
Opportunities in Physical Computing driven by
Analog Realization

Jennifer Hasler
Georgia Institute of Technology, Atlanta, GA 30332–250 USA E-mail:jennifer.hasler@ece.gatech.edu

Abstract—In the past, discussions on the capability of analog or
physical computing were only of theoretical interest. Digital com-
putation’s 80 year history starts from the Turings original model
of computation to ubiquitous modern computational devices.
The modern development of analog computation started with
almost zero computational framework. Today, we have significant
programmable and configurable physical computing systems. The
focus of this paper is to have these discussions given the very
real potential of ultra-low power physical computing systems.
This work considers the current state of analog computation,
energy efficient computation, and analog numerical analysis,
moving towards starting a unified analog-computing framework,
including quantum computing, as part of physical computing.

The first wave of Neural Network (NN) research was central
to my early graduate student days (1987-1992). Those days
were filled with speculation about how the brain computed,
about physical1 computation, its relationship to digital compu-
tation, and if physical computation could exceed projected dig-
ital computation solutions. Modern analog computation started
together with Neuromorphic (including NN) revitalization in
the 1980s (e.g. [1], [2], [3]); these two fields have been tightly
linked. Further, was there a question about the existence of an
analog Turing machine, and if so, what was its theoretical and
practical capability. In those days, Moore’s law [4], [5] was
a given, just like gravity; one would have to exceed digital’s
perceived solutions to be competitive when a new technology
would be available.

Many of these discussions happened over beverages later
in the day. We would have equally strong proponents for
and against each position. Discussions would rage on about
Hopfield’s work solving the Traveling Salesman Problem
(TSP) [6], and whether these results could eventually show
NP class problems could be solved in polynomial (P) time by
physical computing. Although theoretically interesting, these
questions seemed to have little relevance to any practical
computing system. In the end, the discussions were left at
that establishment. Almost no one believed serious analog
computing systems would be realized.

Coming many years later to today, we have significant
programmable and configurable physical computing systems
(e.g. [7]). The discussions are no longer simply theoretical,
but a key building block towards unlocking the potential of
physical computation. These forgotten conversations must be
resumed. The focus of this paper is to have these discussions
given the very real potential of ultra-low power physical

1we use physical and analog computing interchangeably to remove any bias
that analog computing means linear computing
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Fig. 1. Digital and Analog Computation approaches based on their
fundamental framework (or lack of it). Digital Computation builds from the
framework of Turing Machines, setting up capability of computer architec-
tures, computer algorithms, and resulting numerical analysis. This framework
becomes the basis for our day to day digital computing, such as laptop
computing. Analog Computation is perceived to have little computational
modeling, as well as architectures and algorithms. The resulting analog
computing designs, where built, seems more like bottom-up artwork rather
than top-down digital computing design.

computing systems. We firmly believe these discussions are
just beginning.

I. OVERVIEW OF TRADITIONAL DIGITAL AND ANALOG
COMPUTING PERSPECTIVES

Figure 1 illustrates the traditional viewpoint of digital
and analog computation. Digital computation 80 year history
starts from the Turings original model of computation [8], a
model based upon bookkeeping businesses at the time. The
model (Fig. 1) requires countable alphabets for inputs, outputs,
and the resulting memory tape processed through a single
machine. He proved that Turing machines would be capable
of performing any conceivable mathematical computation if it
was representable as an algorithm.
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Fig. 2. The SoC large-scale Field Programmable Analog Array (FPAA) device showing a command-word speech recognition. We show the high-level block
diagram of the SoC FPAA device (left), a typical measurement setup and computational block diagram for command-word speech recognition, and measured
input and classifier output response classifying the word dark in the TIMIT database phrase. This analog computation (< 30µW) is radically different than
the class of expected analog operations.

Digital computing became ubiquitous because of inexpen-
sive digital electronics directly a consequence of Moores law
scaling [4]. Or as Moore would reflect later

”So I took that first few points, up to 60 components
on a chip in 1965 and blindly extrapolated for about
10 years and said okay, in 1975 well have about 60
thousand components on a chip. Now what was I
trying to do was to get across the idea that this was
the way electronics was going to become cheap.” –
Gordon Moore, 2005 [9].

This prediction [4], and an updated prediction in 1975 [5],
continued for decades. Proportionally shrinking transistor di-
mensions gets nearly the same device with quadratic decrease
in parasitics and quadratic increase in its computational energy
efficiency [10], [11]. The large number of transistors would
transform digital computation through the VLSI concept,
effectively invented and evangelized by Carver Mead and
Lynn Conway [12]. Digital computation empowering whole
communities to program digital systems for a wide range of
applications (e.g. microprocessors (µP) ), communities that
would not do physical digital design. These developments
eventually lead to further stratification, including development
of standard cells, verilog digital representation, FPGAs, and
whole ranges of software developments. A roadmap of future
directions typically arrived as new technologies were available.

The perceived situation for analog computation could not
be more different (illustrated in Fig. 1). Analog computation
seems to be a bottom-up design approach practiced by a few
artistic masters. One would be hard pressed to find someone
with knowledge of analog computing theory other than using a
combination of passive components (e.g. resistors, capacitors)

around an op-amp device. Certainly there are no textbooks
explaining the analog equivalent to a Turing Machine or analog
system synthesis. Many might believe analog would be more
efficient, but unlikely how to quantify that improvement.

Analog computation has an old history going back to
mechanical differential analyzers for solving ODEs [13]. The
computation quantity was represented by a physical measure,
such as water in pipes or electronic circuits. Both mechanical
and electrical physical computing systems were used for a cen-
tury. Traditional analog computing was considered by multiple
authors (e.g. [14], [15]); the solutions were a series of special
case solutions with little overarching computational model.
The General Purpose Analogue Computer (GPAC) was one
of the few theoretical analog models (proposed by Shannon
[16]) equating analog computation as a differential analyzer.
GPAC is a set of four basic operations (some nonlinear)
boxes, connected through constrained input and output rules.
Although the model could eventually represent differentially
algebraic functions [17], [18], the model was restrictive in the
sense that it did not correspond to obvious physical devices
that could eventually be inexpensively constructed. A few
reviews of early Analog computing can be found (e.g. [19]).
Only recently with the physical reality of significant physical
computing approaches [7] have design methodologies and
abstractions based on highly repeatable devices emerged and
are embedded in design tools [20], [21].

The modern development of analog computation (starting
1980s) started with almost zero computational framework.
As individuals started looking at physical computing systems,
either from inspiration of neurobiology or from elegant circuits
built in CMOS ICs, they developed without any guidance,
as well as any bias, of previous models (e.g. [3]). Analog
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Fig. 3. Comparison of power efficient computational techniques in MAC (/s) / W, including digital, analog Signal Processing (SP) techniques, and the
potential for neuromorphic physical algorithms. Three orders of magnitude has produced amazing improvements in digital technology from speak-and-spell
devices [59] to current day smart phones. Three orders of magnitude in analog SP approaches has the promise of similar advancements as it becomes a stable
capability. Biological neurons show a potential of five more orders of magnitude of improvement, opening further opportunity for efficient computational
devices. We also show a typical signal processing chain using configurable analog approaches and neural based classifiers. Once the input signal becomes
established as a refined probability of low-level symbols, through a WTA approach [36], we have a cascade of classifier layers typical of processing in cortex.
Finally, all the three dimensions (computational efficiency, communication power, and system area) are essential to optimize to the energy, complexity, and
area constraints of large-scale neuromorphic systems. Using physical based (i.e. analog) approaches help to decrease computational efficiency and system area,
and heavy use of local communication, integration of memory and computation, as well as low-event architecture reduces the communication power required.

computing had to build its entire framework. Mead’s 1990
paper hypothesized that analog computation, in particular
multiplication, would be at least x1000 greater computational
energy efficiency than custom digital solutions [22]. Chawla,
et. al (2004) would later experimentally prove this hypothesis
for Multiply-ACumulate (MAC) operations between analog
and digital approaches [23]. And early efforts would start to
consider models of analog computing, beginning to uncover
analog computation could be more powerful than digital
Turing Machine model [6], [24], [25], [26].

Analog computation did not initially have a memory device.
The first 8-10 years of analog NN development struggled
due to the lack of a memory element. The Single Transistor
Learning Synapse (STLS, 1995) finally gave analog CMOS
computation a long-term memory element that could be em-
bedded into the computation (and adaptation) [27], [28], [29].
This structure demonstrated the first crossbar computational
model, currently popular with novel nanodevice research.

II. ANALOG COMPUTATION SYSTEM: SOC FPAA IC FOR
SIGNAL PROCESSING

Analog Computing has grown up. Analog computing is
programmable and configurable, through a range of large-
scale Field Programmable Analog Arrays (FPAA). These
configurable devices compare favorably against custom de-
signs; unlike FPGA designs, FPAA architectures are open
to the academic community. Floating-Gate (FG) based FPAA
designs, based on STLS analog memories, enable considerable
parameter density; memory and computation capability are
closely linked in analog computation. FPAA devices enable
both analog and digital computation[7], while retaining the
x1000 improvement (as predicted by [22]) in computational

energy efficiency compared to custom digital solutions (e.g.
[31]).

Analog computing is different from emulated ODEs through
Op-amps and passive components and is different from front-
end sensor preconditioning before a data converter. Figure
2 shows an auditory classifier system demonstrated in the
SoC FPAA (< 30 µW power consumption, 350nm IC) [7].
The circuit components involve transconductance amplifiers
and transistors (and similar components) with current sources
programmable over six orders of magnitude in current (and
therefore time constant) [30]. All devices, including crossbar
routing, is utilized for potential computation [32]. The entire
application was developed in high-level tools implemented
in Scilab / Xcos and compiled to working FPAA hardware
[21]. A compiled analog acoustic command-word classifier
on the FPAA SoC requires x1000 lower power than digital
solutions to experimentally recognize the word dark in a
TIMIT database phrase. The authors expect future system opti-
mization in the same SoC FPAA. Recently, the SoC FPAA de-
vice demonstrated the capability to learn classifier parameters
[33], [34] in addition to the original classification capability,
enabling this approach towards embedded machine learning
applications. The novel classifier structure [35], used in the
SoC FPAA demonstration [7], utilizes one layer of a Vector-
Matrix Multiplication (VMM) [23], [31] and a Winner-Take-
All (WTA) [36] computation. This VMM +WTA classifier is
experimentally demonstrated to be a universal approximator,
firmly destroying Minsky’s early issues with even one-layer
neural network structures [37].

Analog computing is built on a wide demonstration of pro-
grammable and configurable approaches. The programmable
FG circuits enable high-matching analog circuits [38], includ-
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how these operations interface with the rest of the computation circuitry. Finally, we summarize the computation between digital and analog approaches.

ing references [40], amplifiers [39], sensor interfaces [41],
filters [42], [43], and data-converters [44], [45], [46], en-
abling dense high SNR devices. These programmable circuits
enable power-efficient (x1000 versus custom digital) signal
processing demonstrations [47] using filterbanks [48], [42],
Guassian Mixture Models (GMM) [49], Support Vector Ma-
chines [50], VMM + k-Winner-Take-All (WTA) classifiers
[35], and adaptive filters [51], towards accoustic [52] and
imaging [53], [54] applications. Configurable (e.g. FPAA)
devices retain the factor of x1000 improvement in power
efficiency for signal processing functions [31] on an integrated
mixed-mode (analog+digital) fabric [55], [7] for applications
already mentioned as well as image processing [56], classifiers
[35], robotics and pathplanning [57], [58].

III. ENERGY EFFICIENT COMPUTATION: DIGITAL,
ANALOG, AND NEUROMORPHIC APPROACHES

Figure 3 shows a spectrum showing the computational
efficiency of various technologies, including digital comput-
ing, analog computing, as well as best estimate of biological
neuron computation. The potential of 8-9 orders of magnitude
of computational efficiency improvement illustrates we are just
at the beginning of computational efficiency scaling, not at the
end as predicted by the end of Moores law [9] or the digital
energy efficiency wall [60]. Efficient neuromorphic systems
could be defined as those physically implemented algorithms
that improve power efficiency beyond the analog SP metrics.

Previously we showed that building Si models of hu-
man cortical processing was possible using current CMOS
technology [61], providing a roadmap for building cortical
structures. Even with this roadmap, the community has much
to understand in terms of the dynamics of neural computation.
Neurobiological computation is one of the best examples of
computationally efficient analog / mixed signal computing

[61], [62]; these systems are energy constrained, and therefore
communication constrained [63].

Modeling of neurobiological systems based on fundamental
Si models of channels [64] forms one area of dynamical sys-
tem modeling. These systems utilize biophysical connections
between biological channels and silicon MOSFET transistor
channels [64], single-transistor synapses [27], [28], synapse
learning (e.g. STDP) [65], dendrites [66], and biological
networks [67], [68], [69]. We have zero gap between neu-
robiological modeling and Si hardware implementation that
can move towards applications. The demonstrated engineering
application of these networks includes use of two-dimensional
grids for path planning using energy surface [70] and active
neuron approaches [71], dendritic modeling [66] for wordspot-
ting computation [69], and retina-like image processing.

IV. ANALOG NUMERICAL ANALYSIS

After one appreciates the very real and practical possibility
of programmable and configurable analog systems, the next
questions concern the noisy or low-precision issues real and
perceived in analog systems. The issue rightly starts noting
mismatch between typical analog components. Programmabil-
ity is essential to addressing this issue. The use of FG devices
enables directly programming out these issues, including ac-
counting for a range of temperatures. Neurobiological systems
seem to adapt around its mismatches to create precision in
its analog computational structures as well. Without this level
of programmability, large-scale analog computation is nearly
impossible.

The question then turns to a question of the apparent
low SNR of individual analog computations aggregating into
a larger computation. The question is a digitally centric
viewpoint requiring more discussion to fully appreciate this
subject. In the end, we find that digital systems have relatively
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inexpensive high resolution (16, 32, or 64bit) but with noisy
numerics. Analog systems have higher cost for starting resolu-
tion (8 to 12bit is typically reasonable) but with far less noisy
numerical calculations. Digital precision cost is polynomial in
the number of bits (log2(precision)), where analog precision
cost is polynomial in precision. At low precision (8 to 10bits
or less), analog precision is less expensive than digital due to
the reduced overhead.

For the most part, the field of analog numerical analysis
was never developed. These techniques provide understanding
output SNR of digital or analog computation. As digital
computation became more powerful and less expensive in
the 1970s and 1980s, digital numerical analysis techniques
were already an established and growing discipline. These
techniques provided potential computational roadmaps for the
exponential computational increase from the digital VLSI
revolution [12]. The corresponding analog numerical analysis
needs to be developed (and pulled out of the lore of the few
master research groups) for corresponding growth in analog
computation. We summarize these concepts in this paper; a
full treatment is beyond the scope of this discussion.

Figure 4 shows a comparison of summation and integration
operations in digital and analog computation. Analog sum-
mation by charge or current (change of charge with time)
is ideal due to KCL, the physical summation of carriers.
Depending on how the designer uses this output current in
further calculations can result in nonlinear effects; issues arise
from the capability of the analog algorithm design. Analog
integration is also ideal, typically performed as a current (or
sum of currents, Ik) on a capacitor (of size C) as

C
dVout

dt
=

n∑

k=1

Ik (1)

where Vout is the computation result. Analog naturally has
infinitesimal timesteps, with no errors due to these timesteps,
eliminating accuracy issues arising from the order of numerical
integration approximation. This framework shows why analog

computation is ideally suited towards solutions of ODEs.
Digital summation is filled with noise errors. The sum of

two n-bit numbers half the time will be an n+1 bit number. One
either handles fixed-point arithmetic issues by having large
enough total resolution for the summation to avoid overflow
nonlinearities or handles floating-point arithmetic issues by
having enough mantissa bits to account for the LSB noise
source. The issue for digital computation is a large number
of aggregate summations; 1024 summations will lose 5 bits of
precision on average and 10bits worst case. For 16bit registers,
this error can be significant; we have not addressed any further
errors due to catastrophic subtraction of similar numbers.
Integration, often implemented as a sequence of summations,
further compounds these numerical issues. Further, integration
must be approximated by a set of small regions. Too few steps,
and one gets low accuracy. Too many steps, and the summation
errors due results in low accuracy. The ODE solution further
complicates these issues with numerical stability issues, order
of derivative approximations, as well as stiff ODE compu-
tations. An engineer faced with these issues most naturally
would try to reformulate a problem (ODE → Linear equation
solution) to avoid these issues where possible.

The algorithm tradeoff between analog and digital compu-
tation directly leads to the tradeoff between high-precision
with poor numerics of digital computation verses the good
numerics with lower precision of analog computation. Digital
computation focuses on problems with limited number of
iterations that can embody high precision (e.g. 64 bit double
precision), like LU decomposition ( and matrix inversion).
The LINPACK metric2[72] makes complete sense to eval-
uate computing engines when the fundamental computing
operations are LU decomposition. Classical digital numerical
analysis courses begin with LU decomposition and move
to significantly harder computations in optimization, ODE
solutions and PDE solutions; many engineering problems try

2LINPACK is a benchmark measure how fast a digital computer solves a
dense n by n system of linear equations Ax = b



to move computation towards matrix inversion and away from
ODE solutions.

Analog computation solves difficult numerical applications
that are tolerant of lower starting precision for computation,
such as ODEs and PDEs. Simple operations like VMM is fairly
similar in tradeoffs between analog and digital approaches,
particularly when using real world sensor data starting off with
lower precision (e.g. acoustic microphones at 60dB, CMOS
imaging at 50-60dB, etc.). Many ODE and PDE systems have
correlates in other physical systems found in nature that are
the focus of high performance computing. The resulting time
/ area efficiencies for analog computation model a physical
system by directly being the system to solve. This high-speed
computation enables low-latency signal processing and control
loops. One would want to avoid analog LU decomposition
where possible, while one wants to avoid solving large number
of ODEs and / or a couple PDEs by digital methods.

V. STARTING TOWARDS A UNIFIED ANALOG COMPUTING
FRAMEWORK

So far most of the computation described has been chal-
lenges of primarily feedforward computation. In such cases,
comparison based on fundamental operations (e.g. MAC), even
in neuromorphic systems seems appropriate. Figure 5 shows
analog computation includes a wider space including optimiza-
tion over potential or energy surfaces, recurrent networks, and
solutions to spatio-temporal (e.g. PDE) problems. Hopfields
foundational work involved the dynamics of these recurrent
networks modeling these energy solutions [1], [2], followed on
by related network analysis efforts [74], [73]. The energy func-
tion is used as a medium to implement an optimization prob-
lem on a feedback network [74]. These efforts were applied
to multiple optimization problems, including solving the TSP
[6]; solving this problem opens the possibility of solving this
system in polynomial time using physical computing. These
approaches relate to the ARNN super-Turing computability
model of Seigelman [87], [26]. Recent discussions around
ODE solutions to the 3-SAT problem [75], [76], as well as the
FPAA implementations for L1 norm minimization [77] further
open these questions. Further, recent results between analog
and neuromorphic engineering communities demonstrated op-
timal path planning in an polynomial size array of neurons
in polynomial time [71]. These results are beyond the typical
improvements in processor component efficiencies mentioned
in Section III. It seems we are at a time to reopen the question
of whether NP problems could be solved in polynomial time,
but in this case, not by a digital (Turing) machine, but using
a physical computing machine.

Quantum computing, in Shor and Grovers algorithms, has
theoretically shown computational capability beyond Turing
limits. Multiple hypotheses show that the form of quantum
computing used could equally well be done through analog
computing [79], [80], [81], particularly considering Hilbert
space computing with analog circuits [82]. Recently, a discrete,
analog, bench-top implementation for a small quantum system

was demonstrated [83], [84], [85]. The fundamental computa-
tion is a modified Fourier transform, where understanding the
algorithm might enable alternate, efficient analog implemen-
tations as is already done for DCT or DFT computations [78].
But fundamentally we see another physical computing space
pushing against generally accepted digital Turing machine
limits, potentially enabling new algorithmic opportunities.

Although we see only dimly at this point, what we can see
points towards significantly greater computation capabilities
due to physical approaches. These devices acting on Real-
valued quantities, both as I/O and internal stored quantities
(e.g. state variables). No doubt we have noise, the number of
particles are finite, etc, but none of these issues fundamentally
takes away the potential of real-valued numbers and operations
within joint space and time. Figure 6 shows the contrast
between digital and analog computation models. As a result,
one might be able to start pondering the possibility of a real-
valued or analog Turing machine model, and what potential
computational and algorithmic opportunities are possible.

VI. CONCLUSION

As we have seen throughout this paper, it is time to
renew these early beverage discussions, now bringing the
results into serious discussions. Significant programmable
and configurable physical (analog) computing systems do
exist. The computational framework for analog computation
is growing; the widespread emergence of analog computing
hardware will only accelerate this process. The current state of
analog computation includes energy efficient computation, and
analog numerical analysis, moving towards starting a unified
analog-computing framework as part of physical computing.
Not solving these issues will hinder the progress of analog
computation, and computation in general. The computability
of analog computation, potentially described through an analog
Turing machine, opens up new questions of the computability
of analog systems, including asking whether these results
could eventually show NP class problems could be solved in
polynomial (P) time by physical computing.
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