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Abstract—This paper presents a low-power speech detector
on a fully reconfigurable Field Programmable Analog Array
(FPAA). The entire system is designed and compiled on a FPAA
fabricated in 0.35!m CMOS process. The system uses 12 parallel
bank of band-pass filters to extract features. The outputs of the
filter bank are used by a single layer of 12x2 Vector Matrix
Multiplication (VMM) and Winner Take All (WTA). The weights
are stored on the VMM using pFET floating gate transistor. The
power consumption of the analog system is 155.6!W with a 2.5
V power supply. The low power consumption allows the use
of such a system for portable and remote sensing applications.
Further, the paper investigates the performance of the system by
adding white gaussian noise to the input signal. The system has
an accuracy of 99.94% when the input has a SNR of 20dB and
of 74% with a SNR of 8dB.

I. RECONFIGURABLE ANALOG PLATFORM

Onset of internet-of-things has made the need for efficient
real time signal processing on an embedded platform a ne-
cessity. Most of the digital algorithms require computation on
cloud where the sensor data and output have to be transferred
wirelessly. Thus, in a bandwidth constrained environment there
is a trade-off in the amount of computation done locally as
opposed to on a server. Analog computation has been hypoth-
esized to have an efficiency 10,000 times more than custom
digital processors [1]. With the advances in digital processors
since then a custom analog processing still could achieve an
efficiency three orders of magnitude more then a custom digital
processors [2]. Reconfigurable and neuromorphic architectures
could further increase the efficiency of the computation and
reduce the cost.

Figure 1 shows a block diagram of a low-power speech
detector and its potential application. The system implemented
in this work is shown inside the dashed box in the Fig. 1.
A MEMS microphone, similar to the one shown in [3], can
directly be interfaced with the system. As shown in the Fig. 1,
the system has multiple applications from being used to gen-
erate a wake-up signal for a microprocessor for digital signal
processing to being used as a startup for analog command
word recognition [4] and analog speech classification [5].
Acoustic echo cancellation techniques also involves detecting
the near-end speech to halt adaptive filtering [6]. It could
also be used as a remote sensory node for continuous speech
detection [7].

The system is implemented on a very large scale fully
reconfigurable Field Programmable Analog Array (FPAA).
FPAAs are poised to revolutionize analog and neuromorphic
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Fig. 1. The figure shows an overview of a low-power speech detector and
its potential applications. The system which is implemented in this work is
shown by the dashed box. The input to the system could be easily interfaced
using a MEMS microphone.

systems the same way FPGAs revolutionized digital systems,
by making prototyping cost effective and shortening the test
cycles. A reconfigurable FPAA owing to their low power
consumption and efficiency have seen an increase in their use
for biomedical systems [8], speech processing [9] [5], image
processing [10] and path planning application for robotics
[11]. The architecture of the FPAA used in this work is
described in detail here [4]. Floating Gate (FG) based FPAA,
such as the one used in this work, allows for tuning and
calibrating multiple parameters. This allows us to compensate
for mismatch and adapt over temperature. FG transistors are
used as a biasing element and also as switches as a part of the
routing infrastructure. The programming algorithm [12] uses
hot-electron injection for tuning the FG and FowlerNordheim
tunneling for a global erase of the current design. The system
is designed using an open-source Xcos/Scilab tools [13] and
can be compiled as an IP block. This would allow for a faster
prototyping and adaptation of the system depending on the
application.

II. SPEECH PROCESSING ON FPAA

Speech processing involves large amount of computation
and bandwidth. Thus, a low power solution for speech process-
ing usually involves a low power front end which could detect
speech over ambient and white noise and wake the processor
when relevant signals are present [14]. Recent efforts in the
field of wireless sensors aim at such event driven approaches
[15].

In this work the low power front end is composed of 12
parallel filter banks which decimates the input speech signal
into different frequency bands. The schematic of the band pass
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Fig. 2. a) A block diagram of the analog front end is shown in the figure along with the circuit schematic used for building these blocks. Input here is
from an external DAC, but could be directly interfaced using a MEMS microphone. b) The input and output waveforms are plotted. The signals have been
plotted with an offset to visualize them on the same graphs. The analog front end extracts individual features from the speech. These features could be further
processed using analog signal processing.

filter is shown in the Fig. 2a. The band pass filter is a second-
order !!-C filter and uses a FG OTA. FG OTA allows us to
compensate the input offset of the OTA and has increased input
linearity due to capacitive coupling into the floating node. The
biasing current of the FG OTA is a FG pFET which could be
programmed between 30 pA to 10 "A and hence allows us to
control the quality factor (Q) and the center frequency of the
band pass filter. !!2 controls the lower frequency pole of the
filter whereas !!1 controls the higher frequency pole. !! is
the effective transconductance of the FG OTA. In this system,
the band pass filters are logarithmically spaced between 100
Hz to 5KHz with a Q of about 2. Noise and THD of such
filters have been discussed elsewhere [16].

The output of the band pass filter is passed through a
amplitude detect and a Low Pass Filter (LPF). The schematic
of the minimum detector is shown in the Fig. 2a. The minimum
detector output follows the input when it is decreasing and
charges up at a rate of #"#$%/%&. The #"#$% is set using a
FG transistor biased with a current of 10pA. The LPF further
reduces the spikes at the output. LPF is a 9-T OTA configured
in a source follower configuration with its bias set at 0.9nA,
to have a low &−3'( frequency.

Figure 2b shows the output of these 12 filter banks with its
input being a speech signal, taken from the TIMIT dataset.
The input from the TIMIT dataset is ”She had your dark suit
in greasy wash water all year” and the outputs correspond to
different features extracted by the analog front end. An analog
shift register controlled by the microprocessor is used to scan
the outputs. The outputs have the same DC level and have

been plotted in Fig. 2b with an offset. These features are used
by the algorithm to learn the weights of the VMM.

III. TRAINING OF VMM AND DETECTION WITH WTA

The extracted features are given to a one layer VMM-WTA
system. A VMM on a FPAA is implemented using a pFET
FG transistor which stores the weight on the floating node.
The output of a single pFET transistor in the VMM is given
by (1)

#% = #)ℎ'
(!"(#$$−#%&'(%−#)0))

*) ('
(−(#$$−#+,))

*) (1)

where W is the weight obtained while training and is given by

( = '

(
!"(−Δ#

′
%&)

)

*) . Thus the weights of the VMM are adapted
using Δ)

′

+, , the charge on the floating node. )+,-.+ +Δ)
′

+,
forms the total charge on the floating node. Other parameters
in the equation are thermal voltage (*/ ), #)ℎ is the current at
threshold voltage and +0 is the fractional change in surface
potential of the pFET with change in voltage at the gate. The
VMMs are implemented in the routing infrastructure of the
FPAA to increase the density of computation. Thus, the input
to the VMM ()#1) is via the source of the pFET transistor.
The power supply ()'') is 2.5 V for the current SoC.

Figure 3a shows the transistor level schematic of a 12x2
VMM. The output of the VMM is a summation of product of
12 inputs and their weights (#23) =

∑
()#1). The weights

used for detection are trained off-chip using an algorithm
similar to vector quantization. The output of the VMM is fed
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Fig. 3. a) Circuit schematic for a 12x2 VMM and WTA are shown here. The output of the WTA are routed to the microprocessor. This signal could eventually
be used as an interrupt to the microprocessor for further speech analysis and classification. b) Analog output of the WTAs are plotted along with the digitized
output. Here the digital signal are inverted, to signify a detection when the output is one, as opposed to the WTA output where the winner has a low output.

to the WTA. The schematic of the WTA is shown in the Fig.
3a. The biasing of the WTA is such that it allows only winner
at a time. The architecture of the WTA circuit is such that
the output is low when it wins and high when it loses. The
output of the WTA is routed to the microprocessor using a
digital buffer and thus it compares the output with 1.25 volts.
The analog output could also be used as the confidence level
of the classification when more than few classes are present.
The discussion on confidence level of the classification and
multi-class classification is beyond the scope of this paper.

Figure 3b shows the output of the WTAs and the corre-
sponding digital outputs are also plotted. The digital outputs
are inverted, with respect to the WTA outputs, so as to obtain a
digital one when speech or noise is detected. The input given to
the system here has a Signal-to-Noise Ratio (SNR) of 20dB,
above which a human auditory system cannot perceive the
difference [17]. The VMM of noise WTA has its weights
set such that it has winning output in absence of speech.
The speech VMM-WTA is trained to win only when relevant
features are observed, i.e in presence of speech. Certain inputs
result in a higher level of confidence in detection compared
to others.

IV. ACCURACY WITH SNR

One of the important metric for real time speech processing
is to measure the accuracy of the system in noisy environment.
To test the system under different noise condition gaussian
white noise was added to the input. The signal was then given
as an input to the system using an external arbitrary waveform
generator. Figure 4a shows eight different SNR conditions
being tested on the system. Input having different SNR are
overlayed with corresponding outputs of the WTA used for
speech detection.

The accuracy of the system is measured not only by
checking if the WTA detects the speech but also by measuring
the accuracy with which the second WTA detects the noise.
Thus, the plot in Fig. 4b considers both as a factor for accuracy.
Since the input data is labeled the accuracy was measured by
comparing the output with an ideal output. In case of speech,
the error rate was calculated if the WTA is able to detect it or
not. For noise the delay in detection is also considered, so as to
reduce false positives. The system performs with an accuracy
of 99.94% for input having a SNR of 20 dB. The accuracy of
the system stays above 70% for SNR above 7 dB. Below 7
dB of SNR the noise and signal are almost indistinguishable
and hence the accuracy falls to almost 2%. The accuracy of
the system in low SNR cases could be improved by having
the output of the WTA compared to a different threshold or
having several null clusters.

V. DISCUSSION

The system designed in this work has a power consumption
of 155.6"W, not taking into account the power consumption
of the processor MSP430. The table I summarizes the power
consumption for each components of the analog signal pro-
cessing system. The majority of the power is consumed in
biasing the !!-C filters. These can be further optimized by
considering the frequency spectrum of the input speech.

In this system the VMM-WTA were trained with an input
having an SNR of 20 dB. The accuracy was tested using an
input with several different inputs. The accuracy of the system
needs to be evaluated for several different inputs, input with
different phonemes, which is beyond the scope of this paper.
The low power consumption of the system enables it to operate
over several days and processes the speech signal in real time.
This allows it to be deployed for various applications like echo
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Fig. 4. a) Shows the output of the WTA detecting speech for inputs having different SNR. The signals have been plotted with an offset to visualize them
on the same graph. b) Accuracy of speech and noise detection with respect to the SNR. A white gaussian noise is added to the clean signal from the TIMIT
dataset.

TABLE I
POWER CONSUMPTION OF ANALOG SYSTEM

Components Power
Band Pass filter(100 Hz - 5 KHz) 150.7!W

Minimum Detector 3!W
Low Pass Filter 27nW

VMM and WTA biasing 1.8!W
Total 155.6!W

cancellation systems as a double talk detector, remote sensing
applications, and as a low power front end for digital signal
processing.
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