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Abstract—A hybrid, mixed-signal, reconfigurable system,
based on the combination of a field-programmable analog array
(FPAA) and FPGA is presented. The chip is a fine-grained
interleaving of interchangeable analog and digital tiles, wherein a
tile comprises either analog or digital computational elements and
interconnect. The chip comprises the array core, high-speed I/O,
and floating-gate programming infrastructure that communicates
over a standard SPI bus. The FPAADD consists of 27 x 8 array
of 108 digital and 108 analog tiles and peripheral circuitry on
5 x 5 mm2 die fabricated in a 0.35-µm CMOS process. The
chip’s 132,000 FG switch elements are tunable from less than 10
kΩ to greater than 10 GΩ effective resistance at programming
rates exceeding 1 µs for 1-b accuracy and 50 ms for 9-b accuracy.
The computational analog blocks contain a variety of subcircuits:
programmable offset wide-linear-range OTAs to nMOS and
pMOS transistors, and interconnect. The digital tiles contain
combinational logic blocks of homogenous clusterings of look-
up tables and flip-flops and interconnect. The routing scheme
was designed to reduce local interconnect parasitic capacitance
and utilize a lightweight Manhattan style global interconnect.
Measured results of low level computational elements and routing
infrastructure and preliminary system results are presented.

Index Terms—Analog signal processing, field-programmable
gate array (FPGA), field-programmable analog array (FPAA),
floating-gate (FG), reconfigurable system, mixed-signal system.

I. INTRODUCTION

FPGAs are very popular, and are well proven in their ability
to rapidly prototype, emulate, or implement digital systems.
FPAAs, while no where near as mature or ubiquitous as
FPGAs, are gaining in popularity, and are quickly proving
themselves indispensable in the realm of analog prototyping,
implementation, and even education [1], [2], [3], [4], [5].
So while systems exist for prototyping digital systems and
systems exist for prototyping analog systems, there is little
in the way of prototyping mixed-signal systems. In [6] they
create a mixed-signal reconfigurable environment from dis-
crete FPAAs, FPGAs, and data converters for synthesizing and
prototyping mixed-signal systems. There has been some work
to integrate this type of design into into SoCs [7], [8].

All of these designs, however, are essentially an FPAA array
and an FPGA array isolated by dedicated data converters.
The data converters are largely inflexible, and once fabricated,
there is no way to change the percentage of area dedicated
to analog versus digital. We present a chip that is the first
mixed-signal reconfigurable array to do away with hard wired
data converters, integrating digital and analog devices in such
a fine-grained manner that data converters can be synthesized
out of the array fabric, if needed, in the size, type, and quantity
desired by the mixed-signal application, albeit at reduced
performance over hardcoded converters. And while the number
of digital and analog devices is certainly fixed, they share a

common global routing resource, allowing a more digital or
analog biased design to consume more of the common routing
resources, which may lead to larger utilization of the fabric
for circuits of varying digital to analog bias.

We present the design and verification of a mixed-signal,
reconfigurable, floating-gate based array comprising a fine-
grained interleaving of interchangeable field-programmable
gate array (FPGA) based and field-programmable analog array
(FPAA) based tiles, called the FPAADD: Field Programmable
Array of Analog and Digital Devices. The general architecture
is shown in Figure 1 and die photo in Figure 16.

Low level analog devices (Figure 1a): floating-gate input op-
erational transconductance amplifiers (FG-OTAs), MOSFETs,
capacitors, transmission gates, and multiple-input translinear
elements (MITEs) are grouped together with a sea of recon-
figurable routing, local interconnect, for wiring the devices
together within a tile, to make the computational analog blocks
(CABs). While digital elements: arbitrary logic implementing
look-up tables (LUTs), and flip-flops (FFs) are clustered
together with local interconnect to make combinational logic
blocks (CLBs).

A CAB or a CLB along with global interconnect, wiring that
allows signals to propagate between and through tiles (Figure
1b), make up the analog and digital tiles, respectively. The tiles
are designed to be interchangeable with respect to connectivity,
with the majority of the global interconnect lines (tracks) being
passive and able to propagate analog and digital signals, while
a few tracks are reserved for buffered routing of analog or
digital signals.

Floating-gates are used for the switches and state storing
elements on the chip. The dynamic range of the FG switches
allow for ON performance comparable to transmission gates
with parasitic capacitance of a single FET, with leakage
currents an order of magnitude less than standard SRAM
based alternatives. The non-volatile nature of the floating-gates
means the chip does not have to be reprogrammed on power
up. The continuum between the ON and OFF states allow
the routing infrastructure to perform useful functions other
than just connecting nets: tunable delays, current biases, and
vector matrix multipliers (VMM), for instance, are all easily
implementable by the interconnect.

The core of the FPAADD is an array of these tiles. The tiles
are interleaved on a row by row basis with a higher density of
digital rows on the bottom and analog rows on the top. The
rest of the chip is floating-gate selection and programming
infrastructure (controlled by an SPI bus), and buffered and
non-buffered I/O. The top level arrangement of the chip is
shown in Figure 1c.

The rest of the paper is organized as follows: Section
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Figure 1 – The general architecture of the FPAADD: a) Left,
analog devices (MOSFETs, capacitors, etc.) are grouped to-
gether with local interconnect, a sea of reconfigurable switches
for connecting the devices together, to form Computational
Analog Blocks (CAB). Right, digital devices (Flip-Flops and
look-up tables) are grouped together with local interconnect to
make Combinational Logic Blocks (CLB). b) Interchangeable
digital and analog tiles are built from either a CLB or a CAB
with reconfigurable routing that allows signals to propagate
between tiles (global interconnect). c) Top level. Blocks not
to scale.

(a) (b)

Figure 2 – a) Switch element M is an nFET with SRAM
based state storage as is typical of modern FPGAs. M ′s state
is set by turning on MSEL and driving ColSel high or low.
b) The FPAADD uses floating-gates for the switch elements
and memory. Switch element M is a pFET whose gate has
no DC paths under run-time bias, and whose state is stored
as charge trapped on the fg node. Negative charge is added
through MINJ by channel hot electron injection or removed
through CTUN by Fowler-Nordheim tunneling

II describes the detailed architecture and the building of
the FPAADD, Section III accounts the software stack used
to place and route and program netlisted circuits onto the
FPAADD, measurements of low-level computational elements,
measurements of parasitic delay from switches, and general
system verification is shown in Section IV, in Section V a
a subset of potential applications and their mapping to the
FPAADD are described as well as measured system results
for two applications: a VCO based ADC, and a 2nd order
sigma-delta modulator are presented, and lastly, Section VI
concludes the paper.

II. FPAADD ARCHITECTURE

The introduction provided an architectural overview of the
chip, here is presented an in depth description of the various
components of the FPAADD.

A. Floating-Gate Switch

The most basic and ubiquitous component of any highly
reconfigurable architecture is the switch and the switch’s state
storage. In the majority of modern FPGAs, this is implemented
by a single nFET whose gate is driven by SRAM (Figure
2a). Figure 2b shows the corresponding element as used in
the FPAADD; the switch and memory are implemented by a
floating-gate pFET. In both figures, the transistor, M , is the
switch element used in the circuit.

While the SRAM solution is very dense, the floating-
gate based solution offers many advantages: on resistance
comparable to that of a transmission gate while maintaining
a single device’s parasitic capacitance, lower leakage current
for off devices, non-volatility, rail-to-rail operation, and for
applications that desire it, the ability to precisely implement a
resistance somewhere between the “on” and “off” states [9].
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Figure 3 – Programming is achieved by globally removing
charge from the floating-gate nodes through CTUN via Fowler-
Nordheim tunneling, and then selectively adding charge through
MINJ with impact carrier hot channel electron injection. Injec-
tion of charge per row is controlled by the selection lines CSi,
and per column by the drain lines CSj . Since injection requires
high channel current and steep electric fields, injection current
is lowest in deep subthreshold and high above threshold and
peeks somewhere in between. The RCi lines are used to move
the floating-gate coupled bias during program to push MINJ

back into a region more conducive to injection.

Floating-gate transistors are normal MOSFET devices
where the gate is completely insulated by silicon-dixode. This
means that all terminals capacitively couple onto the gate, and
the device’s effective threshold is modified by charge trapped
on the gate. The modeling of the behavior of this device can
be achieved by substituting for the gate voltage the following
in any MOSFET current equation:

Vg =
1

ctot
(Q+

∑
vici) (1)

Where ctot is the total capacitance at the floating-gate, ci
and vi are the capacitance coupling into the floating-gate and
the voltage at the ith node of the device. Q is the net total
charge on the floating gate that is modified (or programmed)
to set the state of the device.

Since the gate has no dc path to ground, the charge Q is
trapped and remains on the floating-gate during normal circuit
operation. However, for the floating-gate to implement the
state storage of the switches, this charge has to be modifiable
in a selective manner.

Figure 3 shows an array of floating-gates. All floating-gates
are erased by applying a very large voltage to the global signal
VTUN ! which enables electrons to flow off of the floating-
gate nodes into the VTUN ! net by Fowler-Nordheim tunneling.
This makes all floating-gates very positive in potential, and
effectively turns off all floating-gate pFETs. To selectively
turn on a pFET floating-gate, electrons are injected onto the
floating-gate by way of impact based channel hot electron
injection through Minj (Figures 2b and 3) [10]. If AV DD is set
to a high enough voltage to allow for injection, the ith floating-

(a) (b)

Figure 4 – a) pFET switch with floating-gate memory and
circuit symbol. b) Circuit symbol for a floating-gate memory
element setting the gate input voltage of an inverter.

gate is injected by setting RSi low and CSj low. Injection
takes place in regions where the electric field is strong enough
to heat a significant portion of the minority carriers in the
pFET channel to energies high enough to conduct in the
silicon-dioxide, and the field in the oxide is such that those
carriers are attracted to the floating-gate. The highest electric
fields are achieved by operating the device in subthreshold,
where almost all of the source to drain voltage is dropped in
a very short region near the drain, and setting the source to
drain voltage as high as possible. In this case, the probability
of injection of each carrier is maximized, but when this is
maximized the amount of available carriers tends to be very
low. Because of this, injection rate is maximized somewhere
near the onset of above threshold, and tends to be very poor
in regions of high above threshold (lots of carriers, not very
high fields) and deep subthreshold (very high fields, but not
many carriers) [10]. In order to bias the device in regions
conducive to injection, and further optimize the dynamic range
of programmability, there is a control gate on each floating-
gate that is controllable during injection.

B. Computational Blocks

Building up the local interconnect and high level portions of
the chip is greatly facilitated by defining some circuit symbols:
Figure 4a shows the symbol used for a floating-gate pFET
switch, and Figure 4b the symbol for when a floating-gate is
used as the gate input to a larger circuit like an inverter.

An open circle, as shown in Figure 5a, denotes when a
switch is used to connect two abutting net lines. When a switch
is used to allow connectivity between two crossing net lines
an open circle is drawn over the crossing of the two nets
(5b). Figure 5c shows the symbol for an s-switch connection
topology, an open square. The s-switch allows a signal entering
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Figure 5 – The left column contains circuits and the right
column their abbreviated symbols used in this paper: a) a pFET
floating-gate switch connecting two abutting nets, b) a pFET
floating-gate switch connecting two crossing nets, c) six pFET
floating-gate switches implementing an s-switch.

Figure 6 – The BLE is primarily a 3-input LUT whose output
either gets registered or not with a FF. Our registering device is
implemented as a JK-FF that is either configured as a standard
FF or a T-FF, whose clock can come from the local interconnect,
the output of the LUT, or a global line.

from any side to propagate across, make a turn, split in two
directions, allows two nets to cross each other, or turn away
from each other.

1) Combinational Logic Block: The Basic Logic Element
(BLE) is the building block of the digital circuits. The stan-
dard BLE is a k-input look-up table whose output is either
registered or not by a flip-flop. Shown in Figure 6 is the
BLE implementation used in the FPAADD. Instead of using
a standard flip-flop, a JK-FF is used that can be configured
as a T-FF or a D-FF. The clock can be routed from the local
interconnect, the BLE’s look-up-table, or come from a global
signal. These choices were made to allow of high density
synthesis of asynchronous counters.

Figure 7 – The CLB comprises BLE devices and a sea of local
interconnect. The outputs from the NO number of BLEs are
the primary outputs from the CLB, and the inputs to the BLEs
come from the NI number of primary CLB inputs and the NO
BLE outputs. In the FPAADD NO = 4 and NI = 8.

Figure 7 shows that the CLB is comprised of NO number of
BLEs and a sea of local interconnect. The inputs to each BLE
come from either any of the NI primary inputs to the CLB or
from the outputs of any BLE in the CLB. The NO outputs of
the CLB are hardwired to the outputs of the BLEs in a one-to-
one fashion. The configuration of the local interconnect allows
for a deterministic and guaranteed routing solution for any
clustering of any NI inputs and NO BLEs. Where NO = 4
and NI = 8 .

2) Computational Analog Block: The CAB is the analog
equivalent of the CLB. It is a cluster of analog devices and
local interconnect, however, instead of a homogeneous set
of devices, the CAB in the FPAADD contains: floating-gate
based operational transconductant amplifiers (OTAs), switched
capacitor optimized transmission gates, MOSFETs (either
common centroid pFETs or nFETs), capacitors, and multiple-
input translinear elements (MITEs: floating-gate pFETs with
multiple input control gates). This set of devices was chosen to
make the FPAADD CABs compatible with the generic CABs
of the RASP2.9a chip [4]. Inputs to the devices come from the
NI primary inputs, the two hardwired VDD and gnd signals,
or the outputs of any device in the CAB. The NO outputs of
the CAB are multiplexed from the set of CAB device outputs.
This was chosen because the number of devices in the CAB
exceeded that in the BLE and it was desired to keep the same
number of I/O in the CAB as in the CLB: NO = 4 and
NI = 8.

While the routability of the CLB was complete, this is not
quite the case for the CAB. Whether or not there exists a
completely deterministic and guaranteed routing solution for
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Figure 8 – CAB architecture showing devices and local inter-
connect. Net name terminology derived from the perspective
of the local interconnect. Inputs to the local interconnect are
vertical lines and outputs from the local interconnect are hor-
izontal. I and LI are the primary inputs to the CAB and the
outputs from the CAB devices respectively. O and LO are the
primary outputs from the CAB and inputs to the CAB devices
respectively. There are exactly twice as many devices in the
CAB as shown, and NO = 4 and NI = 8.

all combinations of NI inputs, NO outputs and CAB devices
depends on whether or not the clustering can be partitioned
such that the implied input/output relationship of the devices
is preserved: an output can go to multiple inputs, but multiple
outputs can not go to a single input. In the CLB, the inputs
and outputs are well defined, as is the case with CMOS
digital gates. While an OTA may have well defined inputs
and outputs, and the gate of a MOSFET is easily classified
as an input, classifying the sources or drains of a MOSFET,
for instance, as either inputs or outputs is rather arbitrary.
If a partitioning of the circuit to be clustered in the CAB
preserves these mappings then the cluster is guaranteed to
route in a deterministic manner. Since many analog circuits
do not partition this way, this does not automatically mean
they will not route, the output multiplexor allows for limited
support of shorting of outputs. If outputs are to be shorted,
and if the output is also a primary output, then the output
multiplexor can handle this. The only time output shorting
will fail is if two devices are to short their outputs, and this
net does not propagate out of the CAB or to the input of
any device in the CAB, and all CAB output lines are already
occupied with other nets.

C. Global Interconnect

The global interconnect follows a standard track based
scheme with connection blocks (C-Blocks) getting inputs and
outputs out of the CABs and CLBs and onto the tracks.
Switch blocks (S-Blocks) allow track segments to be con-
nected across, or to make turns. Figure 9 shows a two by
two array of tiles where each tile contains either a CAB or

Figure 9 – The global interconnect comprises vertical and
horizontal track segments isolated by S-Blocks. The S-Blocks
allow signals on tracks to propagate to neighbor tracks or to
change directions. The C-Blocks provide connectivity from the
global tracks to the primary inputs and outputs of the CLBs and
CABs.

CLB and global interconnect: two C-Blocks and an S-Block.
There are 11 tracks in the north-south direction, and 11 in the
east-west direction.

The C-Blocks in the FPAADD are implemented as a
completely populated floating-gate matrix. The C-Blocks are
not fractional, all inputs and outputs from the computational
blocks have access to every track, and all track segments span
one tile length.

The S-Blocks are a diagonal arrangement of s-switches (one
buffered, ten passive) that allow signals to propagate across or
to change directions into neighboring tiles, but the diagonal
nature keeps the signals on the same track number as they
started. The standard s-switch is implemented as shown in
Figure 5c, which passively passes both analog and digital
signals. Every s-switch is of this passive type except for the
bottom left ones on the first track.

These s-switches on the bottom track are buffered. Each
digital tile’s S-Block has a single digital buffered s-switch
and each analog’s a single analog buffered s-switch. Two
different buffered s-switch topologies can be seen in Figures
10 and 11 . Both circuits are bi-directional, and allow for the
same direction choices of signal propagations as the passive
s-switch. The first circuit uses significantly less switches, has
less internal parasitics per track, forces all entering signals to
leave buffered, and requires four buffers. The second circuit is
basically a passive s-switch with the ability to insert a single
buffer on the input from one of the directions. It requires more
switches than the first, has more internal parasitics, can buffer
either one or zero signals, has the same input capacitance
as a passive s-switch, and uses only one buffer. In general,
the first topology will be faster, but larger than the second
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Figure 10 – The s-switch topology used in the digitally buffered
s-switches. This circuit is bi-directional and allows for the same
routing options as the passive s-switch. The four digital buffers
are simple inverter chains.

Figure 11 – The analog buffered s-switch topology. This circuit
wraps a standard passive s-switch with hooks allowing the
signal to pass through an analog buffer (a simple unity gain 9-T
OTA buffer). This topology requires only one buffer, allows a
signal to pass unbuffered, and while it can pass multiple signals,
it can only buffer one of them.

Array size 27x8: 108 digital tiles and 108 analog
tiles.

Chip IO 33 generic IO pads, 11 digitally
buffered bi-directional pads

Devices per CAB 2 FG-OTAs, 2 TGATEs, 2 Capacitors,
2 FETs (nFET or pFET), 2 MITEs

Devices per CLB 4 BLEs
CAB / CLB I/O 8 inputs, 4 outputs

BLE 3-input LUT, routable clock and reset,
reconfigurable for asynchronous

adders
C-BLOCK 11 Total tracks, all of segment length

1, fully connected connection blocks
S-BLOCK diagonal with 1 digital or analog

buffered s-switch per tile on the first
track

Process CMOS 0.35um Double-Poly, 4-M
Voltage 2.4V at runtime

Table I – FPAADD specifications

topology. Because the analog buffers (simple 9T floating-gate
programmable OTA based unity-gain buffers) are much bigger
than the digital ones (two-stage inverter chain) we chose the
second topology for the analog buffered s-switches and the
first topology for the digital buffered s-switches.

Table I contains a list of specific parameter values used in
the FPAADD.

D. Architectural Comparison

The CAB devices, floating-gate design, and floating-gate
programming infrastructure were all derived from the RASP
2.9a chip, a next generation FPAA from the line developed
by Hasler et. al. [11], [12], [4]. Significant differences from
the RASP 2.9a include the choice of a Manhattan style
global routing architecture, and a feedback output local in-
terconnect scheme. The global interconnect has significantly
less parasitics over short distances than the RASP’s global
scheme, where global tracks span the entire length of the
chip. There are buffers in the global interconnect whereas the
generic RASP line contains none. The local interconnect of the
FPAADD has 30% lower parasitic capacitance and 50% less
parasitic resistance between routed CAB devices in the local
interconnect (devices in the FPAADD can be connected with
one switch, but in the RASP chips require two at minimum)
at the cost of decreased routeability described earlier. In the
RASP line, CAB devices were disconnected from the routing
infrastructure during program time with large transmission
gates in order to not expose the devices to injection level
programming voltages, but with careful circuit consideration,
these can be removed in almost all cases.

The global interconnect scheme as well as the local inter-
connect and CLB devices draw heavily from standard Man-
hattan style FPGAs [13], [14]. Semi-arbitrary design decisions
regarding architectural parameters, such as number of tracks,
cluster size, placement of buffers, etc. aside, the digital tiles
look very similar to previously made FPGAs. The biggest
difference being replacing the switch elements and SRAM
with programmable floating-gate pFET transistors[11], [12],
[4].

Floating-gates are very similar in operation to non-volatile
technologies such as EPROM, EEPROM, and FLASH; various
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FPGAs and CPLDs have been built using these technologies
[15],[16],[17]. The floating-gates transistors in the FPAADD
are built in a standard CMOS process. They have a higher
dynamic range of programmed voltage leading to significant
performance increases in power, speed, and signal integrity at
the cost of density compared to conventional EEPROM and
FLASH devices.

In [15], they claim that switching from using the EPROMs
as the actual switch to simply using the EPROMs to control
the gate of CMOS devices, that a 10x speedup was achieved.
This is similar to the problem that pass-transistor logic, often
used in FPGAs, face when trying to pass a logic-level (V DD
for nFETs and GND for pFETs) that causes the devices
to enter subthreshold before completely passing the signal.
This results in signal levels about a threshold voltage in the
wrong direction after reasonable amounts of time, significant
speed degradation, and can lead to an exponential increase in
leakage current in gates driven by these logic levels. The range
of floating-gate programmability is higher than a threshold
voltage above V DD and a threshold voltage below V DD,
because of this the devices stay in above threshold while
passing the whole rail-to-rail voltage. Small signal resistance
sweeps in [12] show floating-gate switches being as good as
transmission gates but at half or better parasitic capacitance.

III. CAD SOFTWARE

Much work has been done in the realm of synthesis for
FPGAs; many software packages are available from industry
and the open-source community alike. The field of synthesis
for FPAAs, however, is far from mature. While the algorithms
for placement and routing certainly have application to FPAAs,
what does not translate so well are the cost functions (other
than trivial ones like area and routeability) to evaluate the
desire-ability of routable solutions. FPGA synthesis is largely
timing driven, where propagation delay models are used to
identify the worst case delay of the critical path (further
effort can be spent to then reduce the amount of devices on
non critical paths for power optimization). While line delays
certainly have some application to analog circuits, they are by
no means the appropriate metric for all circuit nets.

In [18], [19] the authors successfully apply standard place-
ment and routing algorithms to map analog circuits to FPAAs
with global parasitic reduction being the metric of choice, later
work is done to extract parasitic models to back annotate the
initial input spice netlist for simulation, with fitness evaluation
and iteration up to the user. The strategy in [20], [21], [22]
is to partition the mixed signal reconfigurable system into
the digital and analog subcircuits at data converter interfaces
and apply different cost functions to each. Models for SNR
estimation are developed that start with known device SNR
and its degradation by connection topology of interconnect:
cascode, fan-out, fan-in, and feedback. Bandwidth is also
estimated using the data converter’s Nyquist criterion as the
bottleneck.

None of these approaches take into account the appropri-
ateness of applying different cost functions to different net
types. For instance, an algorithm that places negative weight

Figure 12 – The software stack used for programming the
FPAADD. From the VTR flow: ODIN takes an input verilog
file and performs logic synthesis targeting LUTs, FFs, and
macro function blocks. ABC performs logic optimization. T-
Vpack clusters LUTs and FFs into CLBs. And VPR places and
routes the result. VPR2P takes an input describing the internal
configuration of the CABs that are treated as black boxes in
the VTR flow, and all of the intermediate outputs of the VTR
flow, and creates a switch list. The switch list can be directly
programmed or analyzed and modified by the detailed routing
analysis tool, RAT2. All programs in the flow take various
pieces of architectural descriptions of the target system.

on average parasitic capacitance of all nets will inefficiently
try to reduce parasitic capacitance on nets that are insensitive
to it, like internal nets of DC bias generators.

The software suite, VTR, was extended to perform place-
ment and routing on the FPAADD. As of writing, the flow is
completely area driven.

A. Verilog To Routing

Verilog To Programming (VTR) is an open source, academic
software suite that given an input verilog circuit description
and an input FPGA architectural description, performs synthe-
sis and place and route (Figure 12). The suite consists of the
following programs: ODIN II, which performs logic synthesis
to standard cells (in this case, LUTs, FFs, and macro functions)
[23], ABC which performs logic optimization [24], and T-
Vpack and VPR which perform packing of LUTs and FFs
into CLBs and then placement and routing [25].

While the flow supports synthesis of verilog to the standard
FPGA building blocks, it also supports the targeting of larger
functions that may exist as dedicated hardware blocks on
a heterogeneous FPGA. For instance, it is often common
to include hardware adders or multipliers in FPGAs as the
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Figure 13 – The FPAADD architecture as understood by VPR.
There are digital rows and analog rows. Every other analog tile
in an analog row has either a set of matched pFETs or matched
nFETs. Every fourth digital tile in a row has no routable clock
and is designed for synthesis of dense asynchronous adders.
Only the standard digital tiles are treated as non-black boxes.

Figure 14 – Screen shot from the VPR GUI displaying global
placement and routing information. Highlighted are the input
and output nets from the selected green tile.

synthesis of these rather common functions are often the
bottlenecks in an FPGA implemented circuit design.

The support of black boxes made VTR a very attractive
starting point in creating a software chain to provide place-
ment and routing on the FPAADD. Digital circuitry could be
synthesized all the way from verilog while the analog circuitry
could be treated as black boxes and simply placed and routed.

B. Routing on the FPAADD

The architecture of the FPAADD, as understood by VPR, is
shown in Figure 13. While VPR will route circuits to arbitrary
architecture graphs, it also supports a robust and scalable
XML based architecture description language for quick graph
building. Since the FPAADD was designed with a Manhattan
style global and local interconnect scheme, describing the
FPAADD in the VPR architecture language was relatively
straight forward. Only a few minor modifications to VPR 5.0
were necessary.

The current flow starts with the circuit input as a blif and
a net2 file. The .blif file contains all of the digital circuitry
as described as netlists of LUTs and latches with black boxes
for the analog circuits. T-Vpack then packs the digital circuits
into CLBs and the CABs are already prepacked in the net2
file. VPR then places and routes the CLBs and CABs.

The program VPR2P was written to take all of the interme-
diate file outputs of the VTR flow, consolidate the information,
fill in the blackboxes with information from the .net2 file,

Figure 15 – The RAT2 tool displays detailed low level routing
information. Switches can be set by hand with the tool.

and then to translate the information into the corresponding
physical switch locations on the FPAADD. The output is a
row column switch list that is input into our programming
software that handles chip and board communication as well
as the algorithms for erasing and programming the floating-
gate memory elements.

Figure 14 shows the VPR GUI for some small benchmark
targeting the FPAADD. The figure shows a highlighted CLB,
in green, with its routed input and output nets, blue and
red, respectively. Since VPR is not concerned with local
interconnect, as routing at that level is deterministic, the GUI
does not show the internals of the blocks. So in order to
analyze the detailed routing solutions, global routing and local
routing, and as well as to provide for a way to set and unset
switches by hand, the RAT2 tool was created.

A screenshot of RAT2 showing a portion of a routed circuit
on a portion of the FPAADD is shown in Figure 15. The RAT2
is a simple program written in MATLAB that can read in a
switch list, display the routing solution, modify by means of a
point and click interface the switch list, and dump out a switch
list. This switch list can then be used to program the chip.

IV. LOW-LEVEL COMPONENT & SYSTEM VERIFICATION

The FPAADD as described in Section II was fabricated in
a standard double-poly, 0.35um process. A die photo of the
FPAADD is shown in Figure 16. The system is operated at
2.4V during run time, as opposed to 3.3V, to increase retention
of the stored charge on all floating-gate transistors [4].

All CAB and CLB devices, as presented in Table I, are
verified to be functional, via successful interconnect rout-
ing to I/O pads; global interconnect, local interconnect, and
interconnect buffers are all working as expected. Simple
circuits have been built: XOR gates and full-adders imple-
mented in the CLB floating-gate based LUTs, asynchronous
adders generated from FFs and LUTs, MOSFET threshold and
characterization data extracted from routed out fet devices
in the CABs, and ring oscillators built out of the buffered
global interconnect. Verification and programming of the the
floating-gate transistors was performed and performance was



9

Figure 16 – Die photo of the fabricated FPAADD.
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Figure 17 – Ring oscillator period versus number of additional
interconnect stages (s-block to s-block) for digitally buffered
and passive s-blocks. The incremental delay due to a digitally
buffered s-block is 1.6ns.

the same as in [4]. The components for the CAB were taken
from previously designed FPAAs. Performance metrics for the
individual components found in the CAB can be found in
Basu, et, al 2000, [4].

To evaluate the performance of the interconnect, digital ring
oscillators were built of varying depth. Each additional stage
comprises of a C-BLOCK to S-BLOCK connection, where
each oscillator uses entirely digitally buffered s-switches or
passive s-switches. In Figure 17, oscillator period is plotted as
function of the number of additional stages. As expected, the
delay of the oscillators using non-buffered s-switches increases
quadratically with the number of stages as is typical of RC
ladders, and the buffered ones increase linearly. The delay of
moving from one tile to the next through a digitally buffered
s-switch is 1.6ns. Using a similar method, the BLE to BLE
delay was measured to be less than 7ns.

+

-
+

-

+

-

gm
1

C
1

V
in

V
bias

V
ref

D
out

ƒ
s

C
2

gm
2 +

-

gm
3

D Q

Figure 19 – A 2nd order sigma-delta modulator with 1-bit DAC
feedback.

V. EXAMPLE FPAADD APPLICATION & RESULTS

Previous FPAAs have been used to build continuous time
filters, vector matrix multipliers, AM receivers, analog speed
processors, among others [3], [4]. The reconfigurable and
mixed-signal nature of the FPAADD allows the user to address
a variety of applications from pure analog to mixed-mode to
pure digital with circuit complexity ranging from small to
large, including all FPAA applications in reported literature.
Two example systems applications have been built to demon-
strate FPAADD application performance: a VCO-based ADC
and 2nd order low-pass sigma delta modulator.

A. VCO-ADC

Voltage controlled and current controlled oscillators were
built using CAB components. Asynchronous counters, state
machines, decimators, and registers were built out of the
CLBs. Combinations of these components were arranged to
build an 8bit VCO based ADC (Fig. 18), and a single loop
low-pass, second-order delta sigma modulator with a one-bit
quantizer was also built using a mix of digital and analog
components (Fig. 19).

Figure 20 shows the frequency versus control voltage plot
of the VCO from Figure 18c. The dynamic range of the
VCO was from 0.18mHz to 7Mhz, and when operated as a
current controlled oscillator was linear up to 1Mhz. Higher
than 1Mhz, while still operational, the OTA’s delay becomes
non-negligible and the input currents discharge the capacitance
before the output can swing full rail, leading to an increase in
frequency.

A VCO based ADC with 8-bit digital out was created to
verify system performance. The digital back-end was clocked
externally at 2Mhz (though the backend was operational up
to 18Mhz), and a 200.137Hz, 0.4VPP input sine wave was
applied. The ADC was measured to have no missing codes,
and its operation can be seen in Figure 21. INL and DNL data
is not presented due to the non-linearity inherent in VCO based
ADCs. The non-linearity of the ADC is due to the following
effects: the input voltage to current converter is a simple nFET
operated in subthreshold, so an exponential voltage to current
conversion is expected, while the current controlled oscillator
performs a linear conversion of input current to frequency,
and the digital backend, instead of frequency, the period of
the VCO is measured by means of counting a global clock
between input pulses. Using the expected circuit behavior,
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Figure 18 – An 8-bit ADC built on the FPAADD. a) Block Diagram: A current or Voltage Controlled Oscillator’s (VCO) output period
is measured by a digital backend. b) Timing diagram for the circuit’s operation. c) VCO, pulse detection circuit and state machine,
asynchronous counter and latches.

the input is reconstructed from the output by fitting it to the
following equation:

−ln[aTout + b] = Vin (2)

Where Tout is the measured output a and b are terms
lumping subthreshold parameters of the input I-to-V input
stage and the linear current controlled oscillator stage. The red
line is then reconstructed from the output and shows the circuit
to be in excellent agreement with expected circuit behavior.

The VCO based ADC system consumed a total of 10 tiles
(four analog and six digital) representing 4.6% of the total
number of tiles in the FPAADD array. The percentage of
device utilization within the six digital tiles was 88% while the
utilization within the four analog tiles was 23%. Low element
utilization of the CAB is due to the heterogeneous nature of
the devices present within the CAB. The VCO used primarily
discrete transistors found in the CAB along with an OTA and
2 capacitors leading to the low utilization value.

B. Delta-Sigma Modulator ADC

Figure 19 depicts the system diagram of a 2nd order low-
pass sigma delta created in the FPAADD. The low-pass filter
was built using components from a total of 2 CABs, and a
single CLB is utilized for the D Flip-Flop. The poles of the
loop filter are designed to be located at zero. The sigma-delta

modulator has a measured SNR of 24.1 dB and SFDR of
39.2 dB at a bandwidth of 20 kHz and sampling frequency
of 2.5 MHz. Figure 22 is a 32k FFT of recorded data taken
from the FPAADD at the previously stated input and sampling
frequencies. Insufficient gain of the loop filter is the probable
reason for lower than expected SNR. Further optimization of
the loop filter is required to increase the SNR.

VI. CONCLUSION

A mixed-signal heterogeneous tile array (FPAADD) of CAB
and CLB components has been built and presented. Verifica-
tion testing of the system was performed at the component,
tile, and system level. Initial results of the FPAADD display
7ns BLE to BLE performance and 1.6ns buffered tile to
tile delay. Oversampling ADCs were implemented to test the
functionality of the tile array and show the reconfigurable
nature of the chip. The goal of the FPAADD is a bridge
towards embedded systems containing the reconfigurabilty of
a FPAA and digital processors. Thus, the next stage of research
will be done in the areas of automated system routing, building
larger systems that take full advantage of the computation
properties of the FPAADD, and integrated digital processors
allowing complete embedded systems.
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Figure 20 – Measured response of the VCO over varying input
voltage.
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Figure 21 – 8-bit VCO based ADC digital output (dotted
line) for a 200.137Hz input sine wave of 0.4VPP and the
reconstructed input signal.

Figure 22 – A 2nd order sigma-delta modulator with 1-bit DAC
feedback. Measured power spectrum for an input of 1.0478 kHz
at 2.5 MHz oversample frequency.
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