
1 IEEE CICC 2022

	

The Rise of SoC FPAA Devices

Jennifer Hasler
Electrical and Computer Engineering (ECE)
Georgia Institute of Technology
jennifer.hasler@ece.gatech.edu

Abstract: This discussion reviews the current capabilities of large-
scale Field Programmable Analog Arrays (FPAA) and considers the
future potential of these SoC FPAA devices, including techniques
to enable ubiquitous use of FPAA devices similar to FPGA devices.
Today's FPAA devices include integrated analog and digital fabric
as well as specialized processors and infrastructure, becoming a
platform of mixed-signal development as well as analog-enabled
computing. Investigating the scaling of FPAA devices shows the
potential fine-grain capabilities through analyzing the tradeoff
between granularity and flexibility as well as the opportunities
through CMOS scaling.

Field Programmable Gate Arrays (FPGA) are ubiquitous in many
applications and are becoming embedded into a large number of
applications starting from initial demonstrations in the 1980s.
Although FPGAs tend to be less efficient than custom design with
lower latency (1-3x), larger area (3-10x), and higher energy (30-
100x), FPGAs allow near custom digital design through a
reconfigurable digital substrate on a single IC. This flexibility has a
cost while empowers design opportunities. These opportunities
also include device reprogrammability for an IC designed once,
standardization and abstraction of components (e.g. look-up tables
(LUT), register elements), as well as easily upgradable during
fielded operation, with little sacrifice on performance [1].

However, FPGAs are not low power when looking at solutions
requiring 10-100mW of power. DSPs (started late 1970s) and
microprocessors (μP), the low-power alternatives to FPGAs,
have merged into a single ubiquitous technology and lead the low-
power market (e.g. cellphones). Most FPGAs require 100s of mW
simply to power up the SRAM elements holding the programming
variables. Commercial Flash-based FPGAs significantly decrease
the starting power requirements (e.g 7-10mW standby power [2,3])
while enabling 350-500MHz signals and 70mW 5G SERDES,
although using these techniques still are too high for lower power
systems of 10-20mW or less.

The research and development of large-scale Field Programmable
Analog Arrays (FPAA), the mixed-signal extension of FPGA
devices (Fig. 1,2), show significant potential for mixed-signal
computing [4]; [4] provides an extensive review of FPAA history
through current times. FPAA devices have provided a
programmable and configurable structure to implement the 1000x
computational energy efficiency over digital approaches (e.g. [4],
[5]) that was originally demonstrated in custom Si [6] to prove
Mead’s original hypothesis [7]. FPAA devices have experimentally
demonstrated a wide range of applications (Fig. 2), sometimes at
small scale given the component constraints of a 350nm CMOS
SoC FPAA [24]. For example, end-to-end embedded sensor to
learning and classification have been demonstrated at 20-30µW on
command-word recognition as well as on the full Nzero database
[8]. Floating- Gate (FG) circuits enable Programmability, having
precise parameters (e.g. 14-bit accuracy [9]), in standard CMOS,
as well as configurability through long-term retention of FG charge
(0-100 µV over 10 years [10], [11]). SoC FPAAs enable a mixed-
signal platform as well as an analog-enabled computing platform,
as they include analog elements and signals integrated with
potential logic and mixed-signal enabled routing (Figs. 1,2). SoC
FPAAs enable user development of the emerging analog
computing techniques (e.g. [12]).

End-to-end computation requires analog input and outputs as well
as computation for these physical implementations, with the system
cost for data conversion and communication whether an FPGA or
an FPAA system (Fig. 3). An FPGA can handle any analog signal
inputs and outputs with the addition of sufficient data converters
(Fig. 3), although the overall high energy, area, and complexity
costs for the digital computation (e.g. [5] vs [13,14]), static FPGA
power, and data converters will overwhelm many energy budgets.
The significant energy and area efficiencies of analog computation,
as well as the reduced system issues by significantly reducing the
sampled data converters as well as the required data-converter
SNR.

On the otherhand, an analog co-processor block for a digital
computation with a bank of data converters creates a huge amount
of infrastructure that nearly eliminates the benefits of the analog
processing. The analog computation potentially provides near-zero
latency for the computation compared to the latency required for
the FPGA digital computation (e.g. [15]). And yet, today’s FPGA-
based solutions (Fig. 3a) are used because of the lack of
commercially available FPAAs, as well as engineers having
sufficient experience with FPAA solutions.

Like FPGA devices, FPAA tools can empower a wide application
ecosystem, providing tools to enable an engineering team to rapidly
develop new applications. The initial approach at systematic analog
design tools arose through enabling FPAA designers to target
designs to hardware from higher level abstractions as well as
simulate these abstractions [4], [16], [17], [18]. These tools give the
user the ability to create, model, and simulate analog and digital
designs. This early tool effort enables the development for an FPAA
toolset a toolset that can start with high-level definitions and
automatically generate targeted hardware where as the user has

Figure 1: Fig 1: Large-scale Field Programmable Analog Arrays
(FPAA) extend the concepts of FPGA devices to include Analog
elements and signals integrated with potential logic and mixed-
signal enabled routing. Today’s FPAA devices include integrated
analog and digital fabric as well as specialized processors and
infrastructure, becoming a platform of mixed- signal development as
well as analog-enabled computing. The fundamental question is
what is the potential of future FPAA devices? Future FPAA devices
seem to offer a promise of ubiquitous reconfigurable devices as part
of ultra- low power mixed-signal applications, image processing &
classification, near- zero latency RF computational applications, and
low-power high-performance computing.

 IEEE CICC 2022 2

	

the ability to optimize the process at each level. Recent efforts are
expanding these analog and mixed-signal tools towards analog
synthesis using standard cells for custom ICs (e.g. [19], [20], [21]).

FPAA devices, can be the solution for analog and mixed- signal
security and component obselecence [30], just as FP- GAs soluve
security and obsolescence issues. Multiple digital techniques can
verify an FPGA, allowing for secure and confident FPGA
programming for a particular application. An FPAA device can be a
completely generic and known device that can be completely
verified in a safe location [30], where the secret-sauce for the
technology can be programmed on the device also in a safe
location (Fig. 4). The resulting FPAA device layout says nearly
nothing about the programmed function, similar to FPGA devices.
FPAA devices can directly and discretely map secure functions, like
Unique functions and Physically Unclonable Functions (PUF),
directly into the FPAA fabric [30]. The nonvolatile programming of
an FPAA to a specific hardware code removes most security holes
from multi-level hardware stacks. FG memory eliminates the

security issue of loading SRAM values. Analog values are difficult
to measure without the measurements significantly distorting the
values, and low-power circuits provide unique challenges for
external measurements [30]. Analog and digital computing can be
analog encoded. FPAAs can replicate similar analog circuit
elements or a combination of analog circuit elements to achieve
similar linear and nonlinear dynamics seen in older custom or
configurable devices, including some of the unintended dynamics,
eliminating the obsolescence issues. These techniques have been
initially demonstrated for mapping analog music synthesis, even
though the circuit techniques (e.g. BJT vs. FET) were used for
these components [31], [32].

The primary question is the CMOS node scaling opportunities for
new FPAA devices given the current FPAA sys- tem capabilities.
Scaling directly depends on on architectural and granularity
tradeoffs in FPAA architectures (Sec. I). Configurable mixed-signal
devices, having the opportunity of flexibility in a reasonably granular
solution, can justify the IC design cost for new embedded devices
(Fig. 5). As mask costs exponentially increase with decreasing
processing node, the resulting design costs to obtain value from
these investments increases exponentially, requiring a significantly
higher expected market return from the effort (Fig. 5). Only a few
applications (e.g. cell phone processors) can have the market
impact that are necessary to justify the cost of advanced IC nodes
(e.g. 10nm, 14nm), where configurable solutions can utilize a single
IC design across a number of applications to justify the investment
cost. Given the fine-grain and highly flexible opportunities of

Figure 2: FPAAs enable a range of computations in a single programmable and reconfigurable IC. (a) Block diagram of a SoC FPAA
device, that includes analog (A: CAB) and digital (D) elements in the routing fabric integrated with a µP and other mixed-signal
components. (b) The FPAA approach is enabled through analog programmable Floating-Gate (FG) devices, providing non-volatile
storage (e.g. < 100µV in 10 years) and routing as well as computing directly through the routing crossbars. (c) SoC FPAA architectures
use a manhattan architecture to route between components in a Computational Analog Block (CAB). (d) A typical CAB utilizes a number
of components that may utilize FG parameters, as well as FG switches that can be used as part of the computation. (e) Current FPAA
devices are capable of a diverse set of computations, as seen by the partial list of demonstrated FPAA algorithms.

Figure 3: input and analog output computation. (a) An FPGA or
multiple FPGAs can be used for a range of analog approaches
assuming there are sufficient ADCs and DACs for the resulting
analog signals. In addition to the high energy and complexity
costs of these data converters, the FPGA has some latency for its
digital computation and is constrained by the static and dynamic
power issues for digital systems. (b) An FPAA device can typically
handle the incoming analog signals directly, and where necessary
(e.g. RF), those signals can be transformed to the power and
supply voltage levels, transformations required for the FPGA
devices when used. The FPAA device also computes with the
high energy analog efficiency where possible in a near-zero
latency path that can utilize digital control through the structure.

Figure 4: An FPAA device can be a completely generic and known
device, completely verified in a safe location, and have the
technology secret-sauce be programmed in a safe location. The
output product is a custom chip due to the nonvolatile device
programming.

3 IEEE CICC 2022

	

configurable FPAA devices, the next step is predicting future
mixed-signal computing opportunities (Sec. II) using FPAA devices
(Fig. 1). This discussion works through the opportunities and
challenges on the path to building a ubiquitous supply of SoC
FPAAs.	

I.	GRANULARITY:	FLEXIBILITY	VS.	SWITCH	COST	

An effective configurable fabric empowers the user’s creativity
through flexible opportunities while minimizing the added cost for
that flexibility. Flexibility (φ) enables more computations in a single
architecture, where φ quantifies the possible combinations
available. Flexibility requires switches, and more switches result in
higher area, circuit and interconnect cost (Fig. 6). A configurable
architecture will always be a factor higher cost (K) in area, however
small, compared to the fully custom architecture (A1). The custom
block area is fully custom, explicitly including in K any
configurability or parameters. Each switch linearly increases K by a
factor a, which is the ratio of the size of a switch compared to an
individual selection block. Typical values for small to moderate cells
connected to this switch would be between 0.1 to 0.01; switches
selecting a single transistor element would have a closer to 1.
Switch implementation in a particular technology Fig. 6b) directly
affects a.

Switches add circuit costs to the flexible fabric. With the increase in
area by (K), the custom computation has a total capacitance (CL),
and the configurable computation has an increased capacitance
roughly scaled by the cost factor (K). Area efficiency due to
configurability is the inverse of cost (1/K). The custom computation
power-delay product (E1) would be proportional to CL that is
proportional to A1. For subthreshold operation and near-threshold
operation, E1 is constant with frequency. The Size, Weight, and
Power (SWaP) metric, a product of the area and Power-delay
product, for a custom system is proportional to E1A1, and for a
configurable system is proportional to K2 E1A1. Further, CMOS
switches have a resistive loss Fig. 6b), although other technologies
(e.g. III-V transistors and Calcoginides) potentially can reduce the

signal loss for an on-switch.

Switch granularity is typically pictured as a continuum be- tween
coarse-grain granularity that has a minimum of switches between a
menu of items, and fine-grain granularity that has switches between
the lowest level of components (Fig. 6a). Different architectures
create a different K in their attempt to achieve their desired
flexibility. Over the following subsections, we will examine how the
cost of configurability (K) trades off with the resulting increase in
flexibility (φ) described as increased functionality when connecting
n blocks together, including coarse-grain architectures (Sec. I-A),
manhattan architectures (Sec. I-B), and fine-grain architectures
(Sec. I-C).

A. Coarse-grain architectures

Given the concern around switch cost for potential applications,
many FPAA designs utilize coarse-grain architectures (Fig. 6a),
minimizing the number of switches (Fig. 6b) and associated
parasitics required for any particular computation. Coarse-grain
architectures attempt to minimize the effect of additional switches
by only switching between large fixed components, and the loss of
opportunity by this strategy is incorporated into the flexibility metric
(φ). Consider a system with N-blocks connected through a crossbar
network (Fig. 7a); each block could have a selection connection to
the n-1 other blocks resulting in a flexibility ≈ n or could have
parallel connections to each of the n-1 blocks with a flexibility ≈ n2
(Fig. 7c).

Figure 5: impact because of the ever-increasing cost of IC design
for scaled down processes. The costs for making a set of IC masks
scales inversely as a power law of the CMOS minimum channel
length, and typically the design cost for a new design is at least 10x
the mask cost, typically requiring a 10x the expected financial return
to even attempt such a venture. The resulting cost for designing an
IC is often far too high for most engineering applications to hope to
reach these financial returns. A configurable device can spread this
resulting engineering cost over a wide number of designs, enabling
a market case for the engineering effort for an FPGA or FPAA
device, as well as those directly using FPGA or FPAA devices not
having to invest in the heavy IC design efforts.

(a)

(b)

Figure 6: Impact of Switches on Routing Architecture. (a)
Continuum of FPAA routing granularity. (b) Switch types compared
considering significant Resistive (R) losses nonvolatile capabilities
technology maturity for large-scale capabilties, and applications for
these switches.

 IEEE CICC 2022 4

	

B.	Manhattan	architectures	improve	Flexibility	

Manhattan architectures utilize a multilevel routing scheme to
reduce the scaling of K with the number of elements while still
achieving significant flexibility. FPGAs significantly improve their
granularity through Manhattan architectures [1]. The evolution of
configurable digital from fully connected structures to Manhattan
type approaches enabled FPGAs with a routing structure that
enabled a level of granularity beyond typical LUTs. The more
flexible, efficient, and fine grain granularity enables creativity by the
designer and such approaches requires significant device targeting
tools[1].

Manhattan routing improves the effective granularity by assuming
more connections are local or sparse, typical of digital and analog
designs. Manhattan routing structures assume the number of
elements or nodes to be routed are significantly larger than the
crossbar determined by b, d, and f switch matrix (Fig. 7b), therefore
having an improved scaling metric; the values of b, d, and f would
increase weakly for increasing total number of nodes (= N). K
scales with local routing (b, d, f) within each module (e.g. CLB or
CAB) instead of the entire array (Fig. 7b). Other multilevel routing
schemes have similar scaling properties.

Manhattan architectures utilize these crossbar arrays in each of
their local regions (CLB/CAB) typically having n=8 to n=64 block
elements, where one wants to maximize φ in each local region.	A
local region is defined as a large block where the routing
architecture focuses on local computation, enabling these bus
connections to only weakly grow with increased number of local
regions and number of components.

C. Fine-grain architectures

CMOS devices using FG elements allow for non-volatile switches
potentially enabling analog granularity. Analog parameters improve
the resulting density and resulting system flexibility (Fig. 7c). For

analog m-bit switch elements, the increased parallel flexibility
increases by a 2m factor, as the number of possibilities for a single
switch increases by 2m. Having analog parameters with parallel
connections enables using routing fabric as computing fabric [22].
In this computing in memory approach [4], [23], the number of
additional switches, and therefore K, for a particular computation
decreases significantly.

Fine-grain granularity, particularly analog programmable
granularity, greatly improves the tradeoff between configurable
architecture efficiency (1/K) and flexibility (Φ), requiring fewer
nodes for similar flexibility as well as having a lower cost (K) of that
flexibility (Fig. 8). The higher granularity achieved by parallel analog
connections significantly decreases the number of components
(n=1000s to 15) as well as the resulting SWaP efficiency (1/K →
0.1% to 80%) illustrating the potential advantage using switch
elements as programmable transistors. Decreasing the required
number of blocks for the same Φ illustrates the potential system-
level reduction in SWaP to achieve a range of potential
applications.

Fine-grain, analog switch architectures provides a favorable
tradeoff between configurable architecture efficiency (1/K) and
flexibility (Φ), and further research to enable these techniques
should yield many significant opportunities. These advantages are
consistent with the demonstrated orders of magnitude advantage of
FPAA devices using analog switching matrices, such as the SoC
FPAA [4], [24]. As the computational routing fabric becomes more

Figure 7: Architecture scaling for interconnecting n-processors. (a) Individual crossbar array to fully connect n processors requiring O(n2)
switches. (b) Manhattan routing geometry to connect n processors having b processors in a CAB with d lines running out of the CAB onto
the street (or C-block) of f lines. The number of switches for n processors becomes O(n(1 + (f/b))d). (c) Summary of cost (K) and
flexibility (φ) for n blocks as a function of typical architectures.

5 IEEE CICC 2022

	

important because of the high flexibility (Φ), additional fabric
infrastructure, such as partial high-speed in-circuit reconfigurability
[24], [25], further empowers the range of potential targeted
applications.

The difference in φ between digital connection switches and parallel
analog switches, enabling computing through the switches
structured in a memory configuration, can be seen by the
capabilities of a typical CLB and CAB (Fig. 9). Where a typical CLB
can impressively enable a state machine per CLB, a CAB could
potentially implement a small acoustic classifier stage in a single
CAB. These differences in capabilities are almost entirely due to
the fine-grain routing vs. an efficient traditional routing approach;
coarse-grain routing techniques leave even more φ and capability
unused.

Fine-grain programmability enables sufficient flexibility for security
measures, as well as the infrastructure for programming and using
fine-grain infrastructure enables verifying nearly every node on a
given device.

II. OPPORTUNITIES OF SCALED FPAA DEVICES

Given that fine-grain capabilities have been demonstrated for their
high flexibility compared to architectural cost, as well as initial SoC
FPAAs have been experimentally demonstrated [24], what is the
potential of these FPAA devices given existing understanding of
these techniques? The scaling of FG devices to current processes
(e.g. 40nm, 14nm) was experimentally shown [26], although further
data will continue to provide confidence in these areas. Scaling
improves the potential FPAA fabric bandwidth, enabling some RF
bandwidths (e.g. 4GHz) at 40-45nm CMOS [26], [27]. What should
one build as well as expect to be built for the next generation of
FPAA devices particularly given recent possibilities for analog IC
synthesis [20]? What is needed for a common module (Fig. 12) or
image processing or remote sensor node application?

Figure 9: Comparison of the computation possible in a single local
region, such as a Computational Logic Block (CLB) or a
Computational Analog Block (CAB). A CLB typically uses binary
connection switches to form multiple (e.g. 8) lookup tables and
some selection RAM, enabling small state machines in a single
CLB. A CAB typically uses analog parallel switches for its
computation, that includes FG routing that can be used for
programmable and configurable computation, as well as
programmable FG-based circuits. Within such a structure, a small
auditory classifier could be compiled in a single CAB.

A. Technical Opportunities from CMOS Scaling

Scaling provides two primary opportunities. First, scaling creates
smaller switches and processing elements resulting in higher
density and lower energy consumption. One would expect a
significantly increased number of FG devices with CMOS scaling
depending on process capabilities (Fig. 11a). Second, scaling
allows for a higher signal bandwidth in the fabric architectures (Fig.
11a), roughly with an inverse quadratic scaling on the minimum
channel length [26], [27].

Increased density, decreased energy consumption, and increased
bandwidth directly impact the range of computations. The amount
of traditional computation, expressed by the number of Vector-
Matrix Multiplications (VMM) (5mm x 5mm) die grows rapidly with
decreasing process node, where one assumes that the VMM
elements are roughly 1/8 of the total routing fabric (Fig. 11b). From
this modeling, one expects 45nm and 14nm devices are capable of
PMAC(/s) level computation on a single die, computation levels
typically requiring a large supercomputer (Fig. 11c).

These FPAA enable ultra-low power and energy harvesting
operations given the possible computation at 1µW and 1mW levels
(Fig. 11b). 1µW average energy could easily be supplied by small
(< 1cm2) energy harvesting devices. 1mW average energy could be
supplied by a battery enabling months of continuous fielded use or
by moderate sized (e.g. 10cm x 10cm) energy harvesting device. A
40nm CMOS structure enables 1GMAC(/s), around the level of a
fully capable laptop computer, and around 1TMAC(/s), around the
level of a small GPU or FPGA cluster.

LUT + SRAM
Simple state

machine

CLB = Computational Logic Block

CAB = Computational Analog Block

FG
Routing +

FG
Circuits

Auditory classifier
(VMM+WTA)
+ subbanding

(e.g. 8 LUTs)

(a)

(b)

Figure 8: Efficiency and Flexibility for reconfigurable fabrics showing
the impact of analog programmability and fine-grain granularity. (a)
Configurable Architecture Efficiency (1/K) and Flexibility for simple
crossbar networks (Fig. 7a) as a function of the number of blocks
(n) for connection architectures, parallel switch architectures, and
parallel analog (12- bit) switch architectures. (b) Efficiency (1/K) vs.
Flexibility (Φ) for these three architectures. Higher granularity,
particularly analog-programmed granularity, enables significant
flexibility with fewer resources (e.g. n) as well as at lower cost.

 IEEE CICC 2022 6

	

B. Application Opportunities from Scaling

FPAA algorithm opportunities can be mapped using the current [4]
and future FPAA capabilities (Fig. 11), These end- to-end, sensor-
to-refined result computations are possible at each CMOS
process node, although the operating frequency and problem
size will be lower for 350nm CMOS node com- pared with a
130nm, 40nm, and 14nm CMOS node. Analog numerical
analysis [28], analog architecture theory [15], and real-valued
computing theory [12] provides the analog computing framework.

For embedded applications, the optimal operating frequency
matches the input data rate to eliminate the need for any internal
storage or related infrastructure. In these particular situations,
such as acoustic or speech processing or classification, scaling
increases the problem size (command word to small vocabulary
to speech classification) while potentially further improving the
energy efficiency. In other cases, the increased problem size
opens new architectural solutions, such as an image sensor
classification where processing occurs on the incoming streamed
image from an image sensor. Image classification on larger
nodes might take a standard database with an on-board
compression (e.g. Compressed DCT [29]), where a scaled down
system would compute and classify subimages in parallel. A
45nm CMOS FPAA has enough CABs to locally store and
configurably process images similar to GPU image
reconstruction.

One can imagine an FPAA device being a common module for a
range of application directions, including an FPAA device as a
common module for RF related applications (Fig. 12) or a
common module for front-end image processing and
classification. A multi-input common-module (Fig. 12) is possible
in 45nm and smalller CMOS [27]. CMOS scaling enables some
applications, such as beamforming and demoduation that could be
40MHz at 350nm CMOS, while improving to 400MHz at 130nm
CMOS, 4GHz at 40nm CMOS, and higher for smaller CMOS
processes.

Figure 10: Bandwidth, parallel computational units, computational capability, and computational efficiency for scaled down FPAA devices
extrapolated from experimental measurements and early studies of scaled down FG and FPAA devices. (a) Typical FPAA fabric
bandwidth for scaled process nodes. (b) Number of FG elements for scaled process nodes that directly relates to the number of parallel
computations (e.g. MAC). (c) Computational capability as well as computational efficiency for scaled down FPAA devices.

Figure 11: Scaling FPAA devices enables a range of new
applications at scaled down nodes. (a) Scaling FPAA devices from
350nm CMOS to 130nm, 40nm ,and 14nm processes predictably
increases the computational efficiency, area per operation, and
fabric bandwidth, as well as opens new application spaces at each
node. (b) Fabric perating conditions and CAB/CLB sizes for scaled
FPAA devices.

7 IEEE CICC 2022

	

III. SUMMARY AND FURTHER DIRECTIONS

Today’s FPAA devices include integrated analog and digital fabric
as well as specialized processors and infrastructure, and scaled
FPAA devices show an increased potential on a single device,
particularly high computing applications in ultra-low power
constraints. This discussion presented a short summary of the
FPAA device capability to date, including two primary threads of
current FPAA development: components being connected together
in a menu of functions, or a fine-grain interconnected network. The
SoC FPAA device utilizes a form of this fine-grain network through
analog programmability without paying the high cost of fine-grain
switch networks.

Given the limitations of CMOS devices, particularly scaled down
CMOS devices, applications will continue to have a need for higher-
voltage and higher-power external devices, and one would want
some of these devices to be programmable and configurable. This
approach enables configurability beyond the common module, say
in an RF application (Fig. 12), to other structures either in the same
package, on the same board, or in the system depending on the
particular appli- cation requirements. Extending these concepts to
III-V and GaN, potentially as configurable modules, require
significant technology development and likely would be a next layer
opportunity. The Si structure can provide the initial core tunability
where needed for these ICs and chiplets including required I/O
pins, where eventually some configurability can be developed in the
native technology (e.g. III-V or GaN). The integration of these
additional modules extends the capability of the common module.

And yet. as of today, FPAA devices are not ubiquitous. The
community does not have a source of FPAA devices to enable the
ubiquitous use of these devices as is seen for digital devices. The
continued life of circuits like Anadigm’s early FPAA devices [33]
and related devices [34] demonstrates a constant hope for these
configurable techniques, in spite of these devices very limited
capabilities. Moving forward in this space requires a source of
devices, and a source of devices requires building a bridge towards
compelling application opportunities.

References:

[1] S. Trimberger, “Three ages of FPGAs: A retrospective on the
first thirty years of FPGA technology,” IEEE Proceedings, vol. 103,
no. 3, 2015.
[2] IGLOO2 FPGA, Microsemi, https://www.microsemi.com/product-
directory/fpgas/1688-igloo2. Last visited, May 8, 2021.
[3] https://www.microsemi.com/product-directory/antifuse-
fpgas/1700-axcelerator, last visited, May 8, 2021.
[4] J. Hasler, “Large-Scale Field Programmable Analog Arrays,”
IEEE Proceedings, vol. 108. no. 8. August 2020. pp. 1283-1302.
[5] C. Schlottmann and P. Hasler, “A highly dense, low power, pro-
grammable analog vector-matrix multiplier: The FPAA
implementation,” IEEE Journal on Emerging and Selected Topics in
Circuits and Systems, vol. 1, no. 3, 2011, pp. 403–411.
[6] R. Chawla, A. Bandyopadhyay, V. Srinivasan, and Hasler, “A
531 nW/MHz, 128 x 32 current-mode programmable analog vector-
matrix multiplier with over two decades of linearity,” IEEE Custom
Integrated Circuits Conference, October 2004, pp. 651 – 654.
[7] C. Mead, “Neuromorphic electronic systems,” Proceedings of
IEEE, vol. 78, 1990, pp. 1629-1636.
[8] J. Hasler and S. Shah, “SoC FPAA Hardware Implementation
of a VMM+WTA Embedded Learning Classifier,” IEEE Journal on
Emerging and Selected Topics in Circuits and Systems, vol. 8, no.
1, March 2018. pp. 28-37.
[9] S. Kim, J. Hasler, and S. George, “Integrated Floating-Gate
Program- ming Environment for System-Level Ics,” IEEE
Transactions on VLSI, vol. 24, no. 6, 2016. pp. 2244-2252.
[10] V. Srinivasan, G. J. Serrano, J. Gray, and P. Hasler, “A
precision CMOS amplifier using floating-gate transistors for offset
cancellation,” IEEE Journal of Solid-State Circuits, vol. 42, no. 2,
pp. 280-291, Feb. 2007.
[11] V. Srinivasan, G. Serrano, C. Twigg, and P. Hasler, “A
Floating-Gate- Based Programmable CMOS Reference,” IEEE
Transactions on Circuits and Systems I, Vol. 55, No. 11, pp. 3448 -
3456, Dec. 2008.
[12] J. Hasler and E. Black, “Physical Computing: Unifying Real
Number Computation,” Journal of Low Power Electronics
Applications, vol. 11, March 2021. pp. 1-21.
[13] B. Marr, B. Degnan, P. Hasler, and D. Anderson, “Scaling
energy per operation via an asynchronous pipeline,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol.
21, no. 1, pp. 147–151, 2013.
[14] B. Degnan, B. Marr, and J. Hasler, “Assessing Trends in
Performance per Watt for Signal Processing Applications,” IEEE
Transactions on Very Large Scale Integration Systems, vol. 24, no.
1, 2016, pp. 58-66.
[15] J. Hasler, “Analog Architecture and Complexity Theory to
Empowering Ultra-Low Power Configurable Analog and Mixed
Mode SoC Systems,” JPLEA, 2019.
[16] M. Collins, J. Hasler, and S. George, “An Open-Source
Toolset Enabling Analog–Digital–Software Codesign,” invited paper
Journal of Low Power Electronics Applications, Vol. 6, no. 1,
February 2016, pp. 1-15.
[17] J. Hasler and A. Natarajan, “An Open-Source ToolSet for
FPAA Design,” WOSET, November 2020.
[18] S. Kim, Sahil Shah, Richard Wunderlich, and Jennifer Hasler,
“CAD Synthesis Tools for Large-Scale Floating-Gate FPAA
System,” Journal Design Automation for Embedded Systems,
March 2021. pp. 1-16.
[19] J. Hasler, “Circuit Implementations Teaching a Junior Level
Circuits Course Utilizing the SoC FPAA,” ISCAS 2018, Florance,
Italy, May 2018. pp. 1-5.
[20] J. Hasler, “Defining Analog Standard Cell Libraries for Mixed-
Signal Computing enabled through Educational Directions,” IEEE
ISCAS, 2020. pp. 1-5.
[21] J. Hasler, “A CMOS Programmable Analog Standard Cell
Library in Skywater 130nm Open-Source Process,” WOSET, 2021.
[22] C. M. Twigg, J. D. Gray, and P. Hasler, “Programmable
floating gate FPAA switches are not dead weight,” IEEE

Figure 12: Configurable devices could encompass the entire core
common-module for systems operating at RF frequencies, where
the mixed-signal computation up to part of the LNA and PA
devices through the back end control could be enabled in a single
low-latency device. These systems would likely include additional
devices in package or in the integrated product to handle some
functions, including antenna devices and other specialized (e.g.
high power for Power Amplifier (PA)) components. These
components can be reconfigurable and controlled through the
common module.

 IEEE CICC 2022 8

	

International Symposium on Circuits and Systems, May 2007, pp.
169 - 172.
[23] M. Kucic, P. Hasler, J. Dugger, and D. Anderson,
“Programmable and adaptive analog filters using arrays of floating-
gate circuits,” Advanced Research in VLSI, 14-16 March 2001, pp.
148 – 162.
[24] S. George, S. Kim, S. Shah, J. Hasler, M. Collins, F. Adil, R,
Wunderlich, S. Nease, and S. Ramakrishnan, “A Programmable
and Configurable Mixed-Mode FPAA SoC,” IEEE Transactions on
VLSI, vol. 24, no. 6, 2016, pp. 2253-2261.
[25] C. Schlottmann, S. Shapero, S. Nease, and P. Hasler, “A
digitally enhanced dynamically reconfigurable analog platform for
low-power signal processing,” IEEE Journal of Solid-State Circuits,
vol. 47, no. 9, 2012. pp. 2174–2184.
[26] J. Hasler, S. Kim, and F. Adil, ”Scaling Floating-Gate Devices
Predicting Behavior for Programmable and Configurable Circuits
and Systems,” Journal of Low Power Electronics Applications, vol.
6, no. 13, 2016, pp. 1-19.
[27] J. Hasler and H. Wang, “A Fine-Grain FPAA fabric for RF +
Baseband,” GOMAC, March 2015.
[28] J. Hasler, “Starting Framework for Analog Numerical Analysis
for Energy Efficient Computing,” Journal of Low Power Electronics
Applications, vol. 7, no. 17, June 2017. pp. 1-22.

[29] D. G. Moreno, A. A. Del Barrio, G. Botella, and J. Hasler, “A
Cluster of FPAAs to Recognize Images Using Neural Networks,
IEEE TCAS II, Vol. 68, no. 11, Nov. 2021. pp. 3391-3395.
[30] J. Hasler and S. Shah, “Security Implications for Ultra-Low
Power Configurable Analog and Mixed Mode SoC Systems,”
Journal of Low Power Electronics Applications, June 2018, pp. 1-
17.
[31] S. Nease, A. Lanterman, J. Hasler, “A Transistor Ladder
Voltage- Controlled Filter Implemented on a Field Programmable
Analog Array,” JAES , Vol. 62, no. 9, Sept 2014. pp. 611-618.
[32] S. H. Nease, A. D. Lanterman, and J. Hasler, “Applications of
Current- Starved Inverters to Music Synthesis on Field
Programmable Analog Arrays,” Journal of Audio Engineering
Society, Vol. 66, No. 1/2, Jan- uary/February 2018.
[33] Anadigm: Specifically generic analog functions for FPAAs
Anadigm says, EE Times, Sep. 28, 2004.
[34] L. J. Kushner, K. W. Sliech, G. M. Flewelling, J. D Cali, C. M.
Grens, S. E. Turner, D. S. Jansen, J. L. Wood, G. M. Madison, “
The MATRICs RF-FPGA in 180nm SiGe-on-SOI BiCMOS,” IEEE
RFIC Symposium, May 2015, pp. 283-286.

