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Abstract—The neuronal responses through excitatory and
inhibitory synapses are implemented on a reconfigurable and
programmable platform. The synaptic cleft between the pre
synaptic and post synaptic neuron has been depicted as a ramp
generator while the post synaptic potentials are observed from
the transistor channel neuron model which emulates the ion
channels in biological neurons. The synaptic strengths are tuned
by modulating the charge on the floating gate devices on the
hardware demonstrated through particular voltage levels and
time constants. The models have been designed and built in
such a way that the tools associated with the chip make it
possible to build up and compile a bigger network of neurons
and synapses. The experimental measurements are taken from
the circuits compiled on a Field Programmable Analog Array
fabricated on a 350nm process.

Index Terms—FPAA, Neurons, Floating gates, Excitatory, In-
hibitory, Synapses, PSP

I. MACROMODELING A NEURON WITH SYNAPSES ON A

RECONFIGURABLE PLATFORM

The foundation of building bio-inspired systems for real
time applications is the design of efficient neuronal and
synaptic blocks. Synapses enable the neurons to communicate
with each other and allow one to implement algorithms to
exploit the action potentials from neuronal cells. The Field
programmable Analog Array (FPAA) [1] System on Chip
(SoC), a reconfigurable mixed signal hardware is utilized
in this paper to show such bio-inspired circuits for energy
efficient computing [2]. Tunability and programmability are
achieved through the floating gate (FG) elements on the device.
One could obtain different responses based on external inputs
or other interconnections on the hardware itself. Furthermore,
the open source Xcos/Scilab based tool framework [3] allows
one to optimize the circuits, along with a higher level of
compilation as well for more flexibility.

This paper takes advantage of the similarity between neu-
roscience and silicon to model synapses and neurons on the
hardware. This block can be further expanded to build neural
networks directly on the hardware and the analog signal
processing offers high energy efficiency [4] and operates on
low power as well, due to the fact that the analog elements
are operating in the subthreshold regime.

Figure 1 illustrates the use of different blocks to build a vari-
ety of networks based on biological neuronal cells on the SoC
FPAA. The neurons are Hodgkin Huxley (HH) based models
emulating the ion channels. The synaptic cleft connecting the
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Fig. 1. A network of neurons with external inputs and projecting excitatory
and inhibitory synapses between them is shown here. These are translated to
a set of macroblocks based on biological neuronal cells. The system can be
compiled on the SoC FPAA to obtain experimental data. The ramp generator
processes the external inputs that feed the synapses and the HH neurons’
network is configured in the desired topology. Each macromodel of the HH
neuron, integrated with synapses, is built in a single Computational Analog
block (CAB). These level=1 macroblocks are vectorized thereby allowing
higher levels of compilation and enabling larger networks to be built on the
SOC FPAA.

pre synaptic and post synaptic neuron is modeled to produce
a triangle like response either from an external input or from
another neuron. This ramp waveform is fed to a FG device in
the routing that emulates the synapse and then exhibits the post
synaptic response. The neuron projects to either excitatory or
inhibitory synapses depending on the type of neurotransmitter
a neuronal cell projects at its individual synapse. The responses
of the blocks are controlled through the FG devices to generate
an excitatory or inhibitory synapse and the synaptic strength
is varied by modulating the charge on the floating gate.

The HH neuron along with the synaptic clefts and synapses
is macromodeled and abstracted in the library blocks to be
compiled onto the FPAA hardware. They are level=1 vector-
ized blocks with voltage input and voltage output [5]. The
toolset enables one to build multiple neurons with synapses
connecting between them by instantiating the library blocks
[6]. This aids to build multiple configurations using the same
single chip, rather than building custom chips for each con-
figuration or application. The versatile place and route used
in the tools allows one to position the blocks according to the
required topology on the chip.

The experimental results obtained from the synaptic re-
sponses due to the neurotransmitters as well as the action
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Fig. 2. The design of the Xcos blocks, namely HH neuron block with the synapses and the synaptic cleft model, constrained to one CAB, is shown here.
The synapses are through the FG pFET input currents, utilizing the routing FG switches. The ramp generator models the pre synaptic cleft response to create
the triangles for the inputs to the synapses. The neuron projects to either excitatory or inhibitory synapses whose strengths and biases are controlled through
the FG devices, to generate an event output or an action potential from the neuron. The FG elements are programmed with subthreshold currents. In case
of transistor channel based HH neuron, the gating dynamics determined by the !"+ band-pass circuit and the #+ low-pass configuration are implemented
through FG OTAs. The ramp generator makes use of the switches in the local routing, pFET, T-gate switches and a current mirror. The OTA detects the spike,
generating an event, while the FG devices in the pull-up and pull-down design control the rise and fall time of the triangle. All the blocks are vectorized,
implying multiple neurons can be implemented such that each neuron goes to each of the CABs and different size networks can be created. The experimental
measurements of membrane voltage from the HH neuron model for an action potential are shown here too.

potentials from the ion channel based model of HH neuron
are close to the behavior observed from biological neurons and
synapses. Section II gives an overview of the circuit on the
FPAA, while Section III and IV describe the action potentials
produced from the neuron and the synaptic cleft as a ramp
generator. Section V addresses the excitatory and inhibitory
synapses with how to approach the tuning of the parameters
while Section VI concludes the discussion by elaborating on
building networks.

II. DESIGN AND OVERVIEW OF THE BLOCK CONSTRAINED

TO ONE CAB

Figure 2 illustrates the different Xcos macroblocks to build
any arbitrary sized network on the chip. The fabric array

on the FPAA SoC comprises Computational Logic Blocks
(CLBs) and Computational Analog blocks (CABs) which are
interfaced with other peripherals including SRAM, MSP 430
processor to perform programming of the FG elements [7]
as well as reconfiguring the interconnections. Each CAB is
configured as one neuron along with the synaptic cleft that
generates the ramp waveform connecting into the synapse that
projects onto the post synaptic neuron. The FG local routing
fabric, consisting of FG pFET switches models the synapses
and is used for computation.

The experimental measurements are taken from the FPAA
fabricated on 350nm process, that has 98 CABs. A CAB
consists of nFETs, pFETs, transmission gates, Operational
transconductance amplifiers (OTAs), FGOTAs and capacitor
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banks. Using these available resources in one CAB , the
design is figured out in such a way that it replicates the
biological neuronal response and minimizing area overhead.
Once the neuron is designed, the remaining available elements
are optimally partitioned to design the circuits required for
modeling the synaptic behavior.

III. ACTION POTENTIALS FROM THE HH NEURON MODEL

The transistor channel neuron model [8] inspired by
Hodgkin and Huxley’s work eliciting responses from a squid
axon [9] is based on the ion channels in a neuronal cell. !!"

and !# represent the biological supplies to the neuron which
are equivalent to the nernst ionic potentials, while "$%$

denotes the membrane capacitance. The depolarisation and
hyperpolarisation in the membrane potential, #$%$ happen
due to the opening and closing of $%+ and &+ ion channels
and the resulting interaction between them. Their conductances
are modeled through a set of FG OTAs, nFETs and pFETs.
They are represented as band-pass and low-pass filter on the
hardware respectively. The non-linear dynamics arising out of
their interaction gives rise to a continuous spiking response to
an input fed through a FG pFET in the routing as shown in
Fig. 2. The spiking frequency is varied by controlling the time
constants of the $%+ and &+ channels.

IV. SYNAPTIC CLEFT MODELING

Figure 2 shows the flow of signals from the input events
between the pre synaptic and post synaptic neurons through
the synaptic gap, equivalent to the movement of ions in the
ion channels. A current starved inverter based structure to
modulate the gate of the FG elements was shown in [10] while
[11] presented integrate and fire neurons with current mode
integrator based synapses and conductance based synapses in
[12] and [13] shows current sink based synaptic inputs.

The ramp generator can be used to process the digital input
and also to mimic the synaptic cleft. The action potential from
the pre synaptic neuron is fed to the ramp generator. Once the
neuron spikes, it is converted to an event through an OTA that
behaves as a comparator with a threshold level. Depending
on if one desires a ramp up or down first, the input is fed
to the corresponding terminal of OTA. As the spike is rising,
the t-gate switch closes and the current mirror in the pull-
down draws the current, with the rising time constant being
controlled by the FG pFET. The pull-up then activates as the
event falls whose time constant is much slower than the rising
time, tuned by the cascode FG pFET structure in the routing.
Since the post synaptic potential (PSP) of biological neurons
decays slowly [14], [15], the FG pFETs are biased such that
it discharges slower than the rate at which it charges. This
ramp is then fed to the source of the synapse element due
to the exponential relation between the output current and
source of a FG pFET. If the external inputs are digital events,
these triangle ramp generators can be used as well for input
processing.

A current source as close to an ideal one as possible
is required especially so that the ramp generator produces
minimum curvature in the triangle fed to the synapse, be it
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Fig. 3. The current from a FG pFET in the routing is measured as a function
of the drain voltage and the $! - %! curve is shown in log scale. The capacitive
coupling can be seen in the slope and a range of currents is obtained as the
input voltage is swept. The source voltage is fixed at a %!! of 2.5 V and the
FG pFET is biased such that it is in saturation. From the slope, the value of
effective & is calculated thereby giving the estimate of the early voltage which
shows that the overlap capacitance in the routing is significant, which may
cause a curvature in the response of the ramp generator. Hence, a cascode
pFET structure is used to get a more accurate current source.

inhibitory or excitatory. Hence, a through characterization of
the FG pFET is performed. The drain voltage is swept to
measure the drain current. The FG device is biased in the
subthreshold region and the current in the saturation region
is observed when the source to drain voltage is greater than
100mV, since we require it to behave as a current source. The
source voltage is fixed at 2.5V. Due to early effect [16], which
is a factor of the significant overlap gate to drain capacitance in
the routing, the channel current depends on the drain voltage.
To minimize this deviation from an ideal current source, a
cascode structure is used in the pull-up design of the ramp
generator which reduces the effective ', thereby increasing
the early voltage, making it a better current source.

V. POST SYNAPTIC RESPONSES THROUGH EXCITATORY

AND INHIBITORY SYNAPSE

As the neurotransmitters are released into the synaptic cleft
from the pre synaptic neuron, it attaches to the receptors of
the post synaptic neuron causing the ion channels to open,
resulting in flow of ions in the postsynaptic neuronal cell.
This causes a change in the membrane potential [15] and an
excitatory or inhibitory response is observed based on the type
of ions that flow into the cell. An excitatory synapse causes
deploarisation in the post synaptic #$%$ while the inhibitory
synapse reduces the #$%$.

Figure 4 shows the experimental compiled results of the
triangle created from the ramp generator as well as the PSPs.
The synapse is modeled by the FG pFET in the routing
inspired by the single transistor learning synapse [17] while the
change in membrane potential is amplified through a FG OTA
with a high gain and buffered out through an OTA connected
in a source follower configuration, with all the instrumentation
being performed on chip.

In case of an excitatory synapse shown in Fig. 4a, the source
of the FG pFET is modulated. The pFET is modeled as a
biological passive channel, with its drain connected to !# ,
while the EPSP measured from its source has a fast rising
time and then decays down slowly.
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Fig. 4. The experimental measurements data from the FPAA for an excitatory and inhibitory synapse and the corresponding test setups are shown. The rise
and fall times are controlled through the bias currents of the pFET and the current mirror in the ramp generator circuit. The change in membrane potential is
gained up through the FG OTA and then buffered out to measure PSP. (a) The ramp input is fed to the source of the FG pFET for an excitatory synapse. The
EPSP measured from the synapse with a passive channel rises up and decays slowly. (b) The ramp input is fed to the drain of the FG pFET for an inhibitory
synapse. The inhibitory synapse is slower than the excitatory one and the IPSP, measured from the synapse with the passive membrane biased with a leak
channel to draw the current, drops to '" and then settles back at a resting potential.

The drain of the FG pFET is modulated for an inhibitory
synapse in Fig. 4b. Hence, the ramp from the ramp generator
is fed to the drain of the FG pFET and also connected to a leak
channel biased by a current source that enables the FG source
to draw the current and we observe an inhibitory PSP (IPSP)
that drops to !# and then rises back and settles to a resting
potential. The inhibitory synapse is designed to be slower than
the excitatory one, matching the biological synapses [15].
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Fig. 5. A configuration of a ring Winner Take All network structure is shown.
The interneuron has an inhibitory synapse associated with it represented by
the dotted lines while the outer neurons are excitatory ones shown through
the projections of the solid lines. Each HH neuron is configured in one CAB
while the synapses are the FG pFETs in the routing.

VI. BUILDING NETWORKS

We have presented the macromodeled block of HH neu-
ron model integrated with excitatory or inhibitory synapses
and synaptic clefts or ramp generators, analogous to biology
and demonstrated results from a reconfigurable hardware, the
FPAA fabricated on 350nm process. Through the open source
tool infrastructure, one could consider creating networks build-
ing upon these blocks including central pattern generators [18],
[19], Winner take all (WTA) [10], [11], [20], [21] etc further
used for different applications [22]–[24].

An example of one such spiking network, the WTA is
shown in Fig. 5. The outer ring consists of five neurons with
excitatory synapses projecting to an interneuron that feeds
back an inhibitory connection to the other neurons. As the
excitatory synapse activates the interneuron, the inhibitory
synapse that it projects starts to inhibit the excitatory ele-
ments. The synapses are programmed through the FG elements
such that the desired excitatory cell wins after the inhibition
provided by the interneuron. The intra CAB variation is less
[25] leading to reduced mismatch among the cells which
can either be utilized [26], [27] or minimized [28] through
the FG devices themselves without using extra resources for
the compensation, thereby producing the desired behavior
according to the corresponding application.
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