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Abstract—A neuromorphic analog chip is presented that is
capable of implementing massively parallel neural computations
while retaining the programmability of digital systems. We show
measurements from neurons with Hopf bifurcations and integrate
and fire neurons, excitatory and inhibitory synapses, passive
dendrite cables, coupled spiking neurons, and central pattern gen-
erators implemented on the chip. This chip provides a platform
for not only simulating detailed neuron dynamics but also uses
the same to interface with actual cells in applications such as a
dynamic clamp. There are 28 computational analog blocks (CAB),
each consisting of ion channels with tunable parameters, synapses,
winner-take-all elements, current sources, transconductance
amplifiers, and capacitors. There are four other CABs which have
programmable bias generators. The programmability is achieved
using floating gate transistors with on-chip programming control.
The switch matrix for interconnecting the components in CABs
also consists of floating-gate transistors. Emphasis is placed on
replicating the detailed dynamics of computational neural models.
Massive computational area efficiency is obtained by using the
reconfigurable interconnect as synaptic weights, resulting in more
than 50 000 possible 9-b accurate synapses in 9 mm�.

Index Terms—Bifurcations, central pattern generator, den-
dritic computation, ion-channel dynamics, neuromorphic system,
spiking neurons.

I. RECONFIGURABLE ANALOG NEURAL

NETWORKS: AN INTRODUCTION

T HE MASSIVE parallelism offered by very-large-scale in-
tegrated (VLSI) architectures naturally suits the neural

computational paradigm of arrays of simple elements computed
in tandem. We present a neuromorphic chip with 84 bandpass
positive feedback (e.g., transient sodium) and 56 lowpass neg-
ative feedback (e.g., potassium) ion channels whose parame-
ters are stored locally in floating-gate (FG) transistors. Hence,
fewer but detailed multichannel models of single cells or a larger
number (maximum of 84) of simpler spiking cells can be im-
plemented. The switch matrix is composed of FG transistors
that not only allow arbitrary topology of networks, but serve
as synaptic weights since their charge can be modified in a
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continuum. This serves as a classic case of “computation in
memory” and permits all to all synaptic connectivity (with a
total of more than 50 000 of these weights in the 3 mm 3-mm
chip). In this context, we reiterate that the chip is reconfig-
urable and programmable; reconfigurability refers to our ability
to compile different circuits by changing connections while pro-
grammability refers to changing the parameters of any of these
circuits. Other components in the CABs also allow building in-
tegrate and fire neurons, winner-take-all circuits, and dendritic
cables, making this chip a perfect platform for computational
neuroscience experiments. Moreover, since this chip produces
real-time analog outputs, it can be used in a variety of applica-
tions ranging from neural simulations to dynamic clamps and
neural interfaces.

Several systems have been reported earlier where a number
of neurons were integrated on a chip with a dense synaptic inter-
connection matrix. Though these chips definitely accomplished
the tasks they were intended for, large-scale hardware systems
modeling detailed neuron dynamics (e.g., Hodgkin-Huxley,
Morris-Lecar, etc.) seem to be lacking. One attempt at solving
this problem is presented in [1]. However, the implemented
chip had only ten ionic channels and 16 synapses, with a large
part of the chip area devoted to analog memory for storing
parameter values. Another approach reported in [2] had four
neurons and 12 synapses with 60% of the chip area being
occupied by digital-analog converters for creating the various
analog parameters.

In the following sections, we describe the architecture of the
chip and the interface for programming it. Then, we present
measured data showing the operation of channels, dendrites, and
synapses. Finally, we show some larger systems mimicking cen-
tral pattern generators or cortical neurons and conclude in the
final section with some remarks about the computational effi-
ciency, accuracy, and scaling of this approach.

II. SYSTEM OVERVIEW

A. Chip Architecture

Fig. 1(a) shows the block-level view of the chip which is mo-
tivated by the framework in [3]. Since we presented architec-
tural descriptions of similar chips earlier, we do not provide de-
tails about the architecture here, but note that the CAB compo-
nents in our realization are neuronally inspired in contrast to the
chip in [3] which had analog-processing components. Another
unique feature of this chip is that we exploit the switch inter-
connect matrix for synaptic weights and dendritic cables. There
are 32 CABs organized in a 4 8 array, each CAB occupying

m. The first row of CABS has bias genera-
tors which can produce bias voltages that can be routed along
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Fig. 1. Chip Architecture: (a) The chip is organized into an array of 4 � 8
blocks that can be interconnected using FG switches. (b) Die photo of the chip
fabricated in 0.35 ��m CMOS. (c) CAB components that are used for com-
putation along with the switch matrix elements. The tunneling junctions and
programming selection circuitry for the floating gates are not shown for sim-
plicity. The arrows on the components denote nodes that can be connected to
other nodes through routing.

columns for all of the computational CABs. It should be noted
that the regular architecture allows for tiling multiple chips on
a single board to make larger modules. Fig. 1(b) is a die photo
of the fabricated chip.

Fig. 1(c) shows the components in the CAB. The components
and in the dashed square are in CAB1. In both cases,

the floating gates are programmed to a desired level and the
output voltage is buffered using a folded-cascode operational
transconductance amplifier (OTA). The bias current of the OTA
can also be programmed, allowing the amplifiers to be biased
according to the application, thus saving power. As mentioned
earlier, the CABs in the first row are of this type.

In CAB2, and are the positive feedback and neg-
ative feedback channels, respectively. In the context of
Hodgkin–Huxley neurons, they are the sodium and potassium
channels, respectively. However, from the viewpoint of dy-
namics, these blocks could represent any positive feedback
(or amplifying [4]) inward current and negative feedback (or
resonant) outward current. is a programmable bias OTA
which is included because of its versatility and omnipresence
in analog processing. is a 100-fF capacitance that is used to
emulate membrane capacitance. Different magnitudes of capac-
itance are also available from the metal routing lines and OFF
switches. One input of a current mode winner-take-all block is
formed by . A synapse following the implementation in [5]
can be formed out of , , , and and will be detailed
later. The reason for choosing such a granularity is primarily
component reuse. For example, component can also be
used as a variable current sink/source or a diode-connected
field-effect transistor (FET) while component can be used
as a leak channel.

B. Software Interface

Fig. 2 depicts the processing chain used to map a circuit to ele-
ments in the chip. A library containing different circuits (sodium

Fig. 2. Software interface: flow of information from the Simulink level of ab-
straction to SPICE, finally resulting in a list of switches and biases to be pro-
grammed on the chip.

channel, winner-take-all, dendrite, etc.) is used to create a larger
system in Simulink, a software product by The Mathworks. The
circuits in the library correspond to preconstructed SPICE sub-
circuits whose parameters can be set through the Simulink in-
terface. New blocks can also be added to the library by the user.
The graphical user interface (GUI) mentions whether the in-
puit/output (I/O) ports are voltage or current mode and the user
should connect only ports with the same type of signal. Though
the current version of the software does not check for signal
compatibility, the next generation of software being developed
does include this feature.

A first code converts the Simulink description to a SPICE
netlist, while a second one compiles the netlist to switch ad-
dresses on the chip. The methodology is borrowed from [6] and
[7] and we refer the reader to it for details. The second level
of compilation also provides information about the parasitic
capacitance associated with each net for that particular compila-
tion. The user can simulate this parasitic annotated SPICE file,
and, if desired, can recompile his/her circuit. The possible mod-
ifications include changing the circuit parameters or placing the
components in a way that reduces the routing parasitic. This
simulation of the Simulink models can be performed using
MATLAB’s ODE solver based on our computation models of
spiking neurons and synapses. However, in this paper, we do
not discuss the computational models anymore and focus on
intuitive explanations instead.

III. SPIKING NEURON MODELS

A. Hopf Neuron

Fig. 3(a) shows the circuit for a Hodgkin–Huxley-type neuron
consisting of a sodium and a potassium channel. For certain bi-
asing regimes, the neuron has a stable limit cycle that is born
from a Hopf bifurcation, the details of which are available in
[8]. In this case, we have biased the potassium channel so that
its dynamics are much faster than the sodium (M3 acts as an ON

switch). Hence, the potassium channel acts like a leak channel.
The whole system now becomes a 2-D set of differential equa-
tions since the dynamics of follow that of the sodium
channel. The parameters of the sodium channel are set based
on voltage clamp experiments on it (not shown here).

It is important to understand that these neurons have dif-
ferent computational properties when compared with integrate
and fire neurons. For example, the frequency of spikes does not
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Fig. 3. Spiking Neuron. (a) Neuron model where spiking is initiated by a Hopf bifurcation. (b) Measured noise-induced spikes when the neuron in (a) is biased
at the threshold of firing. (c) Integrate and fire neuron with the hysteresis obtained using M4 and M5. Here, the circled transistor, M5, is a switch element. (d)
Measured noise-induced spikes when the neuron in (c) is biased at the threshold of firing.

Fig. 4. Synapse architecture. (a) The synapse dynamics block for both excita-
tory or inhibitory synapses are placed in the CAB along with the model of the
soma. The synapse weight is set by the interconnect network. (b) The test setup
for the experiment has an excitable neuron with a synaptic connection to a leak
channel that is biased by a current source.

reduce to zero as the bifurcation value is reached, a classical
property of type II neurons [4]. Also, synchronization prop-
erties and phase-response curves of these neurons are signifi-
cantly different from integrate and fire neurons. Hence, it is an
indispensable component of a library of neuronal components.
Fig. 3(b) shows a measurement of noise-induced spikes from a
Hopf neuron biased at the threshold of firing. Note that the mag-
nitude of the action potentials is similar to biology, thus opening
the possibility of using the chip for interfacing with live neurons.

B. Integrate and Fire Neuron

Fig. 3(c) shows the circuit used for an integrate and fire
neuron. The circuit has a hysteresis loop-based relaxation
oscillation when the input current is large enough. The inverter
exhibits hysteresis because of the feedback from M4 and M5.

M4 and M5 act as a current source when is low, while
it is turned OFF when is high. M5 is a routing element
that sets the value of while M4 acts as a switch. The trip
point of the inverter depends on the condition of , leading
to hysteresis. The time period of the relaxation oscillations is
given by

(1)

where is the magnitude of the hysteresis loop in terms of
the membrane voltage, and is the reset current controlled
by M2 and M3. It can be seen that the frequency of oscillations
in this case does reduce to zero as reduces to zero, akin to a
type I neuron. This system can also be modeled by a differential
equation with two state variables. Fig. 3(d) shows the output of
this circuit due to noise when it is biased at the threshold of
firing.

IV. SYNAPSE

In this section, we describe three possible methods of imple-
menting synaptic dynamics in the chip. The overall architecture
is depicted in Fig. 4(a). Every CAB has a spiking neuron and
a circuit to generate the dynamics of a postsynaptic potential
(PSP). This node can now be routed to other CABs having other
neurons. The FG switch that forms this connection is, however,
not programmed to be fully ON. Rather, the amount of charge
programmed onto its gate sets the weight of this particular con-
nection that is accurate to 9 b. Hence, all of the switch matrix
transistors act as synaptic weights, facilitating all to all connec-
tivity in the chip.

Fig. 4(b) shows the setup for measuring the dynamics of the
chemical synapse circuit. A neuron is biased so that it elicits
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Fig. 5. Synapse. Three possible chemical synapse circuits. The circled transistor represents a switch element. PSP for three different weight values are shown.
(a)–(c) The simplest excitatory synapse where reversing the positive and negative terminals of the amplifier changes it to an inhibitory synapse. (d)–(f) The amplifier
acts as a threshold and switches a current source ON/OFF. The value of � relative to the membrane potential makes it inhibitory or excitatory. (g)–(i) Similar to
(d) with better control on the shape of the PSP waveform because of the current-starved inverter governing the charging and discharging rates independently.

an action potential when a depolarising current input is applied
to it. This neuron has a synaptic connection to a passive mem-
brane with a leak conductance where the PSP is measured. Out
of the many possible synaptic circuits possible, we only show
three here due to a lack of space. All of these circuits have the
dynamics of a 1-D differential equation. Unlike these chemical
synapses, electrical synapses are almost instantaneous and can
be modeled by a floating-gate PMOS. We have also measured
these circuits and their effects in synchronization of spiking neu-
rons but do not discuss them here.

Fig. 5(a) depicts the simplest type of excitatory synaptic
circuit. The amplifier creates a threshold at and charges
or discharges the node when the input voltage crosses the

threshold. Depending on the charge on the floating-gate switch
element (circled transistor), a certain amount of current is then
incident on the postsynaptic neuron. The synapse becomes
inhibitory if the input is applied to the negative terminal of
the amplifier. We show measured data for both cases for three
different synaptic weights in Fig. 5(b) and (c).

Fig. 5(d) shows the second circuit for a chemical synapse and
measured results for the same. Here, the amplifier creates a dig-
ital pulse from the action potential. This switches the floating-
gate PMOS current source ON which charges the node while
the second FG routing element sets the weight of the connection.
The synapse is excitatory when is larger than the resting
membrane potential and inhibitory otherwise.
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Fig. 6. Rall’s alpha function: Rall’s alpha function is fit to one of the EPSP
plots from the earlier experiment with a resulting error of less than 10%.

Fig. 7. Dendrite model. (a) Model of a passive dendrite based on a diffuser cir-
cuit and the experimental setup for measuring the transient response of a den-
drite cable. The current through the desired node is converted to a voltage using
the diode-connected NMOS. (b) Steady-state currents in a seven-tap diffuser.
(c) Step responses at nodes 1,4, and 6 of a seven-tap diffuser showing progres-
sively more delay.

Fig. 5(g) shows the circuit which replicates the synaptic dy-
namics most accurately [5]. After the amplifier thresholds the
incoming action potential, the current-starved inverter creates
an asymmetric triangle waveform (controlled by the FG PMOS
and NMOS) at its output. The discharge rate is set faster than
the charging rate leading to postsynaptic potentials that decay
very slowly. Again, we show EPSP and IPSP waveforms for
three weights of the synapse in Fig. 5(h) and (i). The waveforms
shown are close to the ones recorded for actual neurons [9]. A

Fig. 8. Full neuron. (a) A spiking neuron is connected to another neuron
through an excitatory synapse. The postsynaptic neuron in this case has a
dendritic tree. (b) The diffusion length of the dendrite is slowly increased
in the experiment. Though the postsynaptic neuron did not respond initially,
increasing the diffusion resulted in visible EPSP waveforms and eventual
spiking. Absolute voltages are not shown in this figure.

common method for modeling PSP is using Rall’s alpha func-
tion as follows:

(2)

Fig. 6 shows a curve fit of such an alpha function to a measured
EPSP waveform with an error that is less than 10%.

It should be noted that when using these synapses with inte-
grate and fire neurons, the amplifier used for thresholding is not
needed as it is part of the neuron circuit.

V. DENDRITE

The circuit model of a dendrite that we use is based on the
diffuser circuit described in [10]. This is one of the circuits built
entirely on the routing fabric and fully exploits the analog na-
ture of the switches. Fig. 7(a) shows the circuit and a modi-
fied version used to measure the different branch currents. The
horizontal transistors connecting the nodes allow diffusion
of currents while the vertical transistors leak current to a fixed
potential from every node. The dynamics of an -tap diffuser
circuit are represented by a set of -dimensional differential
equations which approximate a partial differential equation. The
steady-state solution of the equation is exponentially decaying
node currents as the distance of the node from the input node
increases.

Fig. 7(b) plots the steady-state current through the compart-
ments of a seven-tap diffuser. Fig. 7(c) shows the responses of
a seven-tp diffuser. Voltages at the first, fourth,and sixth nodes
are plotted here. The delayed response of the distant nodes is
typical of dendritic structures. The effect of the changing diam-
eter in dendrites can also be modeled in these circuits by pro-
gressively changing the programmed charge on the horizontal
devices along the diffuser chain.

We can put together all of previous circuit elements by
creating a spiking neuron that has a synapse connecting it to
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Fig. 9. Coupled oscillators. (a) and (d) Two neurons coupled by excitatory and inhibitory connections. (b) and (e) Measured output from integrate and fire neurons
coupled with excitatory and inhibitory synapses. (c) and (f) Measured output from Hopf neurons coupled with excitatory and inhibitory synapses. Absolute voltage
values not shown.

the dendritic tree of another neuron. Fig. 8(a) shows a picture
depicting this experimental setup, the results of which are
presented in Fig. 8(b). We can see that initially the postsy-
naptic neuron does not respond to the input spikes. However,
increasing the dendritic diffusion results in visible postsynaptic
potentials. Increasing the diffusion even more allows the post-
synaptic neuron to fire in synchrony with the presynaptic one.

VI. LARGER SYSTEMS

Spiking neurons coupled with synapses have been the object
of considerable study over several years. While there are the-
ories showing the existence of associative oscillatory memory
[11] in networks of coupled spiking neurons, a lot of work has
been devoted to looking at the simplest case of two coupled neu-
rons and their role in generating rhythms for locomotion control
[12]. The most popular circuit in this regard is the half-center os-
cillator where the neurons are coupled with inhibitory synapses.
Here, we look at both cases [i.e., when the connections are in-
hibitory or excitatory as shown in Fig. 9(a) and (d)]. Intuitively,
when the connections are excitatory, both neurons will try to fire
at the same time, leading to inphase spikes. On the other hand,
when the connection is inhibitory, the spiking of one neuron sup-
presses that of the other, giving rise to spikes out of phase. This
phenomenon and its relation to synaptic strength can be studied
better by transforming the differential equation into a phase

variable. We can transform the equations using the moving or-
thonormal coordinate frame theory [13] and keep the first-order
approximation of a perturbation analysis to obtain

(3)

where is the synaptic strength and are frequency devia-
tions from a nominal oscillator. For two oscillators, it can be
seen that for a given frequency deviation, there is a fixed point
only if is larger than a certain minimum value. In practice, no
two spiking neurons have same frequency of oscillation even at
the same biasing because of mismatch. So, in experiments, we
slowly increased the synaptic strength until the oscillators syn-
chronized. Fig. 9(b), (e), (c), and (f) shows the measured spiking
waveforms obtained from integrate and fire neurons and Hopf
neurons, respectively. We can see that in one case, the neurons
are spiking inphase while they are antiphase in the other. All of
these measurements were made with synapses of the first kind
discussed earlier. They can be performed with different synaptic
dynamics to analyze the effect of synaptic delay on synchro-
nization properties of type I and II neurons. Detailed dynamics
of escape and release phenomenon [14] can also be observed.

Fig. 10(a) shows the schematic for a central pattern gener-
ator for controlling bipedal locomotion [12] or locomotion in
worm-like robots [15]. It consists of a chain of spiking neurons
with inhibitory nearest neighbor connections. We implemented
this system on our chip with Hopf neurons connected with the
simple synapses described earlier. The resulting waveforms are
displayed in Fig. 10(b). The current consumption of the neuron
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Fig. 10. Central pattern generator. (a) A set of four neurons coupled to its
nearest neighbors with inhibitory connections. This models the central pattern
generator in many organisms [12], [15]. (b) Measured waveforms of the four
Hopf neurons showing different phases of oscillations. Absolute voltages are
not shown.

in this case is around 180 nA and the synapse dynamics block
consumes 30 nA of current leading to a total power dissipation
of around 0.74 W (excluding power for biasing circuits and
buffers to drive off-chip capacitances). The low power consump-
tion of the computational circuits and biological voltage scales
make this chip amenable for implants.

The second system we present is a spiking neuron with four
dendritic branches that act as a spike-sequence detector. Fig.
11(a) shows the schematic for this experiment. In this experi-
ment, the dendrites were chosen to be of equal length and the
neuron was biased so that input from any dendrite did not evoke
an action potential. Since the neuron is of the Hopf type, it has a
resonant frequency, the inverse of which we can call a resonant
time period. Input signals that arrive at the soma at time inter-
vals separated by the resonant time period and its multiples have
greater chances of evoking action potentials since their effects
add in phase.

Fig. 11(b) shows the pattern of inputs applied. Cases 1 to 3
shows three instances of input pulses with increasing time dif-
ference between them. We show the case when the three
pulses are on the same dendrite but the same experiment has
been performed with input pulses on different dendrites too.
Fig. 11(c) plots the resulting membrane potential for different
values of . For case 1, the small value of leads to aggrega-
tion of the EPSP signals, making the neuron fire an action po-
tential. This behavior is similar to a coincidence detector. When

is very large as in case 3, the EPSP signals are almost inde-
pendent of each other and do not result in a spike. However, at
an intermediate value of the time difference, we do observe mul-
tiple spikes because of the inphase addition of the EPSP (Case
2). The reason for this behavior is that the value of in this case
is close to the resonant time of the Hopf neuron as mentioned
earlier. The lengths of the dendrite segments can be modified
so that the neuron spikes only when the inputs on the different
branches are separated by specific time delays. This serves as
one example of possible dendritic computation.

Fig. 11. Coincidence detector. (a) Schematic of a neuron with four different
inputs incident on four dendritic branches. (b) This figure is indicative of the
timing relationships between the input pulses (voltages are shifted for better
viewing). � indicates the time when the first pulse was applied. (c) When the
time delay between inputs is small, we see the classical aggregation of EPSP
leading to a spike in case 1 while there is no spike in case 3 because of the large
time delay between input pulses. Case 2 shows multiple spikes since the Hopf
neuron is most excitable when the interpulse interval is close to the resonant
time of the neuron. Absolute voltage is not shown here.

VII. DISCUSSIONS

Having described several circuits and systems that can be im-
plemented on the chip in earlier sections, we now discuss a few
aspects relating to the computational efficiency, accuracy, and
scaling of this reconfigurable approach.

A. Computational Efficiency

The efficacy of the analog implementation can be appreci-
ated by considering the effective number of computations it is
performing. Let us consider the case of the central pattern gen-
erator presented in the last section. In this case, we can model
the whole system by a set of differential equations and compute
the number of multiply-accumulate (MAC) operations needed
to perform the same computation on a computer. We consider
an RK fourth-order integrator (neglecting possible numerical
problems because of multiple time scales) with a time step of
20 s (since the spiking activity is on a scale of milliseconds).
There are five function evaluations per integration step with
around 40 MAC needed for every function evaluation (cosh,
exp etc.). There are at least 12 state variables in this system
(two per neuron and one per synapse dynamics block), leading
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Fig. 12. Programming accuracy. Error in programming the FG elements over a
wide range of currents. The average error is around 1% for currents higher than
100 pA.

to a computational complexity of 120 MMAC/s. Power con-
sumption for this computation on a 16-b TI DSP is around 30
mW (excluding power dissipation for memory access) [16]. Our
analog implementation consumes 0.74 W, resulting in a per-
formance of 162 GOPS/mW. The area needed for this system
was 0.024 mm in addition to routing. However, using the sil-
icon area as a metric is misleading since, in this case, a lot of
the area is traded for achieving reconfigurability. Compared to
a digital signal processor (DSP), single-instruction multiple data
(SIMD) paradigm-based cellular nonlinear network (CNN) sys-
tems [16]–[19] report performances that are closer to this chip.
Though these systems do not replicate biological behavior at
the level of ion-channels such as our chip, their designs are nev-
ertheless based on abstractions of neural systems. The reported
performance for some of these chips is 1.56 GOPS/mW [18] and
0.08 GOPS/mW [16], significantly lesser than our chip. There
are, of course, other functionalities that these chips can do better
than ours. It should also be noted that the DSP performs 16-b
computations, while the analog one is less accurate. These in-
accuracies are described next.

B. Sources of Error

The most obvious source of error is finite resolution in set-
ting the circuit parameters and synaptic weights. This relates to
FG programming accuracy which, in our case, is limited by the
resolution of the adc for measurements. Fig. 12 plots measured
accuracy in programming currents of different magnitudes. The
resulting accuracy is around 1% for currents higher than 100 pA.
Our measurement approach creates a floating-point adc [20] that
combines this accuracy with the dynamic range of currents into
an effective resolution of around 9 b.

The next source of error stems from mimicking a biological
phenomenon by silicon circuits. Some of the approaches we pre-
sented are based on qualitative similarities between the silicon
circuit and its biological counterpart. For example, Fig. 6 de-
picts the mismatch between a synaptic EPSP and a biological
one is around 10%, corresponding to around 3.5 b. In general,
this error is difficult to analyze and depends on the desired com-
putation.

Finally, thermal noise presents a fundamental limit to the
computational accuracy. The low-current, low-capacitance de-
signs we presented save on power in exchange for thermal noise.
This is actually close to the computational paradigm employed
by biology and, hence, is not necessarily a problem.

C. Scaling

To expand these silicon systems to mimic actual biology, mul-
tiple chips need to be interconnected. The modular architecture
of our chip does allow tiling of several chips. In that case, how-
ever, all-to-all connectivity has to be sacrificed due to the limited
number of routing lines. This is also not unlike biology where
local interconnects are more dense than global connections. To
allow more flexibility in interchip connections, the next genera-
tion of these chips is being designed with address-event support
[21].

VIII. CONCLUSION

We presented a reconfigurable integrated circuit for accu-
rately describing neural dynamics and computations. There
have been several earlier implementations of silicon neural
networks with a dense synaptic interconnect matrix. But all of
them suffer from one or more of the following problems: fixed
connectivity of the synaptic matrix [22], inability to indepen-
dently control the neuron parameters since they are set globally
[23], [24], and excessively simple transfer-function-based
neuron models [25].

In the chip we present, both the topology of the networks as
well as the parameters of the individual blocks can be modified
using floating-gate transistors. Neuron models of complexity
varying from integrate and fire to Hodgkin–Huxley can be im-
plemented. Computational area efficiency is considerably im-
proved by implementing synaptic weight on the analog switch
matrix resulting in all-to-all connectivity of neurons. We demon-
strate dynamics of integrate and fire neurons, Hopf neurons of
the Hodgkin-Huxley type, inhibitory and excitatory synapses,
dendritic cables, and central pattern generators. This chip will
provide users with a platform to simulate different neural sys-
tems and use the same implementation to interface with live neu-
rons in a dynamic-clamp-like setup. The modularity of the ar-
chitecture also allows tiling chips to make even larger systems.
We plan to study active dendrites and their similarity with classi-
fiers [10], oscillatory associative memory, and detailed cortical
cell behavior in the future.
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