
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 1, JANUARY 2012 1

A MITE-Based Translinear FPAA
Craig R. Schlottmann, Student Member, IEEE, David Abramson, and Paul E. Hasler, Senior Member, IEEE

Abstract—While the development of reconfigurable analog
platforms is a blossoming field, the tradeoff between usability and
flexibility continues to be a major barrier. Field Programmable
Analog Arrays (FPAAs) built with translinear elements offer a
promising solution to this problem. These FPAAs can be built
to use previously developed synthesis procedures for translinear
circuits. Furthermore, large-scale translinear FPAAs can be built
using floating-gate transistors as both the computational elements
and the reconfigurable interconnect network. An FPAA built
using Multiple Input Translinear Elements (MITEs) has been
designed, fabricated in 0.35 m CMOS, and tested. These devices
have been programmed to implement various circuits including
multipliers, squaring circuits, RMS-to-DC converters, and filters.
In addition, synthesis, place-and-route, and programming tools
have been created in order to implement a reconfigurable system
where the circuits implemented are described only by equations.
The continued development of translinear FPAAs will lead to a
reconfigurable analog system that allows for a large portion of the
design to be abstracted away from the user.

Index Terms—FPAA, field-programmable analog array, pro-
grammable analog, MITE, translinear.

I. ANALOG RECONFIGURABILITY AND DESIGN ABSTRACTION

O NE of the biggest breakthroughs in the field of digital
integrated circuits has been the field-programmable gate

array (FPGA). This is not only because they enable rapid proto-
typing, but also because they open up the use of digital circuits to
those without expertise in the field. While field-programmable
analog arrays (FPAAs) are attempting to fill a similar void in
the analog field, they have not been developed to a point where
they are being adopted by designers. FPAAs are being devel-
oped at a time when analog signal processing is on the rise due
to the power savings it offers over traditional digital solutions in
certain situations [1]. In addition to offering significant power
savings, a reconfigurable analog platform would allow the user
to prototype designs, cutting down on the fabrication cycle and
facilitating a faster time to market.

In this paper, we present the MITE FPAA (MFPAA), which
utilizes Multiple Input Translinear Elements (MITEs) as the
core computational unit. We have developed a novel MITE unit
which takes advantage of typically fixed nodes while still fit-
ting into a reconfigurable framework. By carefully designing
this hardware structure, we were able to fully utilize existing

Manuscript received March 24, 2010; revised July 04, 2010, September 27,
2010; accepted September 30, 2010. Date of publication November 29, 2010;
date of current version December 14, 2011.

C. Schlottmann and P. Hasler are with the School of Electrical and Com-
puter Engineering, Georgia Institute of Technology, Atlanta, GA 30332-250
USA (e-mail: cschlott@gatech.edu phasler@ece.gatech.edu).

D. Abramson is with Texas Instruments Inc, Manchester, NH 03101-3105
USA (e-mail:abramson@ece.gatech.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2010.2089705

synthesis algorithms for large-scale MITE systems. This novel
architecture allows for a synthesis that is elegant in its simplicity
and lets us fully abstract the circuit design from the user. Thus,
by using this full-system approach to FPAA design, we have
created a complete tool chain: the abstracted software design
environment, the place-and-route and programming tools, and
the analog hardware. This entire platform will open up MITEs
to new audiences as a design tool for implementing low-power
signal-processing systems.

A. Questions of Analog Reconfigurability

While FPGAs have been developed for commercial use,
FPAAs have not had the same success. The chief reasons for
this is the lack of an universal block from which analog circuits
could be systematically built, as gates are to digital circuits [2].
This can be seen by comparing FPAAs currently on the market
or under development. Anadigm’s FPAA and their software
package, Anadigm Designer, use switched-capacitor circuits
to realize the users desired circuit [3]. On the other end of the
granularity spectrum are Field Programmable Transistor Arrays
(FPTAs), which use transistors that must be connected together
with switches to realize the user’s circuit [4]. In addition, there
are FPAAs that are built using only filters [5] and
transconductors [6]. Recently, Reconfigurable Analog Signal
Processor (RASP) has been trying to solve this problem by
using a mixture of analog blocks to realize circuits [7].

This inherent tradeoff between flexibility and the appropriate
level of abstraction is limiting the usefulness of FPAAs. Most of
the current FPAAs tend to one of the extremes in this tradeoff.
For example, FPTAs are highly flexible but offer almost no real
level of abstraction, whereas the based FPAAs that have
high abstraction levels, filter designs, but do not have any true
flexibility.

This tradeoff is also seen in the tools used to interface with
the reconfigurable platform. For example, platforms without an
appropriate level of abstraction struggle to incorporate any type
of synthesis into their tools, while platforms with high levels of
abstraction and limited flexibility can include synthesis in their
tool packages but for very narrow scopes. This lack of synthesis
tools is painfully clear in the current state of FPAA systems.
While there have been a couple design environments reported,
such as the RASP Simulink tool [8] and Anadigm Designer,
which allow you to graphically configure the FPAA’s compo-
nents, the majority of FPAA systems report no such tools. Thus,
in most cases, the user is forced to manually route their system
with the use of fuse charts.

The use of translinear circuits as the universal analog block to
reduce the tradeoff between flexibility and abstraction level has
been gaining a lot of recent attention [9]–[11]. Using translinear
circuits for which known network synthesis procedures exist
[12], [13], it is possible to build a system in which the only input
necessary is the set of equations that describe the system to be

1063-8210/$26.00 © 2010 IEEE

2 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 1, JANUARY 2012

Fig. 1. Design flow using a translinear FPAA. Using translinear circuits allows
the user to enter a set of equations which is then netlisted using existing synthesis
procedures. The circuit is then place-and-routed, and the system is programmed
onto the FPAA.

implemented. The translinear FPAA will be able to implement
a wide range of circuits, including all linear static equations and
most differential equations, while requiring the user to perform
no actual analog design. This idea is illustrated by the translinear
FPAA design flow, shown in Fig. 1. Unlike the traditional FPAA
design flow, there are no design or simulation steps required to
create the working system. This will allow users with a back-
ground in math, controls, physics, or many other fields to easily
interact with the FPAA.

II. MULTIPLE INPUT TRANSLINEAR ELEMENTS

Ideal translinear elements have infinite input impedance and
an exponential voltage to current relationship independent of
the current level at which they are operating. In addition, any
translinear element can be made to have multiple inputs by
simply applying resistive or capacitive division at the voltage
input. MITEs can thus be built using either subthreshold MOS-
FETs or BJTs, each of which is stronger in one of the two
above specifications [12]. In order to allow for the practical
implementation of our FPAAs in a simple digital process,
we have chosen to use subthreshold pFETs. This pFET has a
current that is exponentially related to its gate voltage given by

(1)

where is a pre-exponential constant term, is the capacitive
division between the oxide capacitance and the depletion ca-
pacitance, and is the thermal voltage, . Note that all
voltages are referenced to the bulk, which is the well voltage for
the pFET. Furthermore, as long as the device is in saturation,

mV, the second exponential term can be neglected.
Fig. 2(a) shows the subthreshold pFET realization of a MITE,

with capacitive division is used for the introduction of multiple
inputs. The current-voltage relationship for this element is given
by

(2)

Fig. 2. Subthreshold pFET realization of a MITE. (a) Components used to re-
alize a MITE in a standard CMOS process. (b) Symbol used to represent a MITE.

where , the dimensionless weight applied to an input, is given
by where is the total capacitance at the gate
of the pFET. Fig. 2(b) shows the symbol that will be used for
this realization of a MITE. Note that while the subthreshold
MOSFET does have nearly infinite input impedance, the range
in which the relationship between current and voltage is expo-
nential is limited. However, by making the ratio of the
MITEs larger, this range can be increased.

To precisely set the charge on the floating node of the
floating-gate pFET, two methods of programming are used:
Fowler-Nordheim tunneling and hot-election injection. This
method of programming is vastly superior to simply removing
the charge with UV radiation, because the charge can be
precisely set, thus removing any offset between devices. Histor-
ically, gain errors induced by charge mismatch between devices
have had a crippling affect on large-scale MITE systems [14]. In
order for the MITE to be compatible with the FPAA program-
ming core, we have developed a specialized MITE structure
as described in [15]. Of particular importance, the use of this
on-chip programming core comes at no additional overhead as
it is already built in to program the floating-gate switches [16].

A. Building Blocks of MITE Systems

In order to build complex systems using MITEs, it is nec-
essary to explore what higher level components are commonly
used. Translinear loops and log-domain filters will be empha-
sized because they are commonly used as core elements in most
synthesis procedures.

1) Translinear Loops: Translinear loops are well docu-
mented building blocks of almost every translinear system
[12], [17]. In a reconfigurable system, fixed loops are used
to reduce the amount of reconfigurability needed. For our
reconfigurable system we will use the translinear loop shown
in Fig. 3(a), which can be analyzed by simply solving for each
MITE’s diode connected voltage. For our analysis, we can
assume that the floating gates have an equal amount of charge
on them and that both of the MITE’s input capacitors are equal

. Under these assumptions (with),
the equations are

(3)

SCHLOTTMANN et al.: A MITE-BASED TRANSLINEAR FPAA 3

Fig. 3. MITE implementation of a 2nd-order translinear loop. (a) Schematic of
a 2nd-order translinear loop. (b) Simulation results of the translinear loop. The
multiplication coefficients were chosen to be , and
10.

(4)

Substituting (3) into (4) gives

(5)

which can also be written as

(6)

This circuit is most often used as a multiplier with

(7)

Simulation results of the translinear loop are shown in Fig. 3(b).
Data was taken as was swept and the coefficient was
held constant. For higher coefficients, the trace is not completely
straight because the MITEs leave the subthreshold region due
to the higher current levels. The dynamic range (DR) for such a
system follows the discussion given in [18].

2) Filters: Log-domain filters were included in our system as
higher level blocks because they are a building block of almost
every dynamic system and are commonly utilized in synthesis
procedures. The synthesis of the circuit, found in [12], is similar
to the synthesis of the loop, but first the constraint equations are
needed. The differential equation for a first-order low-pass filter
is

Fig. 4. MITE implementation of a 1st-order low-pass log-domain filter. The
bias current connected to the capacitor is used to set the corner frequency of

the filter. The second bias current is set to in order to maintain unity gain.

(8)

where is the input current, is the output current, and is
the time constant of the filter. The chain rule can be applied to
the derivative of the current giving

(9)

where is the log compressed voltage associated with .
Taking the derivative of the current through the 2-input MITE
with respect to a single controlling voltage results in

(10)

where is the weight of the controlling voltage . Noting that
is a capacitive current and can

be written as a reciprocal of a bias current we can arrange
(10) as

(11)

This equation is implemented by the circuit in Fig. 4, where the
right hand side is the same as the loop derived in (7), and the left
hand side is simply the KCL of . In addition, a gain term can
be added to the transfer function by multiplying the second ,
the bias current for the MITE without the capacitor on its drain,
by the coefficient desired.

III. RECONFIGURABLE ARCHITECTURE

The MFPAA utilizes the base architecture developed for the
general RASP 2.8 line of FPAAs [19]. This results in a system
which is a vast advancement over the Reconfigurable Analog
Array of MITEs [9] by using a more computationally efficient
MITE element, incorporating a more complex routing scheme in
order to reduce the parasitic capacitance of the switch matrixes,
and utilizing on-chip programming [16].

A. System Architecture

The architecture of the MFPAA is shown in Fig. 5. The FPAA
is laid out with 18 CABs in a 6 3 array, with 17 being MITE
CABS and one being the I/O CAB. The RASP infrastructure in-
corporates a cross-bar switch matrix for connecting the elements

4 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 1, JANUARY 2012

Fig. 5. System architecture of the improved MITE FPAA. The FPAA consists
of 17 MITE CABs and a single IO CAB. The vertical routing between CABs
is organized into local, nearest-neighbor vertical (NNV), and global. The hori-
zontal routing is only global.

Fig. 6. Layout of the MFPAA. The FPAA was fabricated in a 0.35 m standard
CMOS process on a 3 mm 3 mm die.

to one another. The connection between the horizontal and ver-
tical lines is controlled by a single floating-gate switch, which
allows it to store its own value without a separate memory.

Within each CAB, the vertical routing is organized into 10
global, 20 nearest neighbor (10 up, 10 down) and 10 local lines.
The shorter lines are used whenever possible to reduce parasitic
line capacitance. Each CAB also has 10 global horizontal lines.
At the lower end of the IC is the on-chip programming structure,
which selects and programs all necessary floating-gate switches
and MITEs. The layout of the MFPAA is shown in Fig. 6, which
was fabricated in 0.35 m standard CMOS with a of 2.4 V.

B. The MITE CAB

The most significant advancements in the architecture of the
MFPAA are within the MITE CAB. In order to improve the den-
sity of computation elements to switch elements, single MITEs
must be replaced with computational blocks with less reconfig-
urability. In order to avoid losing flexibility, the new computa-
tion element, shown in Fig. 7, was chosen by trying to max-
imize the number of equations the element could implement
while minimizing the reconfigurability needed. This structure

Fig. 7. Basic MITE computation element of the improved MITE FPAA. The
computation element consists of 5 input MITEs in a translinear loop configura-
tion and 1 output MITE. The gates of the output MITE are sent into the switch
matrix where they are connected to any of the input MITE gate voltages.

is similar to the one analyzed in Section II.A.1, with taken
from . Two of these elements, called MITE Computational
Elements (MCEs), are contained in each CAB.

The CAB also includes a first-order log-domain filter,
shown in Fig. 14(a). This is the same structure discussed in
Section II.A.2, with taken from . Again, this was done
to increase the density of the computational elements without
losing too much reconfigurability. This also lends itself to
implementing previously developed synthesis procedures on
the MFPAA, as dynamic functions can be implemented by
combining static functions with first-order filters [13]. Both the
MCE and filter were drawn with to
increase the subthreshold range.

In addition to the two MCEs and the filter, the CAB includes
six bias current generators, six nFET current mirrors, and a cas-
code-bias generator. The bias currents are programmed with
floating-gate current sources and are used for implementing co-
efficients and scaling currents in the input equations. The cur-
rent mirrors are used for adding and subtracting as well as signal
routing. The cascode-bias generator, based on Brad Minch’s de-
sign [20], creates all of the cascode biases needed.

C. The I/O CAB

The input/output (I/O) CAB is the CAB that interfaces the
MITE systems to the outside world. This CAB contains input
voltage-to-current (VI) converters, output drivers, and broad-
cast drivers for inputs. The chip was designed with banks of
10 of each of these components. The VI converter is neces-
sary because MITEs are mainly current-mode elements, but it
is much easier to generate voltage-mode signals off chip, via
DACs or function generators. The output driver is a current
mirror with a gain factor of 10 to help off-chip current meters
read the subthreshold MITE currents. In this system, we chose
not to incorporate a IV-ADC because it was easy enough for us
to read currents with off-the-shelf instruments. We will pursue
adding this capability to future systems to allow interfacing with
a programmable processor. The broadcast driver is equivalent to
half of a current mirror to log-compress the current into a gate
voltage by a diode connected nFET, which can then be broad-
cast to many input nFET devices.

The VI converter on the MFPAA was designed for both accu-
racy and speed considerations. The VI must be able to convert
currents on the order of nanoamps without sacrificing the speed
of the entire system. This requires an extremely low input re-
sistance to compensate for the large capacitance of the bonding

SCHLOTTMANN et al.: A MITE-BASED TRANSLINEAR FPAA 5

Fig. 8. VI converter used in the improved MITE FPAA. The amplifier on the
input side provides an extremely low input resistance allowing for high speed
and good accuracy. The amplifier on the output side reduces mismatch between
the input and output currents by matching the drain voltages of the mirror tran-
sistors. The bias currents are provided by floating gates.

Fig. 9. A representation of how equations are parsed for use in the MFPAA.
Equations are split at addition and subtraction signs to create units that will be
implemented by MCEs. The user’s expression is expanded first in order to create
a simple parsing tree (left). However, the user can define sub-blocks by using
brackets to replace an expression with an intermediate variable (right).

pad. This is accomplished by using active feedback, shown in
Fig. 8, which is similar to the one presented in [21]. The speed
of the VI can be written as

(12)

and its accuracy can be written as

(13)

where

(14)

The amplifiers used are simple pFET-input 5 transistor OTAs
with a voltage gain of approximately . is usually set
to 0.4 V and is usually 10 M .

IV. THE DESIGN FLOW

We have developed an entire software chain in order to effec-
tively utilize the MFPAA. The collective purpose of this chain
is to implement, in hardware, the equation entered by the user.
The main components of the chain are network synthesis, place-
and-route, visualization and programming.

A. Network Synthesis

The first step in the software chain is the synthesis of a circuit
topology from the input equation. This topic was thoroughly
explored in [13]. In order to take advantage of this work, a
set of MATLAB functions were written to parse the input

TABLE I
EXPONENT PATTERNS GENERATED WITH DIFFERENT GATE CONNECTIONS

Fig. 10. Sample of the GUI for interfacing with the FPAAA is shown. The GUI
output is shown for a vector magnitude circuit.

equation into modules capable of being processed by the MCE.
First, the expression is prepared for parsing by expanding
it using MATLAB’s symbolic toolbox. Since expanding the
expression blindly may not lead to optimal use of components
in the MFPAA, an option for the user to create sub-blocks was
included. This is done by using ‘[’ and ‘]’ instead of parenthesis
while entering the equation. Anything included in brackets is
treated as its own expression and is replaced by a new variable
in the original expression. Once expanded, each expression is
split at the ‘ ’ and ‘ ’ signs in order to break it into units
containing only multiplication, division, and powers. These
ideas are illustrated in Fig. 9.

Now that expressions containing only multiplication, divi-
sion, and powers have been obtained, a few special cases must
be checked for and taken care of. One of these cases is an expres-
sion that contains fractional exponents. Since MITEs with only
two gate capacitors can only implement powers with magni-
tudes of 1 or 2, the final expression that will be implemented can
only have integer exponents. This is accomplished by raising the
expression to the lowest integer power that will result in all in-
teger exponents. While the new expression is now capable of
being implemented, the output now has an exponent other than

6 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 1, JANUARY 2012

Fig. 11. Results of a coefficient multiplication implemented with the MCE.
The results are shown in a linear plot (top) and a log plot (bottom) to show both
the accuracy and the dynamic range of the computation.

one. To correct this, the output signal will be fed back to pro-
duce an equation that results in the intended output. An example
of this process is shown here

(15)

Once functions capable of being implemented with the
MITEs are obtained, previous work can be leveraged to map
the functions onto a MCE. As described in [13], the fixed gate
connections of the 5 input MITEs contained in each MCE
produces a set pattern in the exponents of the expression im-
plemented. This pattern can be altered by changing where the
gates of the output MITE are connected. The possible patterns
are shown in Table I. Exponents with a magnitude greater than
two must be realized by connecting the input signal to multiple
MITEs. For example

(16)

In addition, expressions that cannot be implemented in a single
MITE Computation Element must be broken up into multiple
elements. For example

(17)

Fig. 12. Results of a squaring circuit implemented with the MCE. The results
are shown in a linear plot (top) and a log plot (bottom) to show both the accuracy
and the dynamic range of the computation. Note that the inaccuracy at high
output currents is due to devices leaving subthreshold operation.

While the MITE elements realize the multiplication, division,
and powers found in the user’s expression, addition and subtrac-
tion is done through the use of KCL. Intermediate expressions
are summed by simply connecting the current-mode output of
each MITE together, and subtracted by connecting the appro-
priate output of each MITE to different sides of a current mirror.

B. Place-and-Route

While place-and-route algorithms are an area of active
research in both FPGAs [22] and FPAAs [23], the simple
algorithm used here is meant to show the possibilities of using
a translinear FPAA in simplifying the software algorithms
needed. The algorithm, which uses the output of the synthesis
function, can be broken into two distinct functions-placement
of the components used and routing of the signals between
them.

The placement function breaks the input structure into five
main categories-inputs, outputs, loops, scaling currents, and
mirrors. They are placed in that order by searching for closest
available elements to the I/O CAB. The current biases and mir-
rors are placed in the same CAB as the MCE they are operating
on. The routing is then performed by picking the shortest line
between elements. The local lines have the lowest cost and the
globals have the highest cost, to reduce parasitic capacitance.

The last major functions in the software chain are visualiza-
tion and hardware programming. While programming floating-
gate transistors has been developed previously [24], functions

SCHLOTTMANN et al.: A MITE-BASED TRANSLINEAR FPAA 7

Fig. 13. Cube root circuit. (a) Circuit which implements a cube root on the
MFPAA. A second output MITE, from the other MCE in the CAB, is used to
gain access to the output current. In addition, a current mirror is used to feed back
the output current to create the cube root. (b) Results of a cube root circuit on
the MFPAA. The results are shown in a linear plot (top) and a log plot (bottom)
to show both the accuracy and the dynamic range of the computation.

have been added to make interfacing with an FPAA much easier.
Most importantly, a GUI has been created to show the output of
the synthesis and place-and-route functions. This GUI shows
the FPAA and draws the switches which will be turned on and
the connections between them. It also includes diagrams of the
CABs so the user can easily understand what is being connected.
A sample of the GUI is in Fig. 10. In addition to allowing the
user to easily understand how the equation is being implemented
on the FPAA, the GUI also allows the user to modify the imple-
mentation if they desire.

Once the equation has been synthesized and routed, the list
of switches and programmable elements are programmed on

Fig. 14. Log-domain filter of the improved MITE FPAA. (a) The MITE FPAA
uses a standard first-order MITE log-domain filter in order to implement dy-
namic functions. (b) The transfer function of a first-order low-pass filter for var-
ious bias currents is shown. The bias currents used were logarithmically spaced
between 3 nA and 41 nA. Note that the highest achievable corner frequency is
200 KHz.

the chip. The setup that allows for this to happen includes a
printed circuit board (PCB), a microcontroller, and a computer
for communication [25]. Routines for selecting devices, pro-
gramming switches, and programming computational elements
are stored on the microprocessor and initiated by communica-
tion for the computer. The computer communicates, over ei-
ther serial or USB, directly from MATLAB allowing easy in-
terfacing between the synthesis, place-and-route, and program-
ming code.

V. RESULTS

In order to the test the MFPAA, a wide range of circuits were
compiled onto it. First, some static functions were tested in-
cluding circuits for multiplying, squaring, and cube root. Next,
dynamic functions were tested. These included a low-pass filter,
a high-pass filter, and a RMS-to-DC converter. The circuits were
compiled using the synthesis procedures previously discussed.

A. Static Examples

The first static example compiled onto the MFPAA imple-
ments the equation

(18)

In order to test this circuit, was swept while and were
held constant. In addition, , was set to produce a variety of
coefficients. The results are shown in Fig. 11.

8 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 1, JANUARY 2012

Fig. 15. Log-domain high-pass filter. (a) The log-domain high-pass filter can
easily be complied into a single MITE CAB. To implement the high-pass filter
a low-pass version of the signal is subtracted from the original signal using the
current mirror. (b) The transfer function of the filter for various bias currents is
shown. The bias currents used were logarithmically spaced between 4 nA and
106 nA.

Next, a squaring circuit was compiled onto the MFPAA. The
circuit uses a scaling current, , that determines the value of
unity in the system. This idea is illustrated in the equation

(19)

which describes the system’s input-output relationship. The re-
sults of the squaring circuit are shown in Fig. 12. The most im-
portant feature of the output characteristic is its inaccuracy for
large input to scaling current ratios. This causes currents larger
than the subthreshold range to flow through the output MITE.

A cube root circuit was also compiled on the MFPAA. The
circuit is shown in Fig. 13(a). The output MITE of another MITE
Computational Element (MCE) is used to gain access to the
output current. Again, a scaling current is used set the value of
unity in the system. The equation that describes the system is

(20)

Fig. 16. RMS-to-DC converter. (a) The RMS-to-DC converter as it is complied
into a single MITE CAB. The three computational stages are: square, filter, and
square-root. These three functions can each be performed by a single MCE.
(b) The output characteristic of the RMS-to-DC converter. The amplitude of the
input sinusoid was swept from 0.1–4.5 V. The frequency of the input was held
at 500 Hz.

The results of the cube root are shown in Fig. 13(b). In contrast
to the squaring circuit, the cube root results are more accurate
because of its compressive nature.

B. Dynamic Examples

The first dynamic circuit compiled onto the MFPAA was a
first-order low-pass filter. The filter is included as one of the
CAB components on the MFPAA, shown in Fig. 14(a). The filter
was tested by adjusting the bias currents that set the corner fre-
quency of the filter and measuring the transfer function. The
results are shown in Fig. 14(b).

Next, a first-order high-pass filter was compiled onto the
MFPAA. The filter was built by subtracting a low-pass filtered
version of the input from the original signal. The MFPAA
implementation of this design is shown in Fig. 15(a). Again, the
filter was tested by measuring the transfer function for multiple
bias currents. The frequency response of the entire system is
more apparent here than in the low-pass filter case. Here, the
pass-band shows the effects of the mismatch due to the current
mirror. The results are shown in Fig. 15(b).

An RMS-to-DC converter was also compiled onto the
MFPAA. A combination of three static and dynamic circuits, in

SCHLOTTMANN et al.: A MITE-BASED TRANSLINEAR FPAA 9

TABLE II
SYSTEM PARAMETERS

addition to the VI converter, are needed in order to realize the
converter. First, the input, which has been rectified by the input
VI structure, is squared. Second, it is passed through a low-pass
filter to find the mean. Third, the square root of the mean is
found. The MFPAA implementation of this design is shown
in Fig. 16(a). The converter was tested by varying the input
amplitude of a sine wave and measuring the output current. The
results are shown in Fig. 16(b).

VI. DISCUSSION

In this paper, we have discussed the design of a reconfigurable
MITE system, the MFPAA. This MITE-based FPAA was de-
signed, fabricated in 0.35 m CMOS, and tested. A summary of
this technology and comparison to another translinear FPAA is
given in Table II. It was designed using the floating-gate switch
matrix framework of the RASP 2.8 line of FPAAs. Floating-gate
switches are a natural choice for MITE systems because they
can share the programming overhead that is already required
to program the MITEs. Along with the MFPAA IC, we also
presented an entire chain of design tools: a synthesis tool, a
place-and-route tool, a routing visualization GUI, an evaluation
board, and the programming system. This complete system al-
lows the user to go from a system of equations all the way to
a working hardware MITE implementation. In addition to pre-
senting the hardware and design tools, we demonstrated sev-
eral working circuits. Static systems such as multipliers and
squaring circuits, as well as dynamic systems such as filters and
an RMS-to-DC converter were successfully tested on the hard-
ware system.

REFERENCES

[1] S. C. Liu, Analog VLSI: Circuits and Principles. Montgomery, VT:
Bradford Books, 2002.

[2] U. M. O’Reilly, “Potential uses of dynamically reconfigurable analog
circuits,” MIT, Tech. Rep. [Online]. Available: http://people.csail.mit.
edu/unamay/research-abstracts/grace-abstract/grace-abstract.html

[3] Application note: Developing a state-driven embedded system using
the Atmega128,” Anadigm, Tech. Rep., Jul. 2009 [Online]. Available:
http://www.anadigm.com/doc/AN221009-U209.pdf

[4] A. Stoica, D. Keymeulen, R. Zebulum, A. Thakoor, T. Daud, Y.
Klimeck, R. Tawel, and V. Duong, “Evolution of analog circuits on
field programmable transistor arrays,” in Proc. NASA/DoD Workshop
on Evolvable Hardware, 2000, pp. 99–108.

[5] J. Becker, F. Henrici, S. Trendelenburg, M. Ortmanns, and Y. Manoli,
“A field-programmable analog array of 55 digitally tunable otas in a
hexagonal lattice,” IEEE J. Solid-State Circuits, vol. 43, no. 12, pp.
2759–2768, Dec. 2008.

[6] E. Lee and P. Gulak, “A transconductor-based field-programmable
analog array,” in Proc. IEEE Int. Solid-State Circuits Conf., 1995, pp.
198–199.

[7] A. Basu, S. Brink, C. Schlottmann, S. Ramakrishnan, C. Petre, S.
Koziol, F. Baskaya, C. Twigg, and P. Hasler, “A floating-gate-based
field-programmable analog array,” IEEE J. Solid-State Circuits, vol.
45, no. 9, pp. 1781–1794, Sep. 2010.

[8] C. Schlottmann, C. Petre, and P. Hasler, “A high-level simulink-based
tool for FPAA configuration,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., 2011, accepted for publication.

[9] D. Abramson, J. Gray, S. Subramanian, and P. Hasler, “A field-pro-
grammable analog array using translinear elements,” in Proc. Int. Work-
shop System-on-Chip for Real-Time App., 2005, pp. 425–428.

[10] D. Abramson, “A MITE based translinear FPAA and its practical im-
plementation,” Ph.D. Thesis, Georgia Tech, Atlanta, Nov. 2008.

[11] L. Martinez-Alvarado, J. Madrenas, and D. Fernandez, “Translinear
signal processing circuits in standard CMOS FPAA,” in Proc. IEEE
Int. Conf. Electron., Circuits Syst., 2009, pp. 715–718.

[12] B. A. Minch, “Synthesis of static and dynamic multiple-input
translinear element networks,” IEEE Trans. Circuits Syst. I, Reg.
Papers, vol. 51, no. 2, pp. 409–421, Feb. 2004.

[13] S. Subramanian, “Methods for synthesis of multiple-input translinear
element networks,” Ph.D. Thesis, Georgia Tech, Atlanta, 2007.

[14] E. McDonald and B. A. Minch, “Synthesis of a translinear analog adap-
tive filter,” in Proc. IEEE Int. Symp. Circuits Syst., May 2002, pp.
321–324.

[15] C. Schlottmann, B. Degnan, D. Abramson, and P. Hasler, “Reducing
offset errors in mite systems by precise floating gate programming,” in
Proc. IEEE Int. Symp. Circuits Syst., May 2010, pp. 1340–1343.

[16] A. Basu and P. Hasler, “A fully integrated architecture for fast and
accurate programming of floating gates over six decades of current,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2010, to be pub-
lished.

[17] J. Mulder, W. A. Serdijn, A. C. van der Woerd, and A. H. M. van Roer-
mund, Dynamic Translinear and Log-Domain Circuits: Analysis and
Synthesis. Norwell, MA: Kluwer, 1999.

[18] P. Hasler, B. A. Minch, and C. Diorio, “An autozeroing floating-gate
amplifier,” IEEE Trans. Circuits Syst. II: Analog Digit. Signal Process.,
vol. 48, no. 1, pp. 74–82, Jan/ 2001.

[19] A. Basu, C. Twigg, S. Brink, P. Hasler, C. Petre, S. Ramakrishnan, S.
Koziol, and C. Schlottmann, “Rasp 2.8: A new generation of floating-
gate based field programmable analog array,” in Proc. IEEE Custom
Integr. Circuits Conf., Sept. 2008, pp. 213–216.

[20] B. A. Minch, “A low-voltage mos cascode bias circuit for all cur-
rent levels,” in Proc. IEEE Int. Symp. Circuits Syst., May 2002, pp.
619–622.

[21] V. Srinivasan, R. Chawla, and P. Hasler, “Linear current-to-voltage and
voltage-to-current converters,” in IEEE Midwest Symp. Circuits Syst.,
2005, pp. 675–678.

[22] S. K. Nag and R. A. Rutenbar, “Performance-driven simultaneous
placement and routing for fpga’s,” IEEE Trans. Computer-Aided
Design Integr. Circuits Syst., vol. 17, no. 6, pp. 499–518, 1998.

[23] F. Baskaya, S. Reddy, S. K. Lim, and D. V. Anderson, “Placement for
large-scale floating-gate field-programable analog arrays,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 14, no. 8, pp. 906–910, Aug.
2006.

[24] G. Serrano, P. Smith, H. J. Lo, R. Chawla, T. Hall, C. Twigg, and P.
Hasler, “Automatic rapid programming of large arrays of floating-gate
elements,” in Proc. IEEE Int. Symp. Circuits Syst., 2004, pp. 373–376.

[25] S. Koziol, C. Schlottmann, A. Basu, S. Brink, C. Petre, B. Degnan, S.
Ramakrishnan, P. Hasler, and A. Balavoine, “Hardware and software
infrastructure for a family of floating-gate based FPAAs,” in Proc. IEEE
Int. Symp. Circuits Syst., May 2010, pp. 2794–2797.

Craig R. Schlottmann, photograph and biography not available at the time of
publication.

David Abramson, photograph and biography not available at the time of
publication.

Paul E. Hasler, photograph and biography not available at the time of
publication.

