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A Programmable and Configurable
Mixed-Mode FPAA SoC
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Richard Wunderlich, Stephen Nease, and Shubha Ramakrishnan

Abstract— This paper presents a floating-gate (FG)-based,
field-programmable analog array (FPAA) system-on-chip (SoC)
that integrates analog and digital programmable and config-
urable blocks with a 16-bit open-source MSP430 microproces-
sor (µP) and resulting interface circuitry. We show the FPAA
SoC architecture, experimental results from a range of circuits
compiled into this architecture, and system measurements. A
compiled analog acoustic command-word classifier on the FPAA
SoC requires 23 µW to experimentally recognize the word dark in
a TIMIT database phrase. This paper jointly optimizes high para-
meter density (number of programmable elements/area/process
normalized), as well as high accessibility of the computations
due to its data flow handling; the SoC FPAA is 600 000× higher
density than other non-FG approaches.

Index Terms— FPAA, floating-gate circuits.

I. INTRODUCTION

THIS paper presents an integrated ultralow-power system-
on-chip (SoC) field-programmable analog array (FPAA)

IC enabling configurable and programmable analog and dig-
ital computation and interfacing. Fig. 1 shows this IC fully
integrates a microprocessor (μP, open-source MSP430 [1])
enabling both computing and control with rapid reconfigurable
analog–digital computation [2] with configurable fabric of
interdigitated analog and digital computing blocks [3] to
address a wide range of ultralow-power embedded system
computational needs. The integration of these different con-
cepts results in a jointly optimized FPAA performance, both
in terms of high parameter density (number of programmable
elements/area/normalized to process), as well as high accessi-
bility of each of the resulting computations due to its advanced
data flow handling. This IC was fabricated in a 350-nm CMOS
process.

This large-scale FPAA enables analog computational energy
efficiency [e.g. MMAC(/s)/W] 1000× lower than, and a die
area × 100 smaller than, digital solutions, enabling low-
power system computation, in the μW levels, empowering a
whole range of applications, particularly always-ON context-
aware processors. Computational efficiency, not including the
energy required for communication, is measured in equivalent
multiply and accumulate (MAC) operations per unit time per
unit power, and fundamental computing operations found in
analog and digital computation. For example, both custom [4]
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Fig. 1. RASP 3.0 integrates divergent concepts from previous multiple FPAA
designs [2], [3], [11] along with low-power digital computation, including a
16-bit microprocessor (μP), interface circuitry, and DACs + ADCs. The FPAA
SoC die photo measures 12 mm × 7 mm, fabricated in a 350-nm standard
CMOS process. The die photo identifies μP, SRAM memory, DACs, and
programming (DACs + ADC) infrastructure; the mixed array of the FPAA
fabric is composed of interdigitated analog (A) and digital (D) configurable
blocks on a single routing grid. DACs and programming infrastructure are
accessed through memory-mapped registers.

and configurable implementations [5] of vector-matrix mul-
tiplication (VMM) demonstrate 1–10-MMAC(/s)/μW power
ranges, while the digital MAC energy wall remains roughly at
10 MMAC(/s)/mW [6]. The saturation of computational digital
computation energy efficiency [6] influenced this SoC FPAA,
a representative of physical computing, and reducing energy
requirements for embedded system applications (acoustics,
vision, communication, and robotics) through 1000× energy
efficiency improvement [7], [8].

This paper focuses on the description of the SoC FPAA IC
and the resulting measurements of compiled circuits to show
the resulting functionality. In each case, the focus is not
necessarily the most optimized circuit design, which would
be complete papers unto themselves, but showing good perfor-
mance for a compiled IP block that can be routinely used. The
paper describes this FPAA IC architecture, basic analog and
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Fig. 2. RASP 3.0 functional block diagram illustrating the resulting computational blocks and resulting routing architecture. The infrastructure control
includes a μP developed from an open-source MSP 430 processor [1], as well as on-chip structures include the on-chip DACs, current-to-voltage conversion,
and voltage measurement, to program each FG device. The FG switches in the connection (C) blocks, the switch (S) blocks, and the local routing are a single
pFET FG transistor programmed to be a closed switch over the entire fabric signal swing of 0–2.5 V [9]. The CABs and the CLBs are similar to previous
approaches [3]. Eight, four input BLE lookup tables with a latch comprise the CLB blocks. Transconductance amplifiers, transistors, capacitors, switches, and
other elements comprise the CAB blocks.

digital computational approaches, capacitance, timing, rapid
reconfigurability of the routing fabric, implementation of data
converters in the mixed-mode fabric, and utilizing the routing
fabric as part of the computation.

This paper demonstrates (Section V) the first embed-
ded classifier structure (command-word recognition) compiled
onto a single FPAA device, going from sensor input (audio) to
classified word, experimentally demonstrated in analog hard-
ware. This demonstration is a small fraction of the overall IC.
The SoC FPAA compiled system system power (23 μW) is
consistent with the ×1000 improvement factor (comparison of
MACs) for physical computation over digital approaches, with
future opportunities for improved performance in the same IC.

Section VI summarizes the SoC FPAA design, as well as
presents the comparison showing the SoC FPAA as the most
sophisticated FPAA device built to date. The presented SoC
FPAA device maximizes both parameter area normalized to
the process node, nearly a factor of 500 improvement in area
efficiency as typical of other analog FPAA devices, as well

as utilization and accessibility of the resulting computational
resources for the data flow. The closest high utilization struc-
ture (i.e., PSoC5 [10]) has nearly a 600 000 factor less in
parameter density than this SoC FPAA device.

II. ARCHITECTURE DESCRIPTION OF THE FPAA SoC IC

Fig. 2 shows the block diagram for the RASP 3.0 FPAA
IC based on a Manhattan FPAA architecture, including the
array of computation blocks and routing, composed of con-
nection (C) and switch (S) blocks. This configurable fabric
effectively integrates analog (A) and digital (D) components
in a hardware platform easily mapped toward compiler tools.
The switchable analog and digital devices are a combination of
the components in the computational analog blocks (CABs),
in the computational logic blocks (CLBs), and in the devices
in the routing architectures that are programmed to nonbinary
levels. The architecture is based on floating-gate (FG) device,
circuit, and system techniques; we present the particular
FG programming approach elsewhere [12].
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Fig. 3. SoC FPAA IC enables integration of analog and digital blocks in the routing fabric, as well as standard digital computation (i.e., μP) and infrastructure.
Experimental measurements of heterogeneous programmable components from this FPAA IC are shown. Analog block: circuit diagram, compilation, and
experimental measurement of a representative single signal processing chain—second-order bandpass filter (BPF), amplitude detector, and smoothing filter.
Digital block: circuit diagram, compilation, and experimental measurement of a representative digital function using the lookup tables in a CLB; it illustrates
the basic capability in a single BLE element and register. Digital computation/infrastructure: block diagram, compilation, and experimental measurement
demonstrating a complete loop using a CAB device, the μP, a signal using (7 bit) DACs, the ramp ADC used in programming (14 bit), and a memory-mapped
GP I/O. Instrumenting and measuring analog and digital blocks requires similar loops, employing all these capabilities as part of the FPAA computation.

The interaction of analog computation, digital field-
programmable gate array (FPGA)-like components, and
a μP infrastructure coming together creates a significant
codesign space between these three domains (analog, digital,
and μP). The analog computation combines significant
innovations, enabling integration of previous heterogeneous
concepts [2], [3], [11], from our earlier FPAA designs in ways
not allowed or envisioned by the previous architectures. What
is unique is the addition of digital low-power programmable
and configurable FPGA fabric, first attempted in [3] (and
fully integrated in this paper), to fully streamline the routing
of analog and digital signals through a continuous fabric.
Section III further describes our routing fabric and charac-
terization. Furthermore, integrating these capabilities with an
on-chip μP component and a range of digital communication
ports completes the picture that this FPAA is an SoC comput-
ing device, not just an analog signal-conditioning device.

This FPAA further employs an open-source MSP 430
microprocessor (μP) with on-chip structures for 7-bit signal
DACs, a ramp analog-to-digital converter (ADC), memory-
mapped general purpose (GP) I/O, and related components.
The processor is able to send information to and from the array
through memory-mapped I/O special purpose peripherals.
These peripherals include 16 memory-mapped 7-bit signal
DACs for the architecture, allowing measurements to be
performed on chip, with the data taken by and stored in the
processor, as well as additional DACs (and one 14-bit ramp
ADC) for the FG programming. The processor supplements
the processing power of the digital portion of the system
and increases overall implementation flexibility; portions of a

problem can be mapped to reconfigurable analog, reconfig-
urable digital, or a GP digital processor.

Fig. 3 shows that our SoC FPAA approach enables inte-
grated analog interfacing and computation with digital blocks,
both FPGA and μP blocks. The analog components show
the compilation of an auditory processing chain for subband
signal detection. Where possible, one wants to compile key
blocks into a single CAB to minimize parasitic capacitances
and minimize global routing requirements.

III. SoC FPAA ROUTING FABRIC COMPUTATION

But, our approach further moves away from the classi-
cal FPGA approach in a radical perspective, because the
FG devices are programmed to analog levels; our routing
fabric is no longer dead weight, as we hypothesized previ-
ously [13], and fully implemented in our SoC FPAA.

Our routing fabric is capable of partial rapid reconfigura-
bility, while using mostly FG devices, by adding an addi-
tional set of switch configuration into the fabric. This rapid
reconfigurability comes by adding a row of T-gate switches
set by a shift register into the switch fabric; the I/O lines
for the added T-gate row and the shift register signals are
available through the routing fabric. These volatile switches
are found directly at the interface between the C block and
the local interconnect; depending on desired higher level of
abstraction, these switches may be considered as part of either
block. One simple application of this technique is enabling a
scan-chain for either digital or analog circuit debugging.

Fig. 4 shows an added routing structure component that
enables rapid reconfigurability in the FPAA fabric. These
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Fig. 4. FPAA SoC includes a set of T-gate-based switch elements in the routing fabric to empower rapid reconfigurability. These switches are accessed
through a shift register that enables rapid change of configuration on a single clock cycle; different lines of the resulting C block and/or local routing store
the different configurations. The resulting switches, resulting shift register, and switches connecting the block to the routing fabric are represented as a single
volatile routing block. Utilizing routing elements programmed as precise current source elements illustrates both using them as an input to the shift register
to scan through the individual signals, and using them as an input to the shift register to accumulate the resulting outputs through the individual signals.
It is straightforward to imagine a range of arbitrary waveform generation based on patterns stored in routing fabric. This measurement gives a metric of
programming accuracy in an operational mode. The accuracy for these switches was within 0.2%–0.76% for programmed subthreshold currents for uncorrected
FG values; the resulting accuracy can be improved after such an initial measurement. Furthermore, some switches in the routing fabric use only a single pFET
transistor (direct switches), while some use two pFET transistors (indirect switches), where one device is used for computation and one device is used for
programming. The indirect switches show characteristically higher mismatch for uncorrected FG programming due to the threshold voltage mismatch of the
two pFET devices. GND is signal GND; we bias the gate terminal for the FG devices at 0.6 V.

techniques minimize the amount of intermediate data storage
required for many computations, enabling data flow techniques
for analog processing. Intermediate data storage often requires
the largest power and complexity system cost. The rapid fabric
reconfigurability can change between programmed aspects in
a single clock cycle or asynchronous request–acknowledge
loop. SoC FPAA shift register control signals are directed
by locally routed signals in the fabric, thus determining the
controlling clock (CK) and data signals. Data stored in the
FG fabric would be as optimal as data stored in an off-chip
nonvolatile memory without the complexity of loading the
resulting computation. Fig. 4 shows using the routing fabric
elements, this time as a bank of parallel current sources, as
well as a cascading transistor. One easily sees an arbitrary
waveform generator that could be compiled into the fabric; the
circuit also becomes the nonvolatile memory for the function,
eliminating outside memory and resulting complexity and
energy requirements. The measurements show the accuracy
of the FG transistor programming (FG voltage or resulting
channel current). The measured accuracy is tighter than 1%
for subthreshold currents (<250-μV).

Fig. 4 discusses the programming accuracy for the direct
and indirect switches, where both are available within our
routing fabric, sometimes in the same C block or local

interconnect block. The difference between directly pro-
grammed and indirectly programmed FG devices is whether
or not current measurements are made on the circuit transistor
or the injection transistor during the programming algorithm.
In the direct case, both the circuit and injection transistors are
the same transistor. In the indirect case, they are two separate
transistors. The indirect FG device leads to a more efficient
switch (fewer parasitics), but one must account for the
VT 0 mismatch between the two pFET devices. The direct
FG device uses the same pFET to program, measure, and com-
pute, eliminating any VT 0 mismatch, but requiring additional
transmission gates in the signal path for programming.

Computing VMM solidifies the radical use of routing fabric
as a computational element. Fig. 5 shows the implementation
of a VMM in the routing fabric of our FPAA structure.
We implement this functionality either in the C block or in
the local CAB/CLB routing fabric, being that both structures
are naturally crossbar arrays. Longer discussion on VMMs
in early FPAA routing fabric is described elsewhere [5]. The
VMM computation occurs through the memory device, using
nonvolatile voltage storage, directly in routing fabric; other
approaches, including traditional FPGA approaches, typically
utilize memory separated from required computations. Inte-
grated VMM and rapid reconfigurability enables switching
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Fig. 5. VMM as a computational block instantiated in C block routing fabric. The C block forms a natural crossbar network typical for a VMM computation.
The basic behavior is illustrated by the data for a single VMM element in routing fabric; two pFET transistors are required for source-input four-quadrant
multiplication. We independently measure the resulting transresistance as 15 M�. Furthermore, we show an application of VMM integrated with the volatile
switch register block to enable rapid (single clock) switching between weight vectors.

between metrics in the FPAA architecture. This feature permits
data flow architectures to do a particular computation when
data arrives, reducing the need for short-term storage.

IV. REPRESENTATIVE SOC FPAA PROCESSING

This section considers the behavior for some basic
mixed-signal processing circuits compiled and experimentally
measured in this system, illustrating basic analog–digital
codesign approaches. The first example is compiling two basic
ADC devices in the routing fabric. Compilation refers to the
user starting with a high-level description of the IC and ending
with an experimentally measured IC utilized in the same
places as a commercial IC. Fig. 6 shows circuit compilation

at the analog–digital boundary through compilation of
multiple forms of ADCs as an example of integration of the
capabilities. Being able to both compile an ADC and the
particular needed ADC allows for optimal power computation
and heavy IP block reuse, blurring system lines between
analog and digital for more effective approaches of classifying
raw analog data. The design of the routing fabric was not a
block of analog components and a block of digital components
with hard-build data converters in between, but rather a mixed
fabric explicitly allowing blurred lines as the application
requires.

The second example is a basic FPAA classifier using a
single-layer VMM + winner-take-all (WTA) as a non-ADC
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Fig. 6. Compiled and measured ramp ADCs on the SoC FPAA in the
analog and digital enabled routing fabric. Ramp ADC: circuit diagram, timing
diagram, and experimentally measured data for a compiled ramp ADC. The
circuit requires one CAB, three BLEs, and four CLBs (24 registers for 12-bit
counter and shift register). When the ramp crosses the input value, the open-
loop OTA output switches. The first plot shows the OTA output voltage as a
function of time for multiple different input voltages (1, 1.3, 1.6, and 1.7 V),
and the second plot shows the measured Vramp voltage (through a buffer).
The voltage switches nearly when the ramp equals the input voltage but with
a 45-mV offset. We present experimental data showing the comparison points
for an approximately linear ramp input voltage. The largest systematic error
is the curvature in the input ramp, generated by two FG routing switches
charging up a single capacitor. The overlap capacitance to the FG reduces the
effective early voltage of an FG device.

conversion between analog and digital signals. Fig. 7 shows
a one-layer classifier approach based on the combination of
a VMM and a k-winner WTA circuit [14] that elegantly
compiles into routing fabric [15]. The one-layer architec-
ture can perform standard one-layer hyperplane classifiers,
while also performing tasks considered impossible for typical
one-layer neural network architectures (i.e., XOR). Fig. 7
shows experimental measurements for both of these cases:
1) an XOR function and 2) a linear approximator function.
The result experimentally verifies the universal approximator
behavior of this one-layer VMM + WTA architecture compiled
on this RASP 3.0 FPAA structure.

V. REPRESENTATIVE SOC FPAA SYSTEM APPLICATION

We next show a complete analog signal processing appli-
cation compiled in an SoC FPAA; this system is the first
compiled sequence of signal processing algorithms shown on
any FPAA/configurable device. The signal processing circuits
compiled and measured on this SoC FPAA show measured

Fig. 7. Instantiated FPAA classifier block based on a combination of a
VMM with a WTA block. (a) Circuit diagram for an N-input, M-output
VMM + WTA classifier block, including typical circuits compiled for the
individual VMM and individual WTA blocks. The WTA circuit is operated
as a single winner circuit or as a k-WTA circuit, where up to k winners
are possible if their metric is above a basic threshold as originally described
in [14]. (b) Experimental measurements for a compiled three-input, three-
output one-layer VMM + WTA classifier verifying the XOR functionality
programmed into this classifier.

data for performing command-word recognition. We expect
the SoC FPAA could be used for a variety of potential
applications for sound/acoustics/speech, image processing and
vision sensors, robotics, and wireless communication.

We show an example application of auditory/speech classi-
fication looking at detecting a command word in a sentence.
Fig. 8 shows the first application example of an auditory clas-
sifier structure for a limited phrase, such as a command word,
that can be classified through features in the averaged signal
spectrum. Continuous-time spectrum decomposition used a
bank of constant Q filters at the first processing stage, using a
bank of amplitude detection and filtering operations, and then a
VMM + WTA classifier block to classify each of the resulting
spectrum into simple symbols. In a more complex speech
recognition system, one might have the spectrum correspond
to phonemes or part of phonemes and build ups the temporal
representations using the temporal classification (i.e., HMM
classification) to word spot the resulting phonemes, syllables,
and words. A simple command-word application, required
only to distinguish between a few simple symbols, can be
directly computed as a state machine on the MSP430 proces-
sor; a next level of computation, say a simple Viterbi decoder,
could be directly implemented on the MSP430 processor as
well.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GEORGE et al.: PROGRAMMABLE AND CONFIGURABLE MIXED-MODE FPAA SoC 7

Fig. 8. Analog auditory word classification application compiled into the RASP 3.0, showing the experimental waveforms from the IC. (a) Block diagram
for the classifier algorithm, in a similar representation used for our tool framework. (b) BPF center frequencies that are scaled evenly on a log-frequency scale
between 100 Hz and 4 kHz with a nearly constant Q (Q ≈ 2). The programming approach only accounted for part of the threshold voltage mismatch variations
(indirect FG devices) and did not consider effects of capacitor mismatch; additional techniques can be used for the existing IC for tighter measurements.
The peak gain was the largest variation between the filters; Q was roughly 2 with some variation. The center frequency for each of the filters, as shown,
was monotonic and fairly close to an ideal exponential spacing. (c) BPF outputs and amplitude detection for a single phrase from the TIMIT database.
(d) Classification of word and components for a TIMIT waveform, using a k-WTA with three outputs to detect the word dark in the resulting phrase.

Fig. 9 shows the power required for the compiled command-
word classifier computation by a functional block, as well
as the entire system, which requires 23 μW for the current
implementation. The implementation is not optimal, particu-
larly in the LPF and classifier blocks, but shows the functional
capability of the system at a very low (23 μW) power level;
the LPF did not filter at a low enough rate, resulting in 5-kHz
bandwidth signals into the VMM, while the VMM could have
been operated at lower frequencies. Optimal biasing for these
blocks could have resulted in a factor of 100 in the overall
power budget, reducing the power by a factor of 3. We used
buffers to characterize the resulting output signals off-chip;
routing the signals into the digital μP would nearly eliminate
the need for the buffer power. This operation could be
optimized for lower power, which is the focus of another
discussion (and beyond the scope of this paper). When pro-
gramming the resulting system, we only partially accounted for

the threshold voltage mismatch due to indirect programming
mechanisms and did not program around capacitance varia-
tions. A closer look at Fig. 8(b) shows the center frequency
for each of the filters is monotonic and fairly close to an
ideal exponential spacing, and the Q is roughly 2 with some
variations. The peak gain shows the largest variations due to
capacitance (C2, in Fig. 3) mismatches, where this capacitance
is the small parasitic capacitance between the OTA termi-
nals resulting in more device-to-device variation. The gain
variation can be eliminated by modifying the weights of the
VMM block. This level of programming is shown sufficient for
this application, while further programming accuracy possible
in the system might be required in further applications.

This classifier system, compiled on this FPAA, is consistent
with the 1000× improvement factor in computation (mea-
sured in equivalent multiplication and accumulate, or MAC,
operations), is similar to systems developed for VMMs (cus-
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Fig. 9. SoC FPAA values. (a) Measured power numbers for compiled
command-word classifier function. (b) Table of important SoC FPAA IC
parameters. (c) Summary of application complexity of analog and digital
elements. The chip has 98 CLBs and 98 CABs.

tom and compiled) [5], as well as other custom classifier
networks [15]–[17], [19]. The VMM + WTA classifier, being
a universal approximator [15], can generate the same clas-
sification functions as other radial basis function networks
or Guassian mixture model networks [16], [17], as well as
related algorithms [18]. This case shows a full system for an
embedded classifier structure, going from sensor input (audio)
to classified word, and further, is experimentally demonstrated
in configurable analog hardware utilizing high-level design
tools. The focus in this paper is to demonstrate the operation of
this classifier structure; further papers will describe the optimal
design, classification accuracy metrics, robust behavior over
data sets, and power consumption optimization.

VI. SUMMARY DISCUSSION AND COMPARISONS

We presented an IC that integrates divergent concepts from
multiple previous FPAA designs along with low-power digital
computation and interface circuitry (i.e., DACs and ADCs).
We showed through discussion and measured data that this
unified structure enables a wide range of SoC computing
options that can be optimized for multiple parameters, showing
the most sophisticated FPAA capability built to date; we hope
that the success of this IC inspires additional devices built in
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Fig. 10. Using data from generations of FPAA devices, various FPAA devices
are plotted as the percentage of control path implemented versus analog
parameter density. Recent FPAA ICs, such as the dynamically reconfigurable
FPAA or FPAADD device, begin to effectively maximize both parameters.
Analog parameter density is the number of analog parameters per mm2, nor-
malized to a 1-μm process (or analog parameter density). Analog parameters
directly set the complexity possible by the particular FPAA device.

the near future. Fig. 9 shows most of the circuits presented,
compiled, and experimentally measured in this paper, as well
as a summary of the resources used in each case. Fig. 9 shows
the table of parameters for the resulting SoC FPAA. Largest
signal processing functions shown to date [2], [3], [19] take a
small percentage of the available IC.

Fig. 10 plots various FPAA devices showing the percentage
of control path implemented versus analog parameter density.
Fig. 10 shows two key metrics for FPAA approaches based
on a collection of published FPAA devices [20]–[23], [25],
[26], [28]. We define analog parameter density as the number
of programmable parameters per mm2, normalized to a 1-μm
CMOS node. Analog parameter density determines critically
the IC computation complexity, particularly when using rout-
ing as computation. Fig. 10 shows FG-based FPAAs enable
≈1000 parameter density improvement, providing increased
computation on a single device; FG alternatives require a DAC
at every node or dynamic techniques.

Table I shows another comparison among FPAA devices in
table form, as an updated table following along the comparison
made for one of Georgia Tech’s first GP FPAA device [11].
Previous papers have more detailed discussion on early FPAA
work [11], [26]. Table I shows the impact of the FG-based
FPAA devices, compared against other FPAAs, such as the
most advanced non-FG FPAA [19]. The highest frequency
response devices in [30] and [31] operate at expected frequen-
cies given the IC process, but otherwise, are extremely simple
in structure and capability. The maximum analog frequency
response is directly related to process technology for devices
from 1μm CMOS to 40-nm CMOS.

Designing SoC FPAA devices requires maximizing both
metrics, so that we have a large number of programmable
parameters and resulting computation, as well as having the
infrastructure to get data communicated to these processing
devices. Our second metric is to describe the amount of
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TABLE I

FPAA COMPARISON TABLE CONSISTENT WITH [11] FOR SIGNIFICANT AND UPDATED FPAA DEVICES

control flow (mostly digital) relative to the amount of analog
and digital data flow capability. Practically, the ability to get
data to all of the processors can be a primary limitation
for a series of application spaces, such as image processing,
where data does not always arrive in the desired order for the
computation. Recent RASP-based FPAA designs [2], [3] have
started to focus on improving this second metric while not
losing the analog parameter density efficiency. The presented
SoC FPAA device maximizes both metrics, being nearly a
factor of 500 improvement in area efficiency as typical of other
analog FPAA devices, but with high utilization of the resulting
computational resources; the closest high utilization structure
(i.e., like PSoC5) is nearly a 600 000 factor improvement.
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