoding). Figure 3 shows the 

results of this algorithm, enabling correct classification of 
each novel acoustic signal. The classification structure 
requires, after training, less than 30μW of power for the 
resulting classification. We also have a roadmap on how to 
scale this FPAA design to reduce the resulting power 
dissipation multiples orders of magnitude less (say 10nW) 
with another IC fabrication in this IC process.  

Decrease of FPAA, VMM+WTA Classifier Power 

The previous section resulted in roughly 30uW power 
consumption; this section analyzes how to reach nW power 
consumption.  Three key analysis directions show 

 Optimize power for the current FPAA device, 
both in routing capacitance and bias current past 
C4 filter stage, improving power consumed to 

 

Fig. 2. Analysis for the FPAA IC classifier with acoustic field test data developed by DARPA for acoustic classification in both for rural and 
urban condition datasets. We summarize the experimental conditions for the acoustic measurements for both the rural (dirt) as well as urban 
(concrete) situations. We are showing sample curves from the datasets we analyzed using circuit modeled MATLAB data set (similar to 
what is used in our Scilab design tools), including filterbank output from the rural generator, as well as input classifier results from a rural 
truck data set, an urban generator set, and urban idle car dataset. Solid lines represent our extracted background levels obtained from quiet 
datasets provided, showing significant signals for classification as well as a sense of how to pattern signals for training and recognition. The 
generator seems to have very strong signals just below 100Hz with significant signals around it. For the idle car data, we see far more higher 
frequency signals to distinguish its behavior. For rural signals, we see a stronger single peak frequency (or small group of frequencies) due 
to the higher attenuation through a dirt (rather than concrete) environment.  
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3uW. Low power is enabled by consistent pA 
level FG programming [4]. 

 Reduce Vdd from 2.5V to 200mV, requiring 
modified WTA architectures.  Reduces power to 
roughly 200nW. 

 Optimization of capacitances in the subband 
processing structure, optimized by making 
tradeoffs for moderate SNR microphone levels 
(~40dB level), as well as optimized FPAA routing 
fabric design. These optimizations allow for 
potentially two more orders of magnitude 
decrease in power consumption.  

The authors envision an optimized design for an FPAA 
device capable of ultra-low power context-aware wakeup 
of a larger system in less than 10nW of power. The authors 
are looking for the opportunity to experimentally 
demonstrate this power level in a modified configurable 
fabric [2, 3]. 

Reducing power the power supply from 2.5V to 0.2V 
requires modified circuit approaches, where FG techniques 
are essential to manage threshold-voltage (VT0) mismatch. 
Rarely do we get the ideal VT0 for the desired biasing level, 
even when multiple devices are available. We must use 

Floating-Gate (FG) devices, programming the threshold 
voltages, for almost all nFET and pFET transistors. For 
small MOSFET devices, one sees VT0 variation of 50mV, 
which is huge both in getting any repeatability or reliability 
as well as a huge variation for a 200mV power supply.   
Therefore, we will use FG devices and program them 
within 10’s mV precision that will hold for the typical 10-
year lifetime of the IC. 

Dedicated, low-capacitance bandpass filter and amplitude 
detection blocks (at 200mV supply) optimize required 
power consumption. One key optimization is building a 
dedicated structure to minimize parasitic capacitance from 
FG to fixed potential.  Figure 4 shows the expected power 
consumption, output noise, and SNR for the system based 
on the expected values for each block, based on prior 
experience with modeling on the power consumption scale 
with reduced bandwidth and SNR requirements compared 
to our previous implementations of auditory classification 
[5]. Initial IC inputs have limited reconfigurability going 
into bandpass elements for bandpass filter / amplitude 
detect array. 

 

 

 

Fig. 3: Auditory classification pathway with 12 filter bank inputs and amplitude detectors, and a 12 x 8 VMM + WTA classifier 
block for measured testrange data. We built a random dataset by having one of a generator, idle car, or idle truck sound turn on for 
a short interval and classify the resulting signal. The training algorithm correctly classified all of the outputs correctly; if one 
includes temporal difference (prediction) errors between target and output signals we get a classification accuracy of nearly 96%, 
with errors due to temporal dynamics (delays) in the approach 
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A 200mV power supply will not support the traditional 
current-conveyer WTA circuit structure, which was used 
for the measurements previously described. These WTA 
circuits are based upon a neurobiological circuit, which has 
been shown in IC circuits [6] with the same functionality, 
and operate with supplies, like most biological systems less 
than 200mV. The IC channel modeling of biological 
channels [7] results in the lowest power neural modeling 
circuits while at the same time providing the most accurate 
electrical level computational model.  This technique offers 
the opportunity for far lower power consumption, 
particularly in the inhibitory interneuron modeling. The 
WTA tuned using strong inhibitory responses, keeping the 
resulting output events sparse, making any post-processing 
of the resulting signals straight-forward.  

Table 1 shows the resulting power requirements from each 
stage, as well as noise and SNR expected from each stage. 
The bandpass filter has a passband gain of 5, split into 16 
bands (typically sufficient for speech classification, as well 
as hearing aids). The power requirement is roughly 1nW, 
almost a factor of 10 below the target specification. The 
resulting headroom allows for unanticipated effects, allows 
for using a slightly higher power supply (i.e. 300mV) to 

investigate effects of higher gain, as well as opportunity for 
adding other functionality, such as integration of multiple 
sensors and beamforming for reducing noise and 
directionality. 

Acknowledgements 

We appreciate DARPA MTO Nzero program supplying the 
starting dataset for acoustic classifier.  

References 
[1] S. Ramakrishnan and J. Hasler, “Vector-Matrix 
Multiply and WTA as an Analog Classifier,” IEEE 
TVLSI, vol. 22, no. 2, 2014, pp. 353-361.  

 [2] S. George, S. Kim, S. Shah, J. Hasler, M. Collins, F. 
Adil, R, Wunderlich, S. Nease, and S. Ramakrishnan,     
``A Programmable and Configurable Mixed-Mode FPAA 
SoC,'' IEEE Transactions on VLSI, January 2016.  

 [3] S. Shah, S. Kim, F. Adil, J. Hasler, S. George, M. 
Collins, R, Wunderlich, S. Nease, and S. Ramakrishnan,” A 
Programmable and Configurable Mixed-Mode FPAA 
SoC,’’ GOMAC 2016. 

[4] S. Kim, J. Hasler, and S. George, “Integrated Floating-
Gate Programming Environment for System-Level ICs,” 
IEEE Transactions on VLSI, January 2015. [5] D. W. 
Graham, P. E. Hasler, R. Chawla, and P. D. Smith, “A 
Low-Power Programmable Bandpass Filter Section for 
Higher Order Filter Applications,” Circuits and Systems I: 
Regular Papers, IEEE Transactions on, vol. 54, pp. 1165-
1176, 2007. 

[6] S. Brink, S. Nease, P. Hasler, S. Ramakrishnan, R. 
Wunderlich, A. Basu, and B. Degnan, “A learning-enabled 
neuron array {IC} based upon transistor channel models of 
biological phenomena,” IEEE Transactions on Biomedical 
Circuits and Systems, vol. 7, no. 1, pp. 71--81, 2013.  

[7] Farquhar, E., and Hasler, P. (2005). A bio-physically 
inspired silicon neuron. IEEE TCAS I 52, 477–488. 

 

Table 1: Summary Table for System Analysis for Ultra Low 
Power Context-Aware Classifier 

 Power (nW) 
Output Noise 

(uVrms) 
Element  

SNR 

BPF Bank 0.84 144 > 48dB 
Amplitude 
Detect 0.0071 121 > 40dB 

VMM  0.064 56 ~ 40dB 

Neuron WTA 0.1   

Event Driver 0.1   
Complete 
System 1.1111 213.75 > 40dB 

 
Fig 4: Analysis of the Capacitance, Power, and SNR of the bandpass filter blocks, based on the classic experimental and modeling work in 
[4] as well as results measured from FPAA devices, such as in [2,3].     
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