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Abstract—The growth of large-scale analog and mixed-signal
configurable computing systems, requires addressing analog and
mixed-signal test questions similar to the development of digital
IC testing over the past three decades that includes numerous on-
chip self-testing mechanisms. End-to-end configurable computing
systems require verification using an input sensor or the emula-
tion of an input sensor device and measuring the resulting refined
digital, or near digital, output. Verifying and calibrating these
configurable systems requires a framework for implementing
an application in a once-programmed production devices and
general procedure for verifying reconfigurable prototype devices.

Device and system testing remains a critical aspect of any

IC design or system design with new IC designs. For digital

design, one major issue is if one millions or billions of

transistors is not working properly and therefore a digital gate

gives incorrect results during a particular operation. Digital

IC testing is a stable field over the last three decades (e.g.

[1], [2]), although there was a time when large-scale digital

testing was an unsolved area. Digital testing can show that

devices that can be used for a particular application, show

a device can operate using a range of clock frequencies, or

enable finding the reasonable distribution of the maximum IC

device operation. Digital ICs include test infrastructure and

self testing mechanisms as part of the IC (e.g. [1], [2]). A few

aspects could be corrected through testing such as eliminating

bad memory blocks.

Classical analog and mixed testing (e.g. [3], [4]) addresses

similar questions on typically smaller, and yet more challeng-

ing test components due to the range of variations as opposed

to a logic gate failure. Component mismatch is the great limiter

for analog IC design, primarily as a result of threshold voltage

(VT0) mismatch (∆VT0) between devices, as well as geometry

mismatch of capacitors and transistors (and resistors when

sparingly used). The variations make test vector generation

more complex, although significant efforts are enabling the

design of waveforms to identify device issues [5], [6], [7],

[8], [9]. These analog systems use a few parameters, primarily

for choosing between multiple copies of IC components to

minimize mismatch, and stored often in nonvolatile storage

using embedded EEPROMs & on-chip Floating-Gate (FG)

devices. Minimizing mismatch requires using larger analog

components, and mismatch correction techniques adds addi-

tional component area. The production characterization time

on a commercial tester (C, measured in US cents / second)

to characterize the system performance (e.g. INL, DNL of an
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Fig. 1: Testing highly configurable and programmable analog / mixed-signal
configurable devices. (a) Testing of Analog / Mixed-Signal devices. includes
two important cases, where the first is programming devices for production
use (Case I), and the second is testing devices for repeated reconfiguration and
devices used for prototyping applications (Case II). (b) Testing a configurable
mixed-signal device, such as a large-scale Field-Programmable Analog Array
(FPAA) like an SoC FPAA device, requires accounting for the time to input
and measure the full analog waveforms for testing the device, as well as
accounting for the programming time for setting up a device.

ADC) is often a significant part of the component cost.

And yet, with the significant interest and growth in large-

scale configurable systems, systems involving analog com-

puting often within a mixed-signal infrastructure. Large-scale

analog programmability enables a range of large-scale ana-

log computing concepts including Large-Scale Field Pro-

grammable Analog Arrays (FPAA) [10]. Currently systems

utilize 1 million parameters (350nm CMOS) and scaled sys-

tems (40nm, 14nm CMOS) are expected to have billions of

parameters [11]. Testing of these fine-grained configurable

mixed-signal devices is essential for their use and develop-

ment, although it might seem to be an overwhelming problem.978-1-6654-1060-1/22/$31.00 c©2022 IEEE
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Fig. 2: Several self-test structures (shaded regions) can be initially targeted
and measured on an FPAA device for core FPAA components (e.g. A1, A2,
A3, A4), then target the full system modifying the system parameters based on
these initial tests. The deployed area cost of these test-structures is negligible.

Although most of the current development does not utilize

commercial testing equipment, one expects significant interest

to integrate the integrated FPAA testing [12] and tool [13], [14]

infrastructure with commercial testing (Fig. 1). This discussion

will work through a framework for verifying and calibration of

configurable analog computing systems (Sec. I), then overview

FG and FPAA devices (Sec. II) to move towards optimizing

the programming time for large-scale FG systems to minimize

one aspect of commercial testing time (Sec. III).

These configurable systems are often used for end-to-end

computing systems that start from a sensor device and output

a refined representation, such as a classified result. Testing

these systems requires an electrical representation of the input

sensor that can be compiled into the IC (e.g. a capacitor to

represent a sensor capacitor) as part of the test structure, or

simply require one or a vector of analog input voltages from

a stored signal played through a DAC (e.g. acoustic, image

sensors). End-to-end systems provide efficient platforms for

analog computation as the inputs typically start as an analog

result, and the digital or near digital outputs minimize the

number and complexity of output data converters. Having an

analog system as a co-processor with a huge bank of data

converters tends to not provide most of the benefits of analog

computation.

I. FRAMEWORK FOR VERIFICATION AND CALIBRATION OF

LARGE-SCALE CONFIGURABLE ANALOG SYSTEMS

Valid configurable (e.g. FPAA) requires testing and pro-

gramming for both once-programmed production devices as

well as reconfigurable prototype devices (Fig. 1). In the first

case (Fig. 1a, Case 1), the measurement and calibration is

limited to what is necessary for that application, and in the

second case (Fig. 1b, Case 2), the measurement and calibration

requires a general procedure to verify the entire device. Both

cases require the setup time for the equipment connected to a

production digital tester.
The first case (Case 1) stamps a product into the config-

urable device. Creating a set of single programmed devices

(Case I) requires testing a single application with the required

input signal and comparisons to the desired output signals.

Testing cost (C) is proportional to testing time that is the

combination of the time for Inputing Full Analog Waveforms

(A, Fig. 1b) into the device under test for each iteration, and

the time for Programming (B, Fig. 1b) or reprogramming the

device for each iteration. Testing time is correlated with the

application frequency range. An acoustic processing device

requires time for the lowest frequency (e.g. 20-100Hz) signals

to be part of the computed output, where seconds of testing

time is not unusual for many of these applications. The tester

time, and resulting tester cost, is highly dependent on the

application. The golden system was generated likely with a

Case 2 tested device with the associated design tools.

The second case (Case 2) enables an often-reconfigurable

product for prototyping or in-field reprogramming. A generally

programmed highly configurable device requires initial verifi-

cation and calibration for proper functioning of the program-

ming infrastructure, as well as calibrating any device that has

configurable parameters different from the programming ex-

pectations. Mapping potential component mismatches requires

testing programmable devices. Initial development using this

device would optimize the development for Case 1.

Both cases benefit from compiled self-test approaches are

compiled into the device for measurement and calibration

(Fig. 2). Initial self-test algorithms and measurements [15], in-

cluding an optimized linear Vector-Matrix Multiplier (VMM)

[16], show the opportunities and potential algorithms for these

demonstrations. Repeatable and reliable FG programming al-

lows initial components can be compiled and optimized, and

enables the entire system to be compiled using these new

optimized parameters with no additional required area cost.

These steps do require additional tester time (and cost) for the

additional programming and measurement, further requiring

fast FG programming infrastructure. These approaches utilize

programmable circuits with low temperature sensitivities even

using subthreshold transistors [17], [18], enabling robust ana-

log computing engines not constrained to a 2-3 degree range

(e.g. [19]).

II. OVERVIEW OF FLOATING-GATES (FG) AND FPAAS

Reviewing the basic properties of FG devices sets the

framework for the verification opportunities and challenges.

A FG device (Fig. 3) is a combination of a capacitive divider

and pFET transistor. The capacitive divider is modeled as

Vfg =
C1

CT
Vg + Voffset (1)

where CT is the total capacitance at the floating-gate node

(CT = C1+Cw), and Voffset is due to charge at the floating-

gate node. A Saturated pFET transistor as a function of the

gate (Vfg) and source (Vs) nodes and the well voltage at Vdd)

is (ignoring drain effects)

I = Ithe
(κ(Vdd−Vfg−VT0)−(Vdd−Vs))/UT (2)

where κ is the Vfg to surface potential coupling, and UT is

the thermal voltage (kT/q ≈ 25mV at 300K). The combined
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Fig. 3: Illustration of a FG device that is a combination of a capacitive
voltage divider and a standard pFET transistor in a standard CMOS process.
The current-voltage curves for this device are similar to a typical transistor
except that the gate to surface potential (κ) decreases by the larger capacitive
divider, and the stored charge provides a free parameter that can be viewed
as a flatband voltage (Vfg) or VT0 shift) or as a multiplicative subthreshold
factor.

model for the FG pFET device is

I = Ithe
(κ(Vdd−Voffset−VT0)−κeffVg−(Vdd−Vs))/UT (3)

κeff is an effective κ equal to κC1/CT . A FG device is a

free parameter, where that parameter could be either a variable

VT0 (effectively flatband voltage (Vfb) ), or a multiplicative

weight in subthreshold operation (FIg. 3). FG elements enable

the wide programmability in the FPAA devices [10], [11],

including computing in the routing achieved by enabling

programming of FG nodes outside of the operating power

supply as the floating-node does not have a DC path to

GND. FPAA arrays include combinations of analog and digital

components (Fig. 4) within the same fabric as well as addi-

tional edge devices (e.g. µP and DACs). The crossbar routing

components can be utilized as analog computing elements,

further expanding the verification space [20].

A device is considered not working when it is out of

specification, and yet, if there is a way to bring that device into

useful operation, the overall yeilds and performance improve.

For example, CMOS imagers are concerned about dead pixels

that are effectively pixel elements with parameters operating

out of specification. Imagers with analog programmable FG

devices can access the entire array of pixels, eliminating effec-

tively any identified dead pixel [21]. The analog computation,

and the direct nonvolatile analog correction of the primary

source of mismatch (∆VT0), results in near ideal yields if only

there is sufficient time available to measure and correct these

devices. In general, we rarely find non-functional devices in a

configurable array even after considerable classroom student

stress on these devices; devices are more likely to fail because

of damage to other board components or damage to pin

components. The programmed FG elements hold charge within

1 to 100µV accuracy over 10 year lifetimes [22], [23]. These

questions directly lead to asking the speed of programming

and of the measurements to improve the programming.

III. OPTIMIZING LARGE-SCALE FG PROGRAMMING TIME

On-chip FG Programming and Measurement time directly

impacts the device cost (Fig. 1b); all digital FG programming

interface both minimizes tester complexity as well as mini-

mizes tester time (e.g. [24]). Generalized FG programming of

heterogeneous components transforms the general configura-

tion of components (Run mode) into a crossbar or island of

crossbars enabling individual measurement and programming

selectivity of any element in the array (Fig. 4) [25], [24].

Hot-electron injection programming enables precise and nearly

ideal selectivity measuring and programming FG devices,

while the typical mismatch for electron tunneling tends to

reserve this function for block erase of these devices. To

minimize the number of erasing and full reprogram cycles,

programming iterations should be designed to undershoot

programming targets to enable fast programming of tuned

parameters.

Device current measurement requires the longest amount

of time for a programming iteration. The measured output

device current is transformed into a voltage and then converted

into a digital value to compare with a desired target result

(Fig. 4). The measurement system (Fig. 4) can either measure

each FG device in a serial manner, typical to existing SoC

FPAA devices [10], [24], or could parallelize the current to

digital measurement by measuring each row or measuring

blocks in parallel [25] (Fig. 4). The added area for the parallel

measurement infrastructure is a small additional cost that is

offset by the significantly reduced tester time. Typically the

cost of one-second of tester time is in the ballpark of 250µm

x 250µm of die are in a typical 350nm CMOS process.

FG devices can correct for device mismatch either in pro-

duction programming or for an often reprogrammable device

given a calibration step. This calibration step requires tester

time, as well as user storage of the mismatch parameter.

One FG calibration example is the use of direct vs. indirect

FG configurations (Fig. 5). Indirect programming, where a

different pFET device is used for operation as compared with

measurement and programming, significantly decreases the

number of reconfiguration switches, including switches in the

datapath, while incurring ∆VT0 mismatch, and to a lesser

extent κ mismatch, between the two pFETs that must be cal-

ibrated. Direct programming eliminates this ∆Vfg mismatch,

and resulting calibration, while requiring additional switches.

This issue directly illustrates the tradeoff between the cost of

die area and the cost of tester time. Several circuits currently

utilize indirect programming (Fig. 5), such as the SoC FPAA

switches [10] enabling a wide programming range (pA to

100s fo µA), differential pairs with FG input transistors [10],

and realistic neuron models [26]. Going forward, one might

expect to minimize the use of indirect programming except

where the resulting die cost or loss of circuit performance

makes using direct programming prohibitive. With CMOS
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scaling, additional switches are less costly, as well as future

architectures using islands of FG elements benefit less from

indirect programming architectures.

IV. SUMMARY AND DISCUSSIONS

This discussion showed a framework to address analog and

mixed-signal verification for large-scale analog and mixed-

signal configurable computing systems, potentially enabling

similar test methods to digital IC testing. End-to-end config-

urable computing systems require verification from an input

sensor or emulated input sensor compiled on the configurable

device through the refined digital or near-digital output. Two

frameworks enable verification both for implementing once-

programmed production devices as well as for calibrating

reconfigurable prototype devices. This discussion showed a

framework for verifying and calibration of configurable analog

computing systems, as well as the impact of FG elements

in these configurable (e.g. FPAA) devices, and the aspects

required to optimize the programming time to help minimize

commercial testing cost.
Testing of end-to-end programmable and configurable sys-

tems opens a number of potential opportunities. The high-level

of flexibility of these configurable analog devices [11] enables

a number of new applications such as secure applications



that are defined at testing time. Assuming the verification

of the initial programming structure, the entire structure can

be directly measured post-fabrication using existing FPAA

programming and measurement techniques. Further, having

regions with mismatch that can be calibrated enables a range

of security applications (e.g. PUF type circuits)
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