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Abstract: This discussion reviews the current capabilities of large-
scale Field Programmable Analog Arrays (FPAA) and considers the 
future potential of these SoC FPAA devices, including techniques 
to enable ubiquitous use of FPAA devices similar to FPGA devices. 
Today's FPAA devices include integrated analog and digital fabric 
as well as specialized processors and infrastructure, becoming a 
platform of mixed-signal development as well as analog-enabled 
computing.  Investigating the scaling of FPAA devices shows the 
potential fine-grain capabilities through analyzing the tradeoff 
between granularity and flexibility as well as the opportunities 
through CMOS scaling.   
 
Field Programmable Gate Arrays (FPGA) are ubiquitous in many 
applications and are becoming embedded into a large number of 
applications starting from initial demonstrations in the 1980s.  
Although FPGAs tend to be less efficient than custom design with 
lower latency (1-3x), larger area (3-10x), and higher energy (30-
100x), FPGAs allow near custom digital design through a 
reconfigurable digital substrate on a single IC.  This flexibility has a 
cost while empowers design opportunities.  These opportunities 
also include device reprogrammability for an IC designed once, 
standardization and abstraction of components (e.g. look-up tables 
(LUT), register elements), as well as easily upgradable during 
fielded operation, with little sacrifice on performance [1]. 

However, FPGAs are not low power when looking at solutions 
requiring 10-100mW of power. DSPs (started late 1970s) and 
microprocessors ($\mu$P), the low-power alternatives to FPGAs, 
have merged into a single ubiquitous technology and lead the low-
power market (e.g. cellphones).  Most FPGAs require 100s of mW 
simply to power up the SRAM elements holding the programming 
variables. Commercial Flash-based FPGAs  significantly decrease 
the starting power requirements (e.g 7-10mW standby power [2,3]) 
while enabling 350-500MHz signals and  70mW 5G SERDES, 
although using these techniques still are too high for lower power 
systems of 10-20mW or less.  

The research and development of large-scale Field Programmable 
Analog Arrays (FPAA), the mixed-signal extension of FPGA 
devices (Fig. 1,2), show significant potential for mixed-signal 
computing [4]; [4] provides an extensive review of FPAA history 
through current times. FPAA devices have provided a 
programmable and configurable structure to implement the 1000x 
computational energy efficiency over digital approaches (e.g. [4], 
[5]) that was originally demonstrated in custom Si [6] to prove 
Mead’s original hypothesis [7]. FPAA devices have experimentally 
demonstrated a wide range of applications (Fig. 2), sometimes at 
small scale given the component constraints of a 350nm CMOS 
SoC FPAA [24]. For example, end-to-end embedded sensor to 
learning and classification have been demonstrated at 20-30µW on 
command-word recognition as well as on the full Nzero database 
[8]. Floating- Gate (FG) circuits enable Programmability, having 
precise parameters (e.g. 14-bit accuracy [9]), in standard CMOS, 
as well as configurability through long-term retention of FG charge 
(0-100 µV over 10 years [10], [11]). SoC FPAAs enable a mixed-
signal platform as well as an analog-enabled computing platform, 
as they include analog elements and signals integrated with 
potential logic and mixed-signal enabled routing (Figs. 1,2). SoC 
FPAAs enable user development of the emerging analog 
computing techniques (e.g. [12]).  

 

 
End-to-end computation requires analog input and outputs as well 
as computation for these physical implementations, with the system 
cost for data conversion and communication whether an FPGA or 
an FPAA system (Fig. 3). An FPGA can handle any analog signal 
inputs and outputs with the addition of sufficient data converters 
(Fig. 3), although the overall high energy, area, and complexity 
costs for the digital computation (e.g. [5] vs [13,14]), static FPGA 
power, and data converters will overwhelm many energy budgets. 
The significant energy and area efficiencies of analog computation, 
as well as the reduced system issues by significantly reducing the 
sampled data converters as well as the required data-converter 
SNR.  
 
On the otherhand, an analog co-processor block for a digital 
computation with a bank of data converters creates a huge amount 
of infrastructure that nearly eliminates the benefits of the analog 
processing. The analog computation potentially provides near-zero 
latency for the computation compared to the latency required for 
the FPGA digital computation (e.g. [15]). And yet, today’s FPGA-
based solutions (Fig. 3a) are used because of the lack of 
commercially available FPAAs, as well as engineers having 
sufficient experience with FPAA solutions.  

Like FPGA devices, FPAA tools can empower a wide application 
ecosystem, providing tools to enable an engineering team to rapidly 
develop new applications. The initial approach at systematic analog 
design tools arose through enabling FPAA designers to target 
designs to hardware from higher level abstractions as well as 
simulate these abstractions [4], [16], [17], [18]. These tools give the 
user the ability to create, model, and simulate analog and digital 
designs. This early tool effort enables the development for an FPAA 
toolset a toolset that can start with high-level definitions and 
automatically generate targeted hardware where as the user has 

 
Figure 1: Fig 1: Large-scale Field Programmable Analog Arrays 
(FPAA) extend the concepts of FPGA devices to include Analog 
elements and signals integrated with potential logic and mixed-
signal enabled routing. Today’s FPAA devices include integrated 
analog and digital fabric as well as specialized processors and 
infrastructure, becoming a platform of mixed- signal development as 
well as analog-enabled computing. The fundamental question is 
what is the potential of future FPAA devices? Future FPAA devices 
seem to offer a promise of ubiquitous reconfigurable devices as part 
of ultra- low power mixed-signal applications, image processing & 
classification, near- zero latency RF computational applications, and 
low-power high-performance computing.  
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the ability to optimize the process at each level. Recent efforts are 
expanding these analog and mixed-signal tools towards analog 
synthesis using standard cells for custom ICs (e.g. [19], [20], [21]).  
 
FPAA devices, can be the solution for analog and mixed- signal 
security and component obselecence [30], just as FP- GAs soluve 
security and obsolescence issues. Multiple digital techniques can 
verify an FPGA, allowing for secure and confident FPGA 
programming for a particular application. An FPAA device can be a 
completely generic and known device that can be completely 
verified in a safe location [30], where the secret-sauce for the 
technology can be programmed on the device also in a safe 
location (Fig. 4). The resulting FPAA device layout says nearly 
nothing about the programmed function, similar to FPGA devices. 
FPAA devices can directly and discretely map secure functions, like 
Unique functions and Physically Unclonable Functions (PUF), 
directly into the FPAA fabric [30]. The nonvolatile programming of 
an FPAA to a specific hardware code removes most security holes 
from multi-level hardware stacks. FG memory eliminates the 

security issue of loading SRAM values. Analog values are difficult 
to measure without the measurements significantly distorting the 
values, and low-power circuits provide unique challenges for 
external measurements [30]. Analog and digital computing can be 
analog encoded. FPAAs can replicate similar analog circuit 
elements or a combination of analog circuit elements to achieve 
similar linear and nonlinear dynamics seen in older custom or 
configurable devices, including some of the unintended dynamics, 
eliminating the obsolescence issues. These techniques have been 
initially demonstrated for mapping analog music synthesis, even 
though the circuit techniques (e.g. BJT vs. FET) were used for 
these components [31], [32].  

 
The primary question is the CMOS node scaling opportunities for 
new FPAA devices given the current FPAA sys- tem capabilities. 
Scaling directly depends on on architectural and granularity 
tradeoffs in FPAA architectures (Sec. I). Configurable mixed-signal 
devices, having the opportunity of flexibility in a reasonably granular 
solution, can justify the IC design cost for new embedded devices 
(Fig. 5). As mask costs exponentially increase with decreasing 
processing node, the resulting design costs to obtain value from 
these investments increases exponentially, requiring a significantly 
higher expected market return from the effort (Fig. 5). Only a few 
applications (e.g. cell phone processors) can have the market 
impact that are necessary to justify the cost of advanced IC nodes 
(e.g. 10nm, 14nm), where configurable solutions can utilize a single 
IC design across a number of applications to justify the investment 
cost. Given the fine-grain and highly flexible opportunities of 

 
Figure 2: FPAAs enable a range of computations in a single programmable and reconfigurable IC. (a) Block diagram of a SoC FPAA 
device, that includes analog (A: CAB) and digital (D) elements in the routing fabric integrated with a µP and other mixed-signal 
components. (b) The FPAA approach is enabled through analog programmable Floating-Gate (FG) devices, providing non-volatile 
storage (e.g. < 100µV in 10 years) and routing as well as computing directly through the routing crossbars. (c) SoC FPAA architectures 
use a manhattan architecture to route between components in a Computational Analog Block (CAB). (d) A typical CAB utilizes a number 
of components that may utilize FG parameters, as well as FG switches that can be used as part of the computation. (e) Current FPAA 
devices are capable of a diverse set of computations, as seen by the partial list of demonstrated FPAA algorithms.    

 
Figure 3: input and analog output computation. (a) An FPGA or 
multiple FPGAs can be used for a range of analog approaches 
assuming there are sufficient ADCs and DACs for the resulting 
analog signals. In addition to the high energy and complexity 
costs of these data converters, the FPGA has some latency for its 
digital computation and is constrained by the static and dynamic 
power issues for digital systems. (b) An FPAA device can typically 
handle the incoming analog signals directly, and where necessary 
(e.g. RF), those signals can be transformed to the power and 
supply voltage levels, transformations required for the FPGA 
devices when used. The FPAA device also computes with the 
high energy analog efficiency where possible in a near-zero 
latency path that can utilize digital control through the structure.  

 
Figure 4: An FPAA device can be a completely generic and known 
device, completely verified in a safe location, and have the 
technology secret-sauce be programmed in a safe location. The 
output product is a custom chip due to the nonvolatile device 
programming.  
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configurable FPAA devices, the next step is predicting future 
mixed-signal computing opportunities (Sec. II) using FPAA devices 
(Fig. 1). This discussion works through the opportunities and 
challenges on the path to building a ubiquitous supply of SoC 
FPAAs.	 

I.	GRANULARITY:	FLEXIBILITY	VS.	SWITCH	COST	 

An effective configurable fabric empowers the user’s creativity 
through flexible opportunities while minimizing the added cost for 
that flexibility. Flexibility (φ) enables more computations in a single 
architecture, where φ quantifies the possible combinations 
available. Flexibility requires switches, and more switches result in 
higher area, circuit and interconnect cost (Fig. 6). A configurable 
architecture will always be a factor higher cost (K) in area, however 
small, compared to the fully custom architecture (A1).  The custom 
block area is fully custom, explicitly including in K any 
configurability or parameters. Each switch linearly increases K by a 
factor a, which is the ratio of the size of a switch compared to an 
individual selection block. Typical values for small to moderate cells 
connected to this switch would be between 0.1 to 0.01; switches 
selecting a single transistor element would have a closer to 1. 
Switch implementation in a particular technology Fig. 6b) directly 
affects a.  

Switches add circuit costs to the flexible fabric. With the increase in 
area by (K), the custom computation has a total capacitance (CL), 
and the configurable computation has an increased capacitance 
roughly scaled by the cost factor (K). Area efficiency due to 
configurability is the inverse of cost (1/K). The custom computation 
power-delay product (E1) would be proportional to CL that is 
proportional to A1.  For subthreshold operation and near-threshold 
operation, E1 is constant with frequency. The Size, Weight, and 
Power (SWaP) metric, a product of the area and Power-delay 
product, for a custom system is proportional to E1A1, and for a 
configurable system is proportional to K2 E1A1.  Further, CMOS 
switches have a resistive loss Fig. 6b), although other technologies 
(e.g. III-V transistors and Calcoginides) potentially can reduce the 

signal loss for an on-switch.  

Switch granularity is typically pictured as a continuum be- tween 
coarse-grain granularity that has a minimum of switches between a 
menu of items, and fine-grain granularity that has switches between 
the lowest level of components (Fig. 6a). Different architectures 
create a different K in their attempt to achieve their desired 
flexibility. Over the following subsections, we will examine how the 
cost of configurability (K) trades off with the resulting increase in 
flexibility (φ) described as increased functionality when connecting 
n blocks together, including coarse-grain architectures (Sec. I-A), 
manhattan architectures (Sec. I-B), and fine-grain architectures 
(Sec. I-C).  

A. Coarse-grain architectures  

Given the concern around switch cost for potential applications, 
many FPAA designs utilize coarse-grain architectures (Fig. 6a), 
minimizing the number of switches (Fig. 6b) and associated 
parasitics required for any particular computation. Coarse-grain 
architectures attempt to minimize the effect of additional switches 
by only switching between large fixed components, and the loss of 
opportunity by this strategy is incorporated into the flexibility metric 
(φ). Consider a system with N-blocks connected through a crossbar 
network (Fig. 7a); each block could have a selection connection to 
the n-1 other blocks resulting in a flexibility ≈ n or could have 
parallel connections to each of the n-1 blocks with a flexibility ≈ n2 
(Fig. 7c).  

 
Figure 5: impact because of the ever-increasing cost of IC design 
for scaled down processes. The costs for making a set of IC masks 
scales inversely as a power law of the CMOS minimum channel 
length, and typically the design cost for a new design is at least 10x 
the mask cost, typically requiring a 10x the expected financial return 
to even attempt such a venture. The resulting cost for designing an 
IC is often far too high for most engineering applications to hope to 
reach these financial returns. A configurable device can spread this 
resulting engineering cost over a wide number of designs, enabling 
a market case for the engineering effort for an FPGA or FPAA 
device, as well as those directly using FPGA or FPAA devices not 
having to invest in the heavy IC design efforts.  

 
(a) 

 
(b) 

Figure 6: Impact of Switches on Routing Architecture. (a) 
Continuum of FPAA routing granularity. (b) Switch types compared 
considering significant Resistive (R) losses nonvolatile capabilities 
technology maturity for large-scale capabilties, and applications for 
these switches.  
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B.	Manhattan	architectures	improve	Flexibility	 

Manhattan architectures utilize a multilevel routing scheme to 
reduce the scaling of K with the number of elements while still 
achieving significant flexibility. FPGAs significantly improve their 
granularity through Manhattan architectures [1]. The evolution of 
configurable digital from fully connected structures to Manhattan 
type approaches enabled FPGAs with a routing structure that 
enabled a level of granularity beyond typical LUTs. The more 
flexible, efficient, and fine grain granularity enables creativity by the 
designer and such approaches requires significant device targeting 
tools[1].  

Manhattan routing improves the effective granularity by assuming 
more connections are local or sparse, typical of digital and analog 
designs. Manhattan routing structures assume the number of 
elements or nodes to be routed are significantly larger than the 
crossbar determined by b, d, and f switch matrix (Fig. 7b), therefore 
having an improved scaling metric; the values of b, d, and f would 
increase weakly for increasing total number of nodes (= N). K 
scales with local routing (b, d, f) within each module (e.g. CLB or 
CAB) instead of the entire array (Fig. 7b). Other multilevel routing 
schemes have similar scaling properties.  

Manhattan architectures utilize these crossbar arrays in each of 
their local regions (CLB/CAB) typically having n=8 to n=64 block 
elements, where one wants to maximize φ in each local region.	A 
local region is defined as a large block where the routing 
architecture focuses on local computation, enabling these bus 
connections to only weakly grow with increased number of local 
regions and number of components.  

  
 

 

 

 

C. Fine-grain architectures  

CMOS devices using FG elements allow for non-volatile switches 
potentially enabling analog granularity. Analog parameters improve 
the resulting density and resulting system flexibility (Fig. 7c). For  

analog m-bit switch elements, the increased parallel flexibility 
increases by a 2m factor, as the number of possibilities for a single 
switch increases by 2m.  Having analog parameters with parallel 
connections enables using routing fabric as computing fabric [22]. 
In this computing in memory approach [4], [23], the number of 
additional switches, and therefore K, for a particular computation 
decreases significantly.  

Fine-grain granularity, particularly analog programmable 
granularity, greatly improves the tradeoff between configurable 
architecture efficiency (1/K) and flexibility (Φ), requiring fewer 
nodes for similar flexibility as well as having a lower cost (K) of that 
flexibility (Fig. 8). The higher granularity achieved by parallel analog 
connections significantly decreases the number of components 
(n=1000s to 15) as well as the resulting SWaP efficiency (1/K → 
0.1% to 80%) illustrating the potential advantage using switch 
elements as programmable transistors. Decreasing the required 
number of blocks for the same Φ illustrates the potential system-
level reduction in SWaP to achieve a range of potential 
applications.  

Fine-grain, analog switch architectures provides a favorable 
tradeoff between configurable architecture efficiency (1/K) and 
flexibility (Φ), and further research to enable these techniques 
should yield many significant opportunities. These advantages are 
consistent with the demonstrated orders of magnitude advantage of 
FPAA devices using analog switching matrices, such as the SoC 
FPAA [4], [24]. As the computational routing fabric becomes more 

 
Figure 7: Architecture scaling for interconnecting n-processors. (a) Individual crossbar array to fully connect n processors requiring O(n2) 
switches. (b) Manhattan routing geometry to connect n processors having b processors in a CAB with d lines running out of the CAB onto 
the street (or C-block) of f lines. The number of switches for n processors becomes O(n(1 + (f/b) )d ).  (c) Summary of cost (K) and 
flexibility (φ) for n blocks as a function of typical architectures.  
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important because of the high flexibility (Φ), additional fabric 
infrastructure, such as partial high-speed in-circuit reconfigurability 
[24], [25], further empowers the range of potential targeted 
applications.  

The difference in φ between digital connection switches and parallel 
analog switches, enabling computing through the switches 
structured in a memory configuration, can be seen by the 
capabilities of a typical CLB and CAB (Fig. 9). Where a typical CLB 
can impressively enable a state machine per CLB, a CAB could 
potentially implement a small acoustic classifier stage in a single 
CAB. These differences in capabilities are almost entirely due to 
the fine-grain routing vs. an efficient traditional routing approach; 
coarse-grain routing techniques leave even more φ and capability 
unused.  

Fine-grain programmability enables sufficient flexibility for security 
measures, as well as the infrastructure for programming and using 
fine-grain infrastructure enables verifying nearly every node on a 
given device.  

 

II. OPPORTUNITIES OF SCALED FPAA DEVICES  

Given that fine-grain capabilities have been demonstrated for their 
high flexibility compared to architectural cost, as well as initial SoC 
FPAAs have been experimentally demonstrated [24], what is the 
potential of these FPAA devices given existing understanding of 
these techniques? The scaling of FG devices to current processes 
(e.g. 40nm, 14nm) was experimentally shown [26], although further 
data will continue to provide confidence in these areas. Scaling 
improves the potential FPAA fabric bandwidth, enabling some RF 
bandwidths (e.g. 4GHz) at 40-45nm CMOS [26], [27]. What should 
one build as well as expect to be built for the next generation of 
FPAA devices particularly given recent possibilities for analog IC 
synthesis [20]? What is needed for a common module (Fig. 12) or 
image processing or remote sensor node application?  

 
Figure 9: Comparison of the computation possible in a single local 
region, such as a Computational Logic Block (CLB) or a 
Computational Analog Block (CAB). A CLB typically uses binary 
connection switches to form multiple (e.g. 8) lookup tables and 
some selection RAM, enabling small state machines in a single 
CLB. A CAB typically uses analog parallel switches for its 
computation, that includes FG routing that can be used for 
programmable and configurable computation, as well as 
programmable FG-based circuits. Within such a structure, a small 
auditory classifier could be compiled in a single CAB.  

 

A. Technical Opportunities from CMOS Scaling  

Scaling provides two primary opportunities. First, scaling creates 
smaller switches and processing elements resulting in higher 
density and lower energy consumption. One would expect a 
significantly increased number of FG devices with CMOS scaling 
depending on process capabilities (Fig. 11a). Second, scaling 
allows for a higher signal bandwidth in the fabric architectures (Fig. 
11a), roughly with an inverse quadratic scaling on the minimum 
channel length [26], [27].  

Increased density, decreased energy consumption, and increased 
bandwidth directly impact the range of computations. The amount 
of traditional computation, expressed by the number of Vector-
Matrix Multiplications (VMM) (5mm x 5mm) die grows rapidly with 
decreasing process node, where one assumes that the VMM 
elements are roughly 1/8 of the total routing fabric (Fig. 11b). From 
this modeling, one expects 45nm and 14nm devices are capable of 
PMAC(/s) level computation on a single die, computation levels 
typically requiring a large supercomputer (Fig. 11c).  

These FPAA enable ultra-low power and energy harvesting 
operations given the possible computation at 1µW and 1mW levels 
(Fig. 11b). 1µW average energy could easily be supplied by small 
(< 1cm2) energy harvesting devices. 1mW average energy could be 
supplied by a battery enabling months of continuous fielded use or 
by moderate sized (e.g. 10cm x 10cm) energy harvesting device. A 
40nm CMOS structure enables 1GMAC(/s), around the level of a 
fully capable laptop computer, and around 1TMAC(/s), around the 
level of a small GPU or FPGA cluster.  

LUT + SRAM
Simple state 

machine

CLB = Computational Logic Block

CAB = Computational Analog Block

FG 
Routing +

FG 
Circuits

Auditory classifier 
(VMM+WTA) 
+ subbanding

(e.g. 8 LUTs)

 
(a) 

 
(b) 

Figure 8: Efficiency and Flexibility for reconfigurable fabrics showing 
the impact of analog programmability and fine-grain granularity.  (a) 
Configurable Architecture Efficiency (1/K) and Flexibility for simple 
crossbar networks (Fig. 7a) as a function of the number of blocks 
(n) for connection architectures, parallel switch architectures, and 
parallel analog (12- bit) switch architectures. (b) Efficiency (1/K) vs. 
Flexibility (Φ) for these three architectures. Higher granularity, 
particularly analog-programmed granularity, enables significant 
flexibility with fewer resources (e.g. n) as well as at lower cost.  
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B. Application Opportunities from Scaling  

FPAA algorithm opportunities can be mapped using the current [4] 
and future FPAA capabilities (Fig. 11), These end- to-end, sensor-
to-refined result computations are possible at each CMOS 
process node, although the operating frequency and problem 
size will be lower for 350nm CMOS node com- pared with a 
130nm, 40nm, and 14nm CMOS node. Analog numerical 
analysis [28], analog architecture theory [15], and real-valued 
computing theory [12] provides the analog computing framework.  

For embedded applications, the optimal operating frequency 
matches the input data rate to eliminate the need for any internal 
storage or related infrastructure. In these particular situations, 
such as acoustic or speech processing or classification, scaling 
increases the problem size (command word to small vocabulary 
to speech classification) while potentially further improving the 
energy efficiency. In other cases, the increased problem size 
opens new architectural solutions, such as an image sensor 
classification where processing occurs on the incoming streamed 
image from an image sensor. Image classification on larger 
nodes might take a standard database with an on-board 
compression (e.g. Compressed DCT [29]), where a scaled down 
system would compute and classify subimages in parallel. A 
45nm CMOS FPAA has enough CABs to locally store and 
configurably process images similar to GPU image 
reconstruction.  

One can imagine an FPAA device being a common module for a 
range of application directions, including an FPAA device as a 
common module for RF related applications (Fig. 12) or a 
common module for front-end image processing and 
classification. A multi-input common-module (Fig. 12) is possible 
in 45nm and smalller CMOS [27]. CMOS scaling enables some 
applications, such as beamforming and demoduation that could be 
40MHz at 350nm CMOS, while improving to 400MHz at 130nm 
CMOS, 4GHz at 40nm CMOS, and higher for smaller CMOS 
processes.  

 

 

 

 

 

 

 
Figure 10: Bandwidth, parallel computational units, computational capability, and computational efficiency for scaled down FPAA devices 
extrapolated from experimental measurements and early studies of scaled down FG and FPAA devices. (a) Typical FPAA fabric 
bandwidth for scaled process nodes. (b) Number of FG elements for scaled process nodes that directly relates to the number of parallel 
computations (e.g. MAC). (c) Computational capability as well as computational efficiency for scaled down FPAA devices.  

 
Figure 11: Scaling FPAA devices enables a range of new 
applications at scaled down nodes. (a) Scaling FPAA devices from 
350nm CMOS to 130nm, 40nm ,and 14nm processes predictably 
increases the computational efficiency, area per operation, and 
fabric bandwidth, as well as opens new application spaces at each 
node. (b) Fabric perating conditions and CAB/CLB sizes for scaled 
FPAA devices.  
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III. SUMMARY AND FURTHER DIRECTIONS  

Today’s FPAA devices include integrated analog and digital fabric 
as well as specialized processors and infrastructure, and scaled 
FPAA devices show an increased potential on a single device, 
particularly high computing applications in ultra-low power 
constraints. This discussion presented a short summary of the 
FPAA device capability to date, including two primary threads of 
current FPAA development: components being connected together 
in a menu of functions, or a fine-grain interconnected network. The 
SoC FPAA device utilizes a form of this fine-grain network through 
analog programmability without paying the high cost of fine-grain 
switch networks.  

Given the limitations of CMOS devices, particularly scaled down 
CMOS devices, applications will continue to have a need for higher-
voltage and higher-power external devices, and one would want 
some of these devices to be programmable and configurable. This 
approach enables configurability beyond the common module, say 
in an RF application (Fig. 12), to other structures either in the same 
package, on the same board, or in the system depending on the 
particular appli- cation requirements. Extending these concepts to 
III-V and GaN, potentially as configurable modules, require 
significant technology development and likely would be a next layer 
opportunity. The Si structure can provide the initial core tunability 
where needed for these ICs and chiplets including required I/O 
pins, where eventually some configurability can be developed in the 
native technology (e.g. III-V or GaN). The integration of these 
additional modules extends the capability of the common module.  

And yet. as of today, FPAA devices are not ubiquitous. The 
community does not have a source of FPAA devices to enable the 
ubiquitous use of these devices as is seen for digital devices. The 
continued life of circuits like Anadigm’s early FPAA devices [33] 
and related devices [34] demonstrates a constant hope for these 
configurable techniques, in spite of these devices very limited 
capabilities. Moving forward in this space requires a source of 
devices, and a source of devices requires building a bridge towards 
compelling application opportunities.  

References: 

[1] S. Trimberger, “Three ages of FPGAs: A retrospective on the 
first thirty years of FPGA technology,” IEEE Proceedings, vol. 103, 
no. 3, 2015. 
[2] IGLOO2 FPGA, Microsemi, https://www.microsemi.com/product-
directory/fpgas/1688-igloo2. Last visited, May 8, 2021. 
[3] https://www.microsemi.com/product-directory/antifuse-
fpgas/1700-axcelerator, last visited, May 8, 2021. 
[4] J. Hasler, “Large-Scale Field Programmable Analog Arrays,” 
IEEE Proceedings, vol. 108. no. 8. August 2020. pp. 1283-1302. 
[5] C. Schlottmann and P. Hasler, “A highly dense, low power, pro- 
grammable analog vector-matrix multiplier: The FPAA 
implementation,” IEEE Journal on Emerging and Selected Topics in 
Circuits and Systems, vol. 1, no. 3, 2011, pp. 403–411. 
[6] R. Chawla, A. Bandyopadhyay, V. Srinivasan, and Hasler, “A 
531 nW/MHz, 128 x 32 current-mode programmable analog vector-
matrix multiplier with over two decades of linearity,” IEEE Custom 
Integrated Circuits Conference, October 2004, pp. 651 – 654.  
[7] C. Mead, “Neuromorphic electronic systems,” Proceedings of 
IEEE, vol. 78, 1990, pp. 1629-1636.  
[8]  J. Hasler and S. Shah, “SoC FPAA Hardware Implementation 
of a VMM+WTA Embedded Learning Classifier,” IEEE Journal on 
Emerging and Selected Topics in Circuits and Systems, vol. 8, no. 
1, March 2018. pp. 28-37.  
[9]  S. Kim, J. Hasler, and S. George, “Integrated Floating-Gate 
Program- ming Environment for System-Level Ics,” IEEE 
Transactions on VLSI, vol. 24, no. 6, 2016. pp. 2244-2252.  
[10] V. Srinivasan, G. J. Serrano, J. Gray, and P. Hasler, “A 
precision CMOS amplifier using floating-gate transistors for offset 
cancellation,” IEEE Journal of Solid-State Circuits, vol. 42, no. 2, 
pp. 280-291, Feb. 2007.  
[11] V. Srinivasan, G. Serrano, C. Twigg, and P. Hasler, “A 
Floating-Gate- Based Programmable CMOS Reference,” IEEE 
Transactions on Circuits and Systems I, Vol. 55, No. 11, pp. 3448 - 
3456, Dec. 2008.  
[12]  J. Hasler and E. Black, “Physical Computing: Unifying Real 
Number Computation,” Journal of Low Power Electronics 
Applications, vol. 11, March 2021. pp. 1-21.  
[13] B. Marr, B. Degnan, P. Hasler, and D. Anderson, “Scaling 
energy per operation via an asynchronous pipeline,” IEEE 
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 
21, no. 1, pp. 147–151, 2013.  
[14]  B. Degnan, B. Marr, and J. Hasler, “Assessing Trends in 
Performance per Watt for Signal Processing Applications,” IEEE 
Transactions on Very Large Scale Integration Systems, vol. 24, no. 
1, 2016, pp. 58-66.  
[15] J. Hasler, “Analog Architecture and Complexity Theory to 
Empowering Ultra-Low Power Configurable Analog and Mixed 
Mode SoC Systems,” JPLEA, 2019.  
[16]  M. Collins, J. Hasler, and S. George, “An Open-Source 
Toolset Enabling Analog–Digital–Software Codesign,” invited paper 
Journal of Low Power Electronics Applications, Vol. 6, no. 1, 
February 2016, pp. 1-15.  
[17]  J. Hasler and A. Natarajan, “An Open-Source ToolSet for 
FPAA Design,” WOSET, November 2020.  
[18]  S. Kim, Sahil Shah, Richard Wunderlich, and Jennifer Hasler, 
“CAD Synthesis Tools for Large-Scale Floating-Gate FPAA 
System,” Journal Design Automation for Embedded Systems, 
March 2021. pp. 1-16.  
[19] J. Hasler, “Circuit Implementations Teaching a Junior Level 
Circuits Course Utilizing the SoC FPAA,” ISCAS 2018, Florance, 
Italy, May 2018. pp. 1-5.  
[20] J. Hasler, “Defining Analog Standard Cell Libraries for Mixed-
Signal Computing enabled through Educational Directions,” IEEE 
ISCAS, 2020. pp. 1-5.  
[21]  J. Hasler, “A CMOS Programmable Analog Standard Cell 
Library in Skywater 130nm Open-Source Process,” WOSET, 2021.  
[22]  C. M. Twigg, J. D. Gray, and P. Hasler, “Programmable 
floating gate FPAA switches are not dead weight,” IEEE 

 
Figure 12: Configurable devices could encompass the entire core 
common-module for systems operating at RF frequencies, where 
the mixed-signal computation up to part of the LNA and PA 
devices through the back end control could be enabled in a single 
low-latency device. These systems would likely include additional 
devices in package or in the integrated product to handle some 
functions, including antenna devices and other specialized (e.g. 
high power for Power Amplifier (PA)) components. These 
components can be reconfigurable and controlled through the 
common module.  



                                                                                    IEEE CICC 2022                                                                                      8 

	

International Symposium on Circuits and Systems, May 2007, pp. 
169 - 172.  
[23] M. Kucic, P. Hasler, J. Dugger, and D. Anderson, 
“Programmable and adaptive analog filters using arrays of floating-
gate circuits,” Advanced Research in VLSI, 14-16 March 2001, pp. 
148 – 162.  
[24] S. George, S. Kim, S. Shah, J. Hasler, M. Collins, F. Adil, R, 
Wunderlich, S. Nease, and S. Ramakrishnan, “A Programmable 
and Configurable Mixed-Mode FPAA SoC,” IEEE Transactions on 
VLSI, vol. 24, no. 6, 2016, pp. 2253-2261.  
[25]  C. Schlottmann, S. Shapero, S. Nease, and P. Hasler, “A 
digitally enhanced dynamically reconfigurable analog platform for 
low-power signal processing,” IEEE Journal of Solid-State Circuits, 
vol. 47, no. 9, 2012. pp. 2174–2184.  
[26]  J. Hasler, S. Kim, and F. Adil, ”Scaling Floating-Gate Devices 
Predicting Behavior for Programmable and Configurable Circuits 
and Systems,” Journal of Low Power Electronics Applications, vol. 
6, no. 13, 2016, pp. 1-19.  
[27] J. Hasler and H. Wang, “A Fine-Grain FPAA fabric for RF + 
Baseband,” GOMAC, March 2015.  
[28] J. Hasler, “Starting Framework for Analog Numerical Analysis 
for Energy Efficient Computing,” Journal of Low Power Electronics 
Applications, vol. 7, no. 17, June 2017. pp. 1-22.  

[29]  D. G. Moreno, A. A. Del Barrio, G. Botella, and J. Hasler, “A 
Cluster of FPAAs to Recognize Images Using Neural Networks, 
IEEE TCAS II, Vol. 68, no. 11, Nov. 2021. pp. 3391-3395.  
[30] J. Hasler and S. Shah, “Security Implications for Ultra-Low 
Power Configurable Analog and Mixed Mode SoC Systems,” 
Journal of Low Power Electronics Applications, June 2018, pp. 1-
17.  
[31]  S. Nease, A. Lanterman, J. Hasler, “A Transistor Ladder 
Voltage- Controlled Filter Implemented on a Field Programmable 
Analog Array,” JAES , Vol. 62, no. 9, Sept 2014. pp. 611-618.  
[32] S. H. Nease, A. D. Lanterman, and J. Hasler, “Applications of 
Current- Starved Inverters to Music Synthesis on Field 
Programmable Analog Arrays,” Journal of Audio Engineering 
Society, Vol. 66, No. 1/2, Jan- uary/February 2018.  
[33] Anadigm: Specifically generic analog functions for FPAAs 
Anadigm says, EE Times, Sep. 28, 2004.  
[34] L. J. Kushner, K. W. Sliech, G. M. Flewelling, J. D Cali, C. M. 
Grens, S. E. Turner, D. S. Jansen, J. L. Wood, G. M. Madison, “ 
The MATRICs RF-FPGA in 180nm SiGe-on-SOI BiCMOS,” IEEE 
RFIC Symposium, May 2015, pp. 283-286.  

 


