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A primary goal since the early days of neuromorphic hardwaoertical structures. Computational power efbciency for biologi-
research has been to build large-scale systems, although ealysystems is 8D9 orders of magnitude higher (better) than the
recently have enough technological breakthroughs been madetwver efpciency wall for digital computation; one topic this paper
allow such visions to be possible. What many people outsidél explore is that analog techniques at a 10 nm node can poten-
looking into the neuromorphic community want to see, as welially reach this same level of biological computational efbciency.
as some even within the community, is the long-term technic&igure 1 show huge potential for neuromorphic systems, show-
potential and capability of these approaches. Neuromorphic engig the community has a lot of room left for improvement, as
neering builds artibcial systems utilizing basic nervous systerall as potential directions on how to achieve these approaches
operations implemented through bridging fundamental physiasith technology already being developed; new technologies only
of the two mediums, enablingoth superior synthetic applica- improve the probability of this potential being reached.
tion performanceus well as physics and computation biological One focus is looking at what neural systems to date have a
nervous systems knowledge. The particular technology choicehsnce to scale to larger sizes, which is one metric of the particular
Rexible, although most research progress is built upon analog angplementationOs merit going forward. In addition, considerable
digital IC technologies. time is spent discussing systems that can scale and how they will
Given the community is making its Prst serious approachég able to scale to larger systems, both in IC process improve-
toward large-scale neuromorphic hardware [e.g., FACEf®nts, circuit approaches, as well as system level constraints. One
(Schemmel et al., 2008eDARPA SyNAPSE, CaviaBd¢rrano- conclusions drawn is that with current research capabilities, with
Gotarredona et al., 20)]9 a neuromorphic hardware roadmap additional research to transition these approaches to more typi-
could be seen as a way through the foreseen upcoming botite4 IC and system building, that reaching a system at the scale of
necks (arr et al., 201} in computing performance, further the human brain is quite possible. Within our current grasp are
enabling research and applications in these areas. To ignoreirauits and technologies that can reach these large levels; when
long-term neuromorphic approach, such as depending solely oesearchers are building small prototypes, these issues must be
digital supercomputing techniques, is to ignore major contenconsidered to enable scaling to these larger levels.
porary issues such as system power, area, and cost and missésthe following sections, we will, in turn, discuss these aspects
both application opportunities as well as misses utilizing tHgy focusing on key issues that effect this performance. section 1
similarities between silicon and neurobiology to drive furthewill discuss a framework for discussing large-scale neuromorphic
modeling advances. systems. section 2 discusses computational complexity and the
Figure 1shows the estimated peak computational energy eftrecessary programmability and conbgurability, utilizing the right
ciency for digital systems, analog signal processing, and potergetlof dense features to make an efpcient implementation. section
neuromorphic hardware-based algorithms; we discuss the det8ilsonsiders the power constraints in computation and communi-
throughout this paper. This comparison requires keeping coneation required to operate such systems, as well as discuss power
munication local and low event rate, two properties seen itbnstrained cortical structure design. section 4 continues with
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. . size of the cortex tends to be correlated to the body size in mam-
Power Efficiency Scaling mals (llman, 2000. Further, building a cortex or cortex in a
handheld device imposes additional signibcant constraints in area

10MMAC(/s)/W —— 1st DSPs (1978 - 1981) A 5
e 2 and power consumed.
100MMAC(/s)/W —— 23 A lot of previous work has focused on front-end sensory and
i) motor systems, including retina models (elgead, 1989; Boahen
IMMAC(/s)/mW —— g_ @ and Andreou, 1992; Delbruck and Mead, 1994; Delbruck, 1994;
Enerey Efficiency Wall y ® @ Marwick and Andreou, 2006; L|chtst_e|ner et al., 2068chlea
10MMAC(/s)/mW —— (32bit inputs) A models (e.g.Mead, 1989; van Schaik et al., 1996; Sarpeshkar
=] et al., 1998, 2005a,b; Ravindran et al., 2005; Hamilton et al.,
100MMAC(/s)/mW —— § g 2008; Odame and Hasler, 2008; Rumberg et al., 2008; van Schaik
IMMAC(s)faW —— (’é g et al., 2010; Rumberg and Graham, _2))&@ well as othe_rs (e.q.,
£a LeMoncheck, 1992 Although these input representations are
JOMMAC(/s)/uW __ Analog SP yea ?mporta.nt for n.eural' computation, and some have done some
(ie. Analog VMM) = A - interesting engineering work based on these front-end systems
100MMAC(/s)/uW —— g 0§. = (Riesenhuber and qugio, 2000_; Fuetal., 2008; Schaik et al., 2009;
Can Neuromorohic g z g Chakrabartty and Liu, 2010; Liu and Delbruck, 20}0; Farabet
IMMAC(/s)/nW —— techniques en;&e @,g” g et al., 2011; Sejnowski and Delbruck, 2)or focus will be on
improvements? & 2 o the computation using these front-end structures in the highly
1OMMAC(/s)/nW —— %i ﬁ £ modular cortical structureiliasmith and Anderson, 20013
l=H N C]
T00MMAC(s)W ——= g § E Si TECHNOLOGIES FOR IMPLEMENTATION: PROGRAMMABILITY, AND
IMMAC(/s)/pW —— (<) Biological Neuron A CONFIGURABILITY
The VLSI revolution for digital computation allowed abstraction
and thus specialization in building different aspects of systems
FIGURE 1| A spectrum showing the computational efficiency of such that each group could communicate with each other and
various technologies, including digital technologies, analog Signal effectively contribute to the solutior{ead and Conway, 19%0

Processing (SP), as well as best estimate of biological neuron
computation. Three orders of magnitude has produced amazing
improvements in digital technology from speak-and-spell devices (Frantz

This approach enabled application engineers to use digital tech-
nigues without having to be circuit or device physics experts, and

and Wiggins, 1982) to current day smart phones. Three orders of as a result, rapidly increased the pace of innovation. For com-
magnitude in analog SP approaches has the promise of similar mercial digital IC and system development, almost all solutions
advancements as it becomes a stable capability. Biological neurons show a are microprocessorsuP) that have become diverse in their spe-

potential of five more orders of magnitude of improvement, opening further s . . e . . .
opportunity for efficient computational devices. Further, this observation cializations such as in digital signal processing (DSP), graphics

defines one definition for efficient neuromorphic systems as those processing (GPU)- or peld programmable gate arrays (FPGA)'
physically implemented algorithms that improve power efficiency beyond Rarely are custom IC solutions built because of the resulting
the analog SP metrics. cost of the mask sets and engineering time versus the projected
commercial value (i.e., revenue) of the resulting solution. This
direction puts more pressure on abstraction and tools for building
other key aspects to the neuromorphic roadmap, including SNRese systems, particularly tools that enable engineering of sys-
and Tools for design. We Pnally discuss in section 5 some initieins as well as scientibc explorations. Neuromorphic solutions
thoughts on learning of parameters (i.e., synapses), althouglutéize digital solutions where ever appropriate and effective for
complete discussion would be fairly long and complicated by thige resulting metrics.

early state of research in these Pelds. Eventually, any useful netEconomics dictate that custom digital design at modern pro-
romorphic system will have to rely on learning to realistically sekss nodes is typically not feasible unless there is an extremely

the entire state of the network. high utilization or expected product volume, and a similar
result is expected for computational approaches that are phys-
LARGE-SCALE NEUROMORPHIC SYSTEMS ically (biologically) inspired. The early analog VLSI research

Although the eventual goal would be the complexity of humasteps required heavy custom IC design to initially develop the
brain, it remains benebpcial to consider intermediate steps as wiekt)d. On the other hand to compete either in the current sig-
such as a limited region of cortex, or potentially smaller nervoumal processing, neural modeling or application development
systems like a mouse. Estimates of the number of neurons in tirena, analog VLSI, particularly for neuromorphic areas, must
human brain are between ¥band 132 (Williams and Herrup, move to similar high use approaches and allow efbcient pro-
1988; Mead, 1990; Azevedo et al., Jpa@fthough most recent grammability, conPgurability, and adaptability. Rarely are custom
data leans toward b (Azevedo et al., 20).9Estimates on the ICs built currently without high IC reuse to offset the result-
number of neurons in a mouse is roughly®lifeurons {Villiams, ing high opportunity cost. Most current approaches, heavily
2000. Size of the cortex structure would be somewhat propouse digital interfacing, computation, and memories to achieve
tional to the sensor size of the incoming signaldr(an, 2000; these approaches even for analog computation approaches; other
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efforts include researchers using long-term analog memaxy have expertise in IC design, a separation that should prove
devices. useful for the neuromorphic community as well. General FPAA
Physically based computation schemes, similar to analog cochips will be advantageous for moderate size system investiga-
puting, required time to develop the infrastructure for analogion; when structures are understood well, one would specialize
signal processing, neuromorphic hardware, as well as comparisome of the infrastructure, but always enable some conbgura-
with modeling approaches. Thephysically based solutions arebility in the system. All of these aspects should enable neuro-
inspired by the potential improvement in power efpciency anchorphic/analog solutions to compete effectively with classical
density efbciency compared to digital solutions, as well as #mgineering solutions.
belief there is similar physics in Si and biological systems; more
will be discussed in the following section. NEURAL STRUCTURE BASICS
Similar to how FPGAs revolutionized digital prototypingOne neuromorphic area focuses on building arrays of neuron
efforts , developing reconbgurable hardware that reduces #lements with realistic soma dynamics at a density that enables
development and test cycle will fuel key innovation in neuromoteoking at neural dynamics of 100 neurons or motedjveri
phic systems. This approach requires developing conbgurability,al., 2001; Lin et al., 2006; Renaud et al., 2007; Silver et al.,
which allows different computational RBows, and programmabil2007; Schemmel et al., 2008a; Saighi et al.,)2dypically a
ity, which allows different parameter values, for physical comptradeoff is seen between dense circuit structures and accurate
tation systemskigure 2summarizes these concepts. If all valuanodeling of biological behavior, similar to computational neuro-
are known ahead of time, programmability is extremely useful srience but with different rules. The hope is not simply modeling
eliminate mismatch effects. In cases where learning is used, thearal systems, but enabling engineering applications based upon
is a need for parameters and precise elements. At a high lemeliromorphic techniques.
some level of modular computing is expected given what appearsA biological neuron is debPned by its soma, dendrite, synapses,
to be a repeatable structure throughout cortex, thus lending itselfid axons, as seen Figure 3 The electrical IC models will fol-
to a conbgurable approach. low a similar block diagram for the basic components. Incoming
The most critical issue for achieving programmability andxon lines form a connection through synapses to the neuron
conbgurability in any physical computation based technologydgndrite line that feeds into the soma block of the neuron. The
a storage medium that enables efpcient computation. The Singtanma block creates the dynamics/computation to send a resulting
Transistor Learning Synapse (STLS) concefts(er et al., 1995 action potential, often described as an event, to its output axon
provided such an approach. The STLS are modibPed EEPR@bhnection. The dendrite is the computation region between the
devices, fabricated in a standard CMOS process, that simultasigmal inputs from the post-synaptic computation and the soma
ously provide long-term storage (non-volatile), computation, andode for the neuron. Synapses represent the connection between
adaptation in a single device. The development of Large-Scaken signals and the resulting dendrite of a particular neuron.
Field Programmable Analog Arrays (FPAA) enabled conbgura-
tion to be used for physically based neuromorphic technigu€4ANNEL MODELS
(Twigg et al., 2007; Basu et al., 2010a,b; Schlottmann et The base components are based on transistor channel models
2010, 2012a,b,c; Wunderlich et al., 21These approachesof biological channel populationg-arquhar and Hasler, 20p5
allow the added advantage of those building applications netimmarized brieRy here are the key concepts as well as in

Programmability Reconfigurability
Parameters, variables,  Analog: Floating-Gate Transistors Change in Analog: FPAA solutions
tuning, mismatch v v topology, CAB| |CAB| [CAB| | CAB2
compensation ¢ \;Lu" VLE“ program, ﬂ
A It R

Typical Examples: ,
Slyili\l\/[ / DRAI?\/I/ ; fin louwt <€ Typical Examples: |cas|
EPROM oo™ WP, DSP, GPUs,

Alternative is bulldllng aDAC _ FPGAs D D [ CAB3

(> x2 area / power increase for each new bit)

Neurobiology: Architecture of groups
of neurons, layers, interconnection, etc.

Neurobiology: Synapses, long-term channel / neuron dynamics

FIGURE 2 | Programmable and configurable concepts exist, recently with
analog approaches as well as digital. The line can in some cases be blurry
between programmability and configurability, although for classical
engineering systems the difference is fairly clear. Both concepts are critical for
neurobiological systems which use programmability and configurability,
sometimes in the same device. In all cases, having a long-term memory
element is critical for these implementations. For analog approaches, the best

solution to date has been using floating-gate based devices. Floating-gate
elements are fabricated in standard CMOS, with 10 year qualified data
retention for analog quantities with more than billions of read-write
operations. A drop of 1-100 1V in floating-gate voltage over 10 year lifetime is
typical, depending on particular process. Configurability in analog computation
has seen success using Field Programmable Analog Arrays (FPAA), because
analog computation is typically performed as a data-flow architecture.
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Figure 4 The physical principles governing ion Bow in biologia few more capacitors (transistor size capacitors) than the basic
cal neurons share interesting similarities to electron 3ow througftegrate and Pre neuron approadhi¢ad, 198

MOSFET channels, and exploiting these similarities results in Other approaches are still being considered for implementing
dense circuits that effectively model biological soma behaviohannel modelsi(idiveri et al., 201}, typically in systems where
The energy band diagram (source to drain) looking through thenly the soma compartment is considered relevant (dendrite is
channel of the MOSFET is similar to the energy band diagraapproximated as a wire). This includes approaches implement-
(inside to outside) looking through a biological channel. Becaus®g a range of integrate and bPre neurons, including modibca-
the similarities between biological and silicon channels are utiens to enable second order dynamicgh{kevich, 2008 as
lized, the voltage difference between the channel resting potentisédl as models that attempt to implement some part or all of
on the silicon implementation is similar to the biological powethe classic HodgkinBHuxley type channel equatidnishowald
supplies. The resulting spiking action-potential circuit requiresnd Douglas, 1991; Yu and Cauwenberghs, R0AIS0, other

six transistors, which is the same number of transistors and jugtproaches have been recently considered in transistor channel

Biological

Electrical

FIGURE 3 | Basic definition of neurons that uses biologically realistic
transistor based models of neurobiological computation. A biological
neuron is made up of its soma, dendrite, synapse, and axon components.
For our electrical IC models, we will follow a similar block diagram for the
basic components, including efficient models of synapses, channel regions

in the soma, and communication of spikes to other synapses.

7 | Neuron |
1 Dentrite yL___Soma 1 Axon 1

\ I I I 1
/

Channel

Model

. Wire to routing matrix )

\ current input

modeling Hynna and Boahen, 20)lthough these approaches
require more complicated circuitry without improving the chan-
nel®s dynamical properties.

Solutions of ordinary differential equations (ODES) remains
an area that analog techniques are signibcantly more efpcient
than digital techniques, but given the ability to rapidly try out
algorithms, digital solutions continue to be popular with a wide
community. Further, there is a signibPcant community of compu-
tational neuroscientists porting neural models to FPGAsagsidy
and Andreou, 200Pand GPU systems, potentially resulting in
leverage points. Most large-scale digital models remain to be inte-
grate and bre networkszhikevich, 2003; Cassidy et al., 2007,
Indiveri et al., 201}, attributing to the signipcant ease of such
implementations over ODE solutions of channel populations
(Izhikevich, 2008 The question of whether integrate and bre
neurons is the correct zegporder computation is still an open
guestion.

SYNAPSE MODELS
Synapses represent the connection between axon signals and the
resulting dendrite of a particular neuron. The connection starts
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FIGURE 4 | An overview of MOSFET channel modeling of biological
channels. This approach is possible given the similar (although not
identical) physics between MOSFET and Biological channels both
modulated by a gating potential. The physical structure of a biological
channel consists of an insulating phospholipid bilayer and a protein which
stretches across the barrier. The protein is the channel in this case. The
physical structure of a MOSFET consists of polysilicon, silicon dioxide,
and doped n-type silicon. A channel is formed between the source and

the drain. The band diagram of silicon has a similar shape to the
classical model of membrane permeability proposed by Hille (2001). This
approach vyields an updated model for modeling biological channels that
also empowers dense MOSFET implementation of these approaches. The
primary design constraint is modeling the gating function with other
transistor devices; such an approach is shown to model the classic
Hodgkin-Huxley squid axon data, resulting in a close model to the action
potential, as well as voltage clamp experiments.
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array, and we will summarize the key aspects of the STDP learn-

Vi Vas Non-volatile Storage ing algorithm. The weight increases when the postsynaptic spikes
N / follow the presynaptic spikes and decreases when the order is
v _| . g [\ reversed. The learning circuitry is again placed at the edges of the
¢ Vig s S 1 TERN array at the end of the rows, included in the soma blocks, there-
S — 3 fore not limiting the area of the synaptic matrix/interconnection
Vv, time(ms) fabric. This approach has been extended to inhibitory and N-

¢ methyl-D-aspartic acid (NMDA) synapses at similar array den-
sities. Using the transistor channel type modeling, these synapses

bt bt bat] b ,

02 model the current source and conductance synapse, still using a

- L L L L single transistor for the channel element.

u_ 0.1 "{TL "‘”:TL "‘1[{ "‘“i Figure 6 shows the circuit structure for an array of learning

g L L L synapses; effectively we have a modiped EEPROM array, with the

2o LH[TL H{[{ |_4[1L Hi associated density from such a structure. Current synaptic density
0 -40 0

already extrapolates to large number of synapses pet using
unoptimized devices, as seerHigure 7. a range of optimization
techniques as well as optimizing the use of input and tunneling
FIGURE 5 | A single transistor synapse device is presented and capacitors gets the Fien5|ty near EEPROM Ievels.. The data points
architecture that uses non-volatile storage, generates biological are based on experimentally measured and publicly released val-
post-synaptic potential (PSP) outputs, can easily be arrayed in a mesh ues; additional data points for 45 nm and 65 nm ICs correspond
architecture, and demonstrates biological synapse learning rules, such well to current known research efforts. In a practical system com-
as long term potentiation (LTP), long term depression (LTD), and spike | - mynjcation is a signibcant issue for power consumption, as we
time dependent plasticity (STDP). . . . . . .
will discuss in later sections, and related issues for Vector-Matrix
Multiplication (VMM) ( Schlottmann and Hasler, 20),which
as an electrical event arriving into the presynaptic cell, releasftpws that complexity scales linearly for mesh-type architectures.
chemicals that reach and modulate the channels at the postsynapCurrent EEPROM devices already store 4 bits (16 levels) in a
tic cell, resulting in a response in the dendritic structure. A Pos‘§1”9|e transistor of 108 100 nm area in 32 nm processi gt al.,
history was presented at ISSCC20d2r@ri, 201). Recent data

-8
time(ms)

Isyn= et/ Hall (1) on EEPROM devices shows commercially announced devices at
15nm (Hynix, IEDM) and 19 nm [Toshiba/ScanDiski(et al.,
wheretsy is typically on the order of 0.5D2 ms. 2012b; Shibata et al., 20)2end Samsungl(ee et al., 201)pas

Biological synapses adapt to their environment of event inputgell as production of 32 nm devices. From the current EEPROM
and outputs, where typical programming rules include long-termrogress, such devices are expected to migrate to 7 and 11 nm
potentiation (LTP), long-term depression (LTD), and spike-timetechnology nodes; therefore the risk that the industry will not
dependent plasticity (STDP). In biology, synapses strengthemmmercially produce a 10 nm 3oating-gate device is very low.
through chemical and morphological changes that improve sig- Most nano-technology devices make comparisons to mesh
nal transduction from the presynaptic to the postsynaptic celype architectures. One expects a linear scaling down to 10 nm
(Markram et al., 1997; Bi and Poo, 1998 process to result in a 3& 30nm or smaller array pitch area,

This single transistor learning synapse has a triangle wavefosich is practically as small as any other competing technol-
modeling the presynaptic computation, a MOSFET transistagy, making 3oating gate arrays extremely competitive with other
modeling the postsynaptic channel behavior, and a Roating-gai@notechnology approaches. Even considering non-optimized
to model the strength of the resulting connection. A Roating3oating-gate transistor arrays, one can already see the resulting
gate device is employed that can be used to store a weighsaaling of these approaches. One expects that optimization of
a non-volatile manner, compute a biological excitatory posfioating-gate devices for synaptic structures should yield an array
synaptic potential (EPSP), and demonstrate biological learnidgnsity close to EEPROM densities.
rules Hasler etal., 1995; Gordon et al., 2004; Ramakrishnan et al. These learning synapses have storage capabilities to enable
201). A MOSFET transistor in subthreshold has an exponentiliem to retain 100 s of quantization levels (7D10 bits), limited
relationship between gate voltage and channel current; therefbseelectron resolution, even for scaled down Roating-gate devices
to get the resulting gate voltage to get the desired synapse currérg,, 10 nm process). Often there is a concern on the number
we take a log of Equation (1) to get the gate voltage, which has tfebits of resolution in neuromorphic systems, and although the
shape of a triangle waveform. question of bits of resolution remains a topic of discussion, Roat-

A single RBoating-gate device has enabled both the long-teing gates and other types of neuromorphic storage often allow
storage and PSP generatiorigure 5, but also has allowed amuch denser storage than digital approaches. Since the densest
family of LTP, LTD, and STDP type learning approaches througlynapse hardware implementation can achieve as many quanti-
the same devicelamakrishnan et al., 20).1n this neuron chip, zation levels as needed by algorithms, this concern is effectively
we have implemented these learning algorithms as part of tielevant from a hardware perspective.
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FIGURE 6 | An array of floating-gate synapses capable of can be programmed, using only one transistor per cell, as in
adaptively modifying their weight values as well as EEPROM approaches, while adding somewhat more complex
computation and weight storage. A dense array of synapses circuitry on the periphery.

The density for a 10 nm EEPROM device acting as a synapame technology node, often due to selectivity issues due to high
begs the question of whether other nanotechnologies can imprdaeenperature controls needed for programming. In general, a sin-
on the resulting Si synapse density. One transistor per synapsgléstransistor is needed for programming, the same number of
hard to beat by any approach, particularly in scaled down Si (likeansistors for a Rash device.

10 nm), when the synapse memory, computation, and update is Even if the functionality was the same, then the question
contained within the EEPROM device. Most nano device techf additional cost of the technology infrastructure must be
nologies [i.e., memristorsSnider et al., 20)].show considerable addressed. Further, the phase change methodolody puts into
difpculties to get to two-dimensional arrays at a similar densityuestion all approaches that use external IC memories, since at
level. Recently, a team from U. of Michigan announced the bisbme point, the value must be stored, and if digitally, requiring
functioning memristor two-dimensional (3& 30) array built on multiple cells per value. Such techniques include multiplexing
a CMOS chip in 2012im et al., 201}, claiming applications in synaptic memories to save locally on the resulting die area. The
neuromorphic engineering, the same group has published innm@sulting issues we discuss in later sections on power efbciency
vative devices for digital 0 and Lu, 200%nd analog applications and cost of communication makes such approaches prohibitively
(Joetal., 2001 expensive.

Phase change memory is often considered a potential option
for neuromorphic synapses, often due to initial success in SUGOMPARISON OF FABRICATED ICs OF SOMA AND SYNAPSE ARRAYS
devices commercially (i.e., by Samsu@giing et al., 2011; Choi Figure 8shows a complexity comparison for channel and synap-
et al., 201y, although earlier papers are also published). Microtic numerical and silicon models. Computational neuroscience
started production of 1 Ghit memories in 2012. Even with alommunity has an understanding of model complexity for
of the commercial development, the phase change memoriigital computation based on years of researc¢hhikevich,
are an order of magnitude larger area of Rash devices at ©h#3. Physically based implementations do not follow the same
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tradeoffs, partially because we have transistor channel approadmsoaches the differences among many metrics between these
built upon similar physics with biological devices. For exampleyo approaches is small.

digital computation shows a factor of 1000-fold reduced compu- Table 1shows the structure presented in this paper results in
tational load when modeling with an integrate and bre neurothe best synaptic density over other ICs built to dated{veri

and HH physics based modelingliikevich, 2008 For analog

10000

1000 600,000 synapses/mm2

100} 74,000 synapses/mm2

Synapses ( 1000 synapses) / mm?

-
o

-
o
o
o
(=)

1000

100

10

Synapse Array Area in a
single Reticle ( Msynapses )

45nm

130nm

100
Technology Node (nm)

400

FIGURE 7 | Single-Transistor Learning Synapse density with process
node. We plot both the synaptic density per mm? as well as total number
of synapses per reticle, as well as data points from experimentally verified,
floating-gate array of devices.

et al., 2006; Schemmel et al., 2006, 2008b; Camilleri et al., 2007;
Brink et al., 201p. We debne synapse density as the synapse area
normalized by the square of the process node. Further, we achieve
this synapse density in a working neural array with synapse com-
plexity capable of high storage as well as STDP behavior; these
techniques will scale down and have relatively similar density to
EEPROM density at a given process node. These results demon-
strate the resulting advantage of Roating-gate approaches for
neuromorphic engineering applications.

These approaches only consider the impact for dense simple
synapses; we will discuss the impact of dendritic computation in
the following areas. Having a memory that is also a transistor, as
is typical for Roating-gate approaches, will have advantages over
other approaches.

DENDRITE MODELS

The computation in dendritic areas is highly debated, particularly
given the complexity and computational richness available here.
In many modeling and implementation approaches, the dendrite
is approximated to be a wire, greatly simplifying the resulting
network and enabling a system that is tractable by a range of
computational principles. For our discussions, the possible effec-
tiveness of dendritic computation is considered, particularly given
recent results that indicate efbcient computational models using
these structures.

Using channel model approaches, one can successfully build
dense dendritic compartments and conbgurable structures
(Farquhar et al., 2003kthat compare well to classical mod-
els of dendritesNease et al., 20).ZThe resulting computation
from dendritic elements is often debated, and in most computa-
tional models is ignored because of the increased computational
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FIGURE 8 | Comparisons of implementation measures for digital and
analog implementations for channel models and synapse models.

A spectrum of easy to complicated aspects understood in one area (i.e.,
digital) might have no similar approach in the other area (i.e., physical
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devices). Although the moving from an integrate and fire neuron to a HH
based neuron might be a difference of 1000 in computational complexity for
digital approaches, the difference in transistor, capacitor, or bias count is very
small for physically implemented approaches.
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Table 1 | Comparison of synapse density and function of working implementations.

Chip built Process Die No of Synapse Syn Synapse storage
node (nm) area (mm?) synapses area (pm?) density resolution and complexity

GT neuron1d (Brink et al., 2012) 350 25 30,000 133 1088 >10 bit, STDP

FACETSs chip (Schemmel et al., 2006, 2008b) 180 25 98,304 108 3338 4 bit register

Stanford STDP 250 10.2 21,504 238 3810 STDP no storage

INI chip (Indiveri et al., 2006) 800 1.6 256 4495 7023 1 bit w/learning dynam
ISS + INI chip (Camilleri et al., 2007) 350 68.9 16,384 3200 26,122 2.5 w/learning dynam

Bold value indicates synapse density as the synapse area normalized by the square of the process node.

complexity. Given recent results that show powerful computa-

tional aspects of dendritic structures in engineering applications . d dre;’ AER Comg;lm]t:onal 3 AER z:i
. H —» I'ess,
(George and Hasler, 2011; George et al., R0tlis unreasonable n ¥ (neurons ":ynapm) 3 S out
to ignore such effects | Receiver 3 ’ ] Sender >
QCkin Module —3 l'}:p”t S;OUtp”t —3 Module [ A%out
eq; —p through events —»Req
INTERCONNECTIONS BETWEEN NEURONS mn A A out
Communication is one of the signibcant differences between what Other Analog / Digital 10 signals

would appear to be the capabilities of Si and biology. Si is mostly

a two-dimensional interconnect [although there is getting to beriGURE 9 | Block diagram of our address event representation (AER)
more research efforts in limited 3D approaché&siurciello and communication scheme. AER approach is used to interface the input and
Andreou, ZOOﬁ while neural tissue allows for 3D interconnec4 output events (action potentials) of a network of neurons to the outside

. . . world. We use an AER receiver to get input events, and an AER transmitter
tion betyveen the ro_ughly_ZD_cor_nputatlon sheets in c_ortex. o send output events.
Solving the 3D issue is signibcant for hardware implementa-

tions. On the otherhand, we can transmit events that are digital

signals over wires on a digital chip in less than 1ns; thereforGIéEhnique that scales with current digital design (e.g., VHDL to

seems natural to take advantage of this aspect of the Si phy§jSon, implementation) will have a signibcant advantage for the
to handle event communication. Of course, to multiplex many .o community.

axons on a single wire, particularly one going a long distance (over
a board or sets of boards), requires a sparse bring rate am PUTATION COMPLEXITY TOWARD NEUROMORPHIC
neurons. Biological neurons bre, on average, once every 2s; LICATION

Pring rate would enable such time-multiplexed communicatior}h |

. ast section gave a sense that feasible approaches are available

schemes to work well, although some event coding schemes donot . ) N .
. 0 build all of the basic components in digital as well as physi-

allow for such low event behavior.

The class of communication schemes that use this techni Cuael computational models. These thoughts lead to two additional

are called Address Event Representation (AERMre 9shows a uestions:
typical block diagram communicating events on and off the IG;
For example, a typical communication is to just sendadtiress

from a particular neuron when it creates an event; the bring of i.e., mouse, cat) and Pnally humans?

an address communicates both that a neuron bred, and its logigayynat computations are possible using these techniques that

address for data processing_pur.poses. If we have a sparse numbggy, compete with current implementations, whether digital or
of events, then the communication happens almost instantly andphysical implementation?

without issue of collisions with other events. AER is often used to

enable reconpgurability through digital storage and processitghth questions are important as the computational complexity is
Leaning on the digital system allows for rapid prototyping, bufonsidered that is required for neuromorphic approaches.
with signiPcant cost in some areas (power, complexity). Current Although, computational neuroscience has decades of experi-
AER systems are used as a standard interface primarily betwggge and signibcant results, Pnding neural system concepts that
neuromorphic sensors ICs and next layer of processing conneciggvide competitive engineering applications is only beginning.
to it. This approach enables neuromorphic systems a level of ct- the time of writing, the short list of particularly efbcient
Pgurability and programmability using AER (and other digitaheuromorphic computational algorithms currently proposed are
interfaces) to directly communicate to digital systems.

Typical architectures could allow for senders and receiver ete-Analog Neural Network (ANN)
ments in a one-dimensional or a two-dimensional scheme; a twe-Winner-Take-All (WTA) Networks l(azzaro et al., 1988;
dimensional communication scheme often requires signibcantindiveri et al., 2001; Chicca, 2006
complexity in the resulting asynchronous design. One can expectWordspotting (e.g.Juang and Rabiner, 1991; Lippmann and
a range of circuit approaches under these conditions; clearly thelankowski, 1994n groups of cortical cells

How do these approaches scale up to networks of neurons, say
cortical neurons, of small vertebrates (i.e., Psh) to mammals
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In the following paragraphs, we will model the computationatomputation. The rest of the computation depends on the com-
load for each of these approaches as well as the compuyikexity of the resulting neuron. Taking the simplest typical model,
tion required for a full ODE solution to the components thatthe output node would be a tarh function, or roughly 4

are currently understood. The comparisons are made in termuultiply-accumulates (MAC) per neuron computation. Usually,
of the minimum digital computational complexity to perform the computation in the somas is much smaller than the computa-
the algorithm, and will express these comparisons in Multiption in the synapses when is of moderate size.

Accumulates required for the operation. Building this framework Figure 10shows graphically the similarity of a spiking network
allows for performance comparisons with traditional engineenf integrate and bre neurons to continuous-valued approaches.
ing solutions, always with an eye to where will these approacl8sking networks, rate encoded, etc., with PSP from synapses,
exceed the capabilities of existing systems. Whether a digiale exactly the same computation. When a spiking network is
or physical computation technique, the traditional implementaeperating with low spike rates (e.g., 1 Hz), typically seen with real
tion of algorithms (i.e., digital on FPGAs, DSPs, or analog ameurons (with dendritic components), the computation takes a
FPAAS) versus the corresponding neuromorphic implementatiatifferent form. At low (1 Hz and below, rare for rate-encoding)

of algorithms are compared. rates we probably have outputs from strong-inhibition WTA cir-
cuits (or multiple layers), and most likely an event based coding
ANN: ANALOG NEURAL NETWORK MODEL based on the location of the neuron element. Such compu-

The rise of the neural network community in the 19800s soliéfitional approaches are open questions, although some initial
bed a framework of neuron models that have shown a r(.jmgea(g,}pl|c.a'[|ons are starting to be presenteql such as in robotic path-
diversity to solve problems in many applications, so much Selyannlng (Koziol et al., 201pand sparse image/data reconstru_c-
that many of these techniques are considered standard technigli@d (Shapero and Hasler, 2002 urther, we can extend classic
taught in most universities. The approach has its early roots NN approaches to Gaussian mixture Models (GMM), radial
the perceptron Rosenblatt, 1992and adaptive Plter\{/idrow ba5|§ function, and other §|m|lar network approaches by taking
and Hoff, 196) models that then extend to multilevel neuralthe difference of two sigmoids.
network models, hopbeld models, as well as other related com-
putational models. The simplest one-node approach is seenVWiNNER TAKE ALL (WTA) + VECTOR MATRIX MULTIPLY (VMM)
Figure 1Q where we have an input being multiplied by a weightVTA networks of neurons was an early area where Si engineering
value, all of those values added together at the soma compad neuroscience positively interacted with each other, providing
ment, where a linear or non-linear function is applied befora unique and efbcient means of computation. As a simple debni-
we receive the output. ANN approaches include having contition, the network is composed of multiple (n) excitatory somas
uous valued (i.e., tanh functions) or spiking (i.e., integrate anihat all synapse or connect (excitatory synapses) onto a single
Pre neurons, rate encoded signals) devices as well as feedforwewdon that provides inhibitory feedback connection to all of the
or feedback stageFigure 1J. Often, when adding many valuesoriginal soma elements. The net effect is that we have an adap-
together, we will draw all the lines connected together and ukbee threshold, which can be global or local, that is the largest of
KirchoffOs current law (sum of currents into a node equal susame function on the inputs. Whether these OsomasO are contin-
of currents leaving a node) to do the summation of values; effegous valued or spike representations is dependent on the design
tively this model assumes the dendrite is a wire and it perfornasd computing environment. The classic circuit implementation
no effective computation. was based on continuous valued elements, that closely utilized

In terms of computational level, a one layer ANN wouldransistor device physics to build an efbcient circuiti{zaro
simply require the computation for the vector-matrix multipli- et al., 198§ Following that success, others built multiple spike-
cation. Assuming we have synapses (or inputs) per neuron,based representations to complete the connection between these
andn neurons, a complexity ofin would result for the synaptic circuit approaches and biological computatiomdiveri et al.,
2001; Bartolozzi and Indiveri, 200 7Further, by having local
reciprocal inhibitory connections, one can make the WTA net-
work a locally winning network, similar to WTA networks with
horizontal diffusor connections between neighbor neurons. The
network performs one form of an analogax function, which
enables analog sorting computations.

The approach provides a much more accurate model of corti-
Axon cal computation with ANN type models; the added complexity
Out is only at the soma compartmentBigure 12 shows the block
diagram of this approach. For n somas, we have & dynam-
ical equations. Spiking or non-spiking is similar. For effective
digital numerical computation, at least a factor of 10 greater
than the input samples would be needed for the dynamics. Some
non-linearities are needed on each neuron to reduce their input,
which in the simplest case would be say 2 MAC/element. So
we are looking at approximately 30 MAC(n + 1) for a WTA

FIGURE 10 | Block diagram of a single neuron abstraction, typical in
analog neural network (ANN) approaches.
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FIGURE 11 | Basic block diagram illustrating the most typical of neural
models, that of a fully connected array of synapses, possibly
reciprocally connected, connected to an array of neurons. The block
diagram on the left is a typical approach for an array of spiking neurons
and biologically modeled synapses. The block diagram on the right is a
typical approach for an array of neurons with continuous valued outputs;
such an approach is called an analog neural network (ANN). The
connection between spiking networks and ANN approaches starts with the
realization that many neuron models, such as the family of integrate and
fire neurons, are effectively linear or weakly non-linear sigma-delta
modulators. Typically such functions are used for analog to digital
converters (ADC), where the signal (or a low-pass filtered version) is
recovered by performing a low-pass filter operation. For neural modeling,

synapses effectively perform a low-pass filter on the resulting input event
stream, particularly for rate encoded outputs. This model breaks down for
low event rates, particularly for place coding; this case is rare for such
networks which are based upon integrate and fire based neurons that are
resulting in rate encoded signals. Typically, dealing with continuous-valued
elements has similar implementation complexity and lower power
consumption; The primary operation in either case is a Vectormatrix
multiplication (VMM), with similar complexity in either case. One might
find particular niche applications where one structure can be optimized
over the other approach. The non-linearity block for the ANN approach
might be a time-dependant non-linearity; for Hodgkin—-Huxley type neurons,
the resulting function resembles more of a bandpass filter function. The
mesh architecture approach enables direct computing through memory.

network for a basic structure. When we consider more local witiMM classibPer computation; certainly both practical HMM

ning approaches, which are necessary, then these values cledghyrithms as well as real dendritic computation is more com-

increase. When putting these elements into a network, one woudléx. A lower bound on this computation would be 2 MAC per

still want a VMM at the input to model the synaptic inputs intostate variable for the required sample rate for continuous inputs.

these soma elements. As in the ANN case, the computatioAalypical dendrite would have over 1000 state variable equivalents

complexity of the synapses would be much larger than the somn&ts continuous structure.

elements, even for the WTA componentsyifs large. For a particular neuron timeconstant, we would want to

have multiple samples for proper operation. This discussion uses

WORDSPOTTING NETWORKS an effective discrete time sample rate 5 times more thame

One recent addition to these computing platforms is a recenset = 1 ms here. Therefore, conservatively, we have each tree

algorithm demonstrating experimentally in Si that neurons wittkomputing 10 MMAC just for feedforward HMM computation.

at least basic dendritic structure can compute wordspotting algbhen on top of that would be computations for learning and other

rithm (George and Hasler, 2011; George et al., R0aZkey functions.

engineering approach for many classiber applicatiBitaire 13 The need for dendritic models is still debated in compu-

summarizes this approach. There are similarities between tational neuroscienceHausser and Mel, 2003; Gonzales et al.,

dendritic structure and typical HMM classibcation structureg01J), including the resulting functionality being multiple spa-

used in speech recognition for wordspotting algorithrnafzaro tially constrained neurons or more advanced featureslgky

et al., 199Y, but with far more states in dendritic structures tharet al., 200} the question partially gets answered by the resulting

can be practically used in any classiber. computational efbciency demonstrated through Si based models.
Given this algorithm potential, we will discuss the computa- The question of model detail is a classic one in compu-

tional complexity of this approach based on the equivalent simpiational neuroscience often debates the clear tradeoff between
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FIGURE 12 | Modeling a group of neurons using a Winner-take-all
(WTA) network, along with the synaptic weighting through a typical
VMM approach. WTA has inspiration from the interactions of cortical
somas and coupled inhibitory interneurons. These approaches allow for a
small number of winning neurons, and sharpens up the neuron responses
as well as reduces the overall spike rate. The computational power of this
approach, whether using spiking neurons or as circuit implementation using
a range of dynamics is still an active area of research.
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biological neurons and Si implementations utilize a multi-branching tree.

)[JOM]ON llv-oxel-_louugm
YYY YYYY YYY
(12Ae] 1x0U 0] $208) syuaAf IndinQ

Farquhar and Hasler, 20péhanges these constraints. For exam-
ple, modeling a HodgkinbHuxley (HH) model neuron requires
6D7 transistors directly modeling the channel population and gat-
ing mechanisms. Implementing the simplest integrate and bre
neuron requires 6D7 transistors for its operatidie@d, 198R

The most effective electrical model, tuned to biological parame-
ters like channel currents, often becomes the model of choice.

Dendritic processing is capable of signibcantly improved
power efpciency, operating on a problem set that is well known in
engineering applications (i.e., HMM, Viterbi, and related classip-
cation algorithms). Dendritic elements are a primary and funda-
mental structure in cortex, having a signibcant (factor of 1000 or
better) power efbciency. Therefore, modeling a dendrite as a wire
leaves far too much potential efbciency on the table. Further, such
techniques would be utilized for engineering applications requir-
ing these functions. The known efbciencies discussed so far do not
make up the computational efpciency gap observed between cur-
rent computers and neurobiological systems; it is suspected that
neurobiological systems are computing additional functions not
currently modeled.

The precision required for such operation is typically a func-
tion of system SNR, which is a function of effective capaci-
tance (addressed in later sections) and parameter programming
precision. Biological systems would follow similar noise lev-
els, or potentially higher due to additional devices at a node,
as a result of physical noise processes. Mismatch in analog
is classically a signibcant question, a problem that is directly
addressed by using Roating-gate approaches; without program-
ming approaches, these mismatch issues easily overwhelm a sys-
tem design. Floating-gate elements can be programmed to 100 uV
or smaller oating-gate voltage resolution, allowing precision
better than 1% accuracy, better than it is believed neurobio-
logical systems currently employ; straightforward tradeoffs are
possible (i.e., increased area) if more accuracy is needed for
programming.

FULL COMPARTMENT ODE MODELING

Another bound to the problem is provided, where we numerically
compute the equivalent Ordinary Differential Equations (ODE)
for each soma, dendrite, and synapse elements.

If we use a bxed sample rate, which is easier for comparison
rather than adaptive rates as well as for real-time interactions,
typically one uses a factor of 10 larger sample rate than the incom-
ing signals. To numerically solve the ODE at this sample rate,
we will chose a 4th order RungabKutta method; we would esti-
mate roughly 10 MAC per computation, which models a few
non-linearities. One can choose a wide range of methods and
oversampling but generally will get similar results. Finally, for a
typical line, we will assume we would need at least bve state vari-
ables per node; therefore, the overhead for a single node is a factor
of 500 MACs/node.

This level of computation is over 40 times larger than for the
wordspotting approach. This ODE solution probably captures a

model complexity and computation complexity (i.ézhikevich, better sense of the real biological computational requirements.
2009, based on digital computation of ODEs. When considefor example, normalization and pruning of data in a wordspot-

ing electrical (and some ion related) modeling using physictihg HMM classiber type model requires more computation that

(analog) hardware, transistor channel modeling, pioneered bguld be modeled by biological channel models.
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COMPUTATIONAL MODEL COMPARISONS cases we compare against the best case practice algorithm for that
Table 2shows a summary measure of the algorithms mentionelution as the metric for the number of MAC elements. The
in the previous sections. These initial measure of complexity givesnputation to compute the resulting ODE is shown because it
a sense of what is possible with classical digital computation techight be the case that the biological system is enabling that level
niques, as well as looking at comparisons for more physically basédomputation through the electrical modeling.

approachegrigure 14illustrates these tradeoffs assuming neurons The incoming data rate (say 1 event per 2s) has little to do
with 1000 synapses each and an effective input signal frequencyitth whether systems of neurons would need to be computed
1kHz. As we go to higher than real time speeds, we would face lising ODESs. The total input Pring rate from all synapses (i.e.,
early higher more MACs per operation. All of the functions scalt00 synapses), not the output Pring rate, would directly impact an
similarly in number of computations, but with signibcantly dif-ODE sample rate. Further, given that the ODEs are multitimescale
ferent scale factors. All lines do not include any overhead of theocesses, resulting in stiff ODES, the resulting digital step size for

processor, data communication, and memory access, but ratlt@mputation may be rather small even for 0.5Hz output event

only is there enough raw computation for the task.

rates.

The algorithmic comparisons between the best formulation of Using the largest computer currently available [IBM Sequoia,
these particular algorithms are made to achieve the resulting fur@®8 PMAC (/s) range sustainedP500 List, 2072 one could
tionality for digital computation. If one was to make a comparisomuild a 1® to 10'° neuron (with 1000 synapses) ANN network,
to say a SPICE level simulation, the numbers would be sigriifuild a 1& neuron wordspotting model, or build a £to 10/
icantly higher; even if we computed the resulting ODE modefeuron ODE model operating in real time. For the wordspotting
the computation time would be much larger than we illustratenodel, that still leaves us with 4@actor in computation from
such as in the ANN case, or the wordspotting case, where in betthuman cortex 1% neurons with 1000 synapses or*i@eu-

Table 2 | Multiply accumulates per second (MACs) required for a
network with m synapses per neuron and n neurons.

Computation MAC (1 neuron/input) MAC (n neurons)

ANN 44+ m n+m)f
WTA + synapses 30+ m n (30 + m) f
Wordspotting 30+ 11Tm n(30+ 11m)f
ODE dendrite sim 500 m n (500 m) f

Other issues are assumed to be negligable for this table. Input data rate
assumed to be f (Hz). Assume average dendrite has 1 compartment per synapse.
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FIGURE 14 | Plot illustrating the computation described in Table 2 for
the computation assuming 1000 synapses and assuming real time
operating frequency (1 kHz). One curve for the ANN and WTA complexity
is plotted because they are effectively identical on this plot. To reach a
computational level of 10'2 neurons with 1000 synapses or 10" neurons
with 10,000 synapses, we would be missing a gap of 10,000 in the
resulting computational complexity to the wordspotting approach, for the

limited level of modeling of biological computation would achieve.

rons with 10,000 synapses, with questions how we might achieve
that resulting large hurdle. Even with a factor of 10 over current
digital supercomputer architectures, we still stand far away from
building a human cortex.

Physically based computation approaches give some perspec-
tive on how to approach this issue. One key aspect of physical
computation, originally discussed by Medddad, 199)) is that
it could be a factor of 100D1000 more dense than custom dig-
ital approaches. The fundamental argument is the number of
transistors that are needed for an operation is signibcantly less
than for a digital computation, say for a multiplication. In prac-
tice, analog transistors might be slightly larger and the routing
needs to be more careful than for a digital system, so in prac-
tice an efpciency improvement of 100 seems realistic. On the
otherhand, most architectures have memory locally conbgured,
reducing both complexity and memory access times, resulting
in an improvement in density. In many cases, like a VMM net-
work, there is effectively a memory array where the computation
is done through the memory, and therefore, the entire compu-
tation is complete in the complexity of accessing 2b3 rows of
digital memory. These modibcations give promise that will enable
a solution to achieving the resulting complexity for neural archi-
tectures. These approaches could reasonably be extended to other
supercomputing problems.

To illustrate the different complexity of computation, we will
consider the relative size of digital processor as well as more
physical implementationszigure 15shows the resulting compar-
ison between these approaches, as well as a relative factor of 500
expected between the two approaches. Using current chip data for
these approaches, it is assumed that we can implement roughly
8 pyramidal cell neurons/miin a 350nm CMOS process, a
chip which includes local FPGA style routing as well as synap-
tic and dendritic modeling using local memory elements. From
this data, the scaling can be approximated as roughly quadratic
with process dimensions. This data per fras well as the max-
imum IC size on a wafer can be plotted, typically 2 &n2 cm in
area, or the size of the reticle stepping. Further, these approaches
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FIGURE 15 | Projection showing the number of neuron computations
possible on a single IC (2 x 2cm), assuming both digital and analog
computation, as a function of process node.

production cost of these system ICs. For a 10 nm IC process, the
die cost would be approximately $20 M, which is high for indi-
vidual households, but in the range for large commercial systems.
A digital system requires a factor of 400 more ICs, so base cost
would be a similar factor to these analog estimates. These costs
only consider the IC cost, not the rest of the system communica-
tion and memory complexity, which will be higher for the digital
computation system.

Our calculations stop at 10 nm devices, since theoretically the
MOS transistor scaling stops around 10 nm devices; of course,
one should never underestimate the impact of smart individuals
to further push these limits, with the resulting benebts. Further,
there is a possibility of new technologies pushing these limits
further. To date, no technology has shown enough promise to
compete with Si approaches with appropriate memory technolo-
gies. Any approach needs to compete with Si 10 nm node, the
aspects of interfacing to a Si substrate, which would be necessary
for any novel technology in the short term. If a technology can
not show to get at least densities greater than a factor of two over
a 10 nm process, the odds of its adoption is unlikely given the rest
of the system complexity required.

can be compared to an array of digital processors, typical of vidBOWER-EFFICIENCY OF NEUROMORPHIC SOLUTIONS
processor ICs, and optimistically assume quadratic scaling withe obvious question missing after addressing the potential com-
technology. A recent Nvidia IC achieves 512 processors on a singlgational approaches, both for physical and digital processing
reticle sized IC in a 40 nm procedsdly, 201); it is assumed one systems, is the need to address the resulting power consumed
processor could handle a wordspotting complexity neuron modby each system, as well as address the related question of the
in real time. Such an approach requires that the communicatiaequired communication to perform these computations. Further
scales effectively as the resulting system is built; that issue wilfloen Mead (Viead, 199)) it is expected that physical comput-
discussed further when considering power dissipation issues. ing systems would be more power efbcient by using physical
What is the physical size of an analog system scaled egmputation techniques, and not just more area efbcient com-
to human cortical levels (#8) neurons and 10,000 synapsesfutation, because of the far fewer devices needed for a single
Conservatively 3 million neurons per IC would require 300,00bmputation.
chips; the digital solution requires roughly 10020 million ICs. In One of the amazing thing about the human brain is its ability
terms of building a physical system, one could vertically stattkperform tasks beyond current supercomputers using roughly
multiple chips in a package (e.g., 30 is possible), and one co@iWw of average power, a level smaller than most individual
put multiple chips on an IC board (say 100 on a 8B0cm computer microprocessor chips. A single neuron emulation can
board). The analog approach requires a set of 100 boards for ttzig a high performance processor; given there i€ h@urons
architecture, which seems possible given current technologieserating at 20 W, each neuron consumes 20 pW average power.
A similar digital system would require 40k boards, if possibl&ssuming a neuron is conservatively performing the wordspot-
effectively, digital solution will have a hard time reaching the conting computation (1000 synapses), 100,000 PMAC (PMAC
plexity of a human brain, as well as having a portable applicati@PetaO MAE 10°MAC/s) would be required to duplicate the
at the complexity of a mouse (i.e., 400 boards). This size systeeural structure. A higher computational efbciency due to active
is probably not a portable system, but possible as a small ratgndritic line channels is expected as well as additional computa-

computer.

SILICON DIE COST SCALING FOR NEUROMORPHIC COMPUTING
Silicon die area is linearly related to larger IC cost; therefore, anBuilding neuromorphic hardware requires that technology
idea of the resulting cost of these neuromorphic type approachmsist scale from current levels given constraints of power, area,
is formed. The total cost for a fabricated IC is the wafer coand cost: all issues typical in industrial and defense applications;
and the mask cost. The cost for the mask set is a one-time cdidhardware technology does not scale as other available technolo-
and typically much larger than the per wafer cost. A wafer hages, as well as takes advantage of the capabilities of IC technology
number of square (or rectangular) reticles that are repeated ovbat are currently visible, it will not be successful.

an entire wafer; for a typical 20 cm diameter wafer, one approxi-

mately gets 50 reticles of roughlyx22 cm sizeFigure 16shows POWER EFFICIENCY IN TRADITIONAL DIGITAL COMPUTATION

a typical scaling of wafer cost with process node; a human corslthough one might expect that conventional digital systems are
solution is entirely a question of per die cost, and would be tt@mply going to keep scaling, to the contrary it certainly seems

tion due to learning. The efbciency of a single neuron would be
5000 PMAC/W (or 5 TMAGAW). A similar efbciency for 0
neurons and 10,000 synapses is expected.
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FIGURE 16 | Estimating of cost to build neuromorphic systems. (A) A information; real numbers are typically proprietary information of the

picture of a wafer, reticle, and mask, and stepping to illustrate the resulting
discussion. (B) Estimate of mask cost, die cost, and cost of building a system
at the level of human cortex for a physically based computing system. The
prices for the mask and die cost are approximate, publically based

particular vendor. We assume that one mask set is required for the cost of
the system; in mass production of such units, the mask cost would already
be spent. The resulting system cost is then almost entirely dependent on the
die cost.

that MOSFET devices will scale to some lower limit arour

the 10nm level (or smaller), and digital system performan
improvements due strictly to classical MOSFET transistor scal
can no longer be expected. For example, computational efbcie

of Roating-point MAC units has only slowly improved over the

last 11 years (factor of 2); the result is digital computation

moving toward lower precision type computations, favoring conj

petition with neuromorphic and analog systentsgure 17was
generated by normalizing a OcomputationO as a 32-bit multi
accumulate (MAC) operationNarr et al., 201); the approach
seems independent of the particular computation architectu
(DSP, FPGA, etc.); typically DSP or low-power microprocess(
are used in low-power computation, due to the high baseline cu
rent required for FPGA devices=( W for large devices). MAC
operations are often the key aspect for high performance, sig
processing, and power efbcient computing, as well as is a v
debned computation operation to compare approaches.
This power efbciency asymptote changes the paradigm in @
ital processing; one can not use single- or double-precision arit
metic without considering its cost in power. In practice, energ
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L
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FIGURE 17 | Plots of computational efficiency for digital multiply
accumulate (MAC) operations normalized to 32 bit size computation.
Naler the last several years, the computational efficiency has not scaled
nvelbng the lines expected by traditional Moore's law type scaling. A closer
look suggests an asymptote is being reached in MAC computational
. efficiency using classical digital techniques. The computation efficiency
Igévels off below 10 MMAC/mW (or 10 GMAC/W or 100 pJ per MAC). The
hésymptotic curve falls off from the linear trend at approximately the
Y90-65 nm minimum feature size node. One hypothesized factor might be

Vithsmatch between digital components requiring larger transistors, and
nrequiring larger capacitance to be charged for each operation.

efpcient computing systems are increasingly being designed v
smaller and smaller word lengths for a particular operatio
to reduce the required power for the resulting computations.
Decreasing the word length roughly gives a quadratic decrease

in power dissipation; a limit of 100 W/TMAC for 32-bit MAC particularly where one gets accumulation of values over a period
units is expected, which scales to 6 W/TMAC for 8-bit MA®f time. Further, expertise in small word length digital compu-
computation. At 8 bit operations, conventional numerical analtations is rare, nearly as rare as experienced analog IC designers.
ysis of ODEs is highly error prone and unstable, so successfinally, at 8 bit accurate computations, the argument that digital
use of these calculations requires reformulating models, if possimore accurate than analog computations is no longer valid.

ble, for the dynamics. ODE computations of multiple timescales, One can expect innovation to improve this approach. One
such as adaptive Plters, require signibcantly higher resolutiexample of a recent asynchronous approach optimizes based on
to achieve reasonable SNR levels; the ideal summation in aagerage delay rather than optimizing on worst case delay, and
log approaches eliminates many of these constraints. Additgrefore shows results that could get past the 100 pJ per MAC
non-linear operations introduces additional complexities, botbarrier (Marr et al., 201). Another approach is to consider the

in terms of MAC operations as well as resulting dynamicasymptote seems set by device mismatch; therefore, the use of
Finite word length effects are still serious issues in these capasgrammable analog techniqueBdgnan et al., 20Q5might
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be able to overcome some of these issues. Any more special- Energyop = 121 CefUr V44
ized solution for getting past the digital efbciency asymptote
requires an approach that can be pulled through the typical degfnere Ur is the thermal voltagekT/q. The effective line capac-

digital-design tool Zow. itance is capacitance at the input line divided by ampliber loop

gain driving the line. In one sense, the VMM requires getting
COMPUTATIONAL EFFICIENCY COMPARISON BETWEEN DIGITAL, the data to the computation in a matrix array, with the associ-
PHYSICAL, AND NEUROBIOLOGICAL SYSTEMS ated capacitance; with the dendrite approach, the computation

Figure 18 shows a viewpoint to compare ranges of power eflStarts closer to the inputs. Getting the data to that partin the com-
ciencies. In this section we discuss the computational aspecPdfation would be a separate discussion, and is addressed in the
these comparisons, comparisons not including the cost of coff/lowing section. _ _

putation (communication power is zero). The next subsection BOth approaches scale linearly with power supply voltage
looks at the cost of communication, which must be minimized t6Y a); decreasing the supply results in a proportional improve-
not cancel out improvements in computational power efbciencg.'ent in efbciency. Typical numbers are mentioned fop ‘it

We will consider computational efbciency versus effective capac V- FOr @ VMM, one could imagine decreasing the supply volt-
itance, the capacitance that an additional input is required g€ t0 0.5V, probably limited to the driving ampliPer headroom.
modulate. Typically, the computational efbciency is proportiond"€ dendritic line, with the use of programmable analog ele-
to the resulting effective capacitance; local SNR is proportionalR£nts, should be able to decrease the supply voltage to biological
effective capacitance due to thermal voltage. Computational efBYels (180 mV) &iwy et al., 2003 For a digital structure, the

ciency is a measure that normalizes across real-time, and fadiéfamic power decreases yvitlj’d\ﬂue to switching energy, and
than real-time, approaches. is proportional to the capacitance of the entire multiplier circuit.

We approach the discussion by reviewing computational effphe capacitance of the entire multiplier element is orders of mag-

ciency in digital and typical analog signal processing approacH?—:jg’*,’de larger than a typical single Roating-gate transistor doing

and then focus on the opportunities seen by the wordspof? equivalent vector-matrix multiplication shown irigure 19

ting structures in comparison to biological neuron computaStatic digital power tends to increase with decreasipg(Kim

tional efbciency (5 TMAGIW), in the next paragraphs. From et al., 200§ and can offset the resulting gains, as well as increase
the previous subsection, a digital system using 8 bit MAC aritHfansistor mismaich, requiring larger (Width Length) devices
metic is a 3x 107 factor higher than the biological compu-2nd larger capacitance.

tation numbers. Analog signal processing techniques have beef’SiNg the equivalent computation of a network of cortical
shown to have a factor of 1000 improvement, on average, BRUTONS inTable 2, the different computational approaches are

computational efbciency for many algorithms. If we implemerfiomparedFigure 20plots computational efbciency versus effec-

the biological approach as a sequence of VMM computatioH’s‘e capacitance, as well as prowd.lng acomparison between these

and similar approaches, efbciencies of roughly 10 MMAR/ comp_utat_|onal approaches. Effec_tlve capamtan_c_e is debned as the

or 10 TMAC/W would be achieved; analog VMM and similaFesulting increase of charge required for an additional node of the

approaches are in the 1910 TMAC/W range. Understanding n&g_mputation occ_:urring in parallel. The classical 32-bit MAC dig-

ral computation offers opportunities of signipcant improvemenial Power wall is at the top of the graph, and the power wall

in computational efbciency (5 10P). for 8_-b|t computation is nearly at the to_p of the graph_; power
From the discussions and data presented so far, it is expe&gamency would sca_lle asthe tot_al capacitance for the digital oper-

Neuromorphic algorithm approaches are techniques that wfifion- When power is a constraint for a digital system, SNR can

have higher energy efbciencies than typical analog signal gigt Pe assumed to be effectively inbnite. A typical value for a

cessing algorithms; the improvement and impact, as well %M compiled in an FPAA would be at 10 MMAGW (=10

the architecture demonstrating these efbciencies, is illustrated I{AC/W) power level. By utilizing the computation efbciency

Figure 18 For a dendrite implementation, such as the circui'ﬂ“. dendritic struct}Jres for Wordspottlng.approac.hes, a basic com-

that demonstrated the wordspotting algorithm, this neuromorPiled structure with large node capacitances (rel,pF) shows

phic approach has higher computational efbciency compared3 improvement in power efbciency of a factor of 10, a more

classic analog signal processing techniques. This implemeftgdicated approach would show an improvement of 450 over

tion gives some insight into the advantages of techniques udBf YMM structure. Decreasing the resulting power supply to

in cortical structures. The time constarzL ms) is set by the Piological levels (; = 180 mV), shows another factor of 10

conductance at each node with the capacitance (C) at each ndg&rovement in power efbciency (45 PMAC/W). All of these fac-

which, in turn, sets the bias current because the transistors néS: With typical node capacitances results in structures within
rest, Viess (Say 10 mV aboveare ohmic. For the dendritic line, two orders of magnitude of the power efpciency of biological sys-

the effective average energy per MAC equivalent operation is tems; the Si internode capacitance could be further decreased as
nodes scale down. These neuromorphic techniques show promise

1 to approach the computational efbPciency and raw computational
EnergyMAC = 5C(Vrest— E)Vaa (2) power as mammalian nervous systems.

Capacitance 1fF | 10fF | 100fF| 1 pF

For a VMM computation, the efbciency per operation set by total
SNR(dB) | 22.1| 321 | 421 | 52.1

effective line capacitancedg is (Schlottmann and Hasler, 20)L1

www.frontiersin.org September 2013 | Volume 7 | Article 118 | 15


http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Hasler and Marr Achieve large neuromorphic hardware systems

Power Efficiency Scaling

10MMAC(/s)/W —— 1st DSPs (1978 - 1981)
100MMAC(/s)/W ——
IMMAC(/s)/mW —— i y
- C‘LIH n VS
_ | Energy Efficiency Wall - v
10MMAC(/s)/mW bt i) H Bt : |—T-<{ o d|
100MMAC(/s)/mW —— TromSE=C=t
"Sook | V/
IMMAC(/s)/uW ——
Sblockb
10MMAC(/s)/uW —— Typical Analog VMM [
<
100MMAC(s)/uW FPAA compiled Dendritic | L& [/} |
Classifier (350nm IC) = \
IMMAC(/s)/nW —— /
Dendritic Classifier /o// R
10MMAC(/s)/nW (350nm IC) /ﬂ: N
100MMAC(/s)/nW —— \\ = BhAdEEEN
\ / 1 © @ O @ @ O @ @ T
IMMAC(/s)/pW —— (<) Biological Neuron N o C I I I I I I I y
. J

FIGURE 18 | Dendritic computation results in computational efficiency  three orders of magnitude over analog SP techniques (Ramakrishnan

improvements over analog SP techniques. The first approach was a et al.,, 2012). The second approach was based on a local, configurable
compiled FPAA design, showing an order of magnitude increase, with architecture (FPGA/FPAA) for routing neurons with a high percentage of
the second, more optimized configurable approach potentially enabling local connectivity.

Further, scaling capacitance at each node has a direct impactragure 20shows a table of SNR at each of these capacitance nodes,
the thermal noise at that location, whether in a silicon or biologwhich are consistent with the low currents mentioned above.
ical system. The best case (lowest level) for thermal noise currenAs capacitances scale down, the resulting bias currents for the

(1) in a device is related to its bias curremy &s real-time performance will also decrease as a result. For neuro-
morphic circuits, faster than real-time performance is not only

oo 29Af possible, but often easier. Fortunately, MOSFET transistors can
F/F=—= () easily hand -
I y handle smaller currents, although for lower threshold volt

age processes, either the source voltage must be moved relative

whereAf is the bandwidth of interest; for a Si transistor in satto the substrate or the gate voltage must be outside the resulting
uration, we exactly reach this levélgrpeskar et al., 1993ow Power supply voltages, easily achieved with Boating-gate devices.
current levels are often needed to achieve the resulting powpically, the lowest currents are bounded by the dark current in
eﬂjciency' which requires programming to low currents (i.e., pme drain and source jUnCtion deViceS, IImltlng current levels in
levels, similar to biological levels), leading to lower, classicdflg 1D10 fA range in practice, but still enabling biological time

measured SNR levels, typical of biological systems. For examf@stants with small (say 1910 fF) capacitances. The current lev-
for 1kHz bandW|dth’ we get a relative noise variance as els, as well as the I’esulting thermal noise |eVe|S, would be similar

to biological levels.

loias | 10TA | 1pA | 10pA ) 1NA POWER EFFICIENT NEURON EVENT COMMUNICATION

Yonoise| 20 2 0.2 | 0.02 In the previous section, we have developed models on compu-
tation scaling, particularly requirements toward cortical comput-

Further, for coupling of capacitors with transistor source juncng requirements. These models are necessary for understanding

tions (subthreshold), the noise level is related to the familimomputation, but not sufbcient because we need to consider

kT/C = (Ur/q)/C noise, where C is the capacitance at that nodthe resulting power dissipation for communication. So for this
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FIGURE 19 | Programmable floating-gate transistors performing a
vector matrix multiply using current-domain mathematics.
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FIGURE 20 | Plot of computational efficiency versus capacitance level
for VMM (analog) and Dendrite computation (neuromorphic,

wordspotting) physical algorithms for V44 = 2.5 V. For both algorithms,

the efficiency improves linearly with decrease in V4q, since power scales
linearly with Vg here. We also show the computational efficiency for the
dendrite computation for Vg = 180 mV, typical of neurobiological
systems (Siwy et al., 2003). We also include a table of effective SNR,
computed from thermal noise at the node over signal size (~Ur), as a
function of capacitance.

CONSTRAINTS FROM BIOLOGICAL COMPUTATION

For biological systems, the communication is primarily commu-
nicating events, or action potentials, which are effectively digital
signals. In some cases, we might start preconditioning signals for
computation, but where successful, it has minimal effect. Analog
encoding is possible, and might have power efpciency improve-
ments if the event encoding is directly representable in analog
signals, which for non-rate encoded signals is challenging. For
the remainder of this section, we assume we are communicating
digital events between neurons.

Neurobiological computation systems also address power efb-
ciency constraints. The human cortex consumes about 20 W of
power, of which, only a fraction of this power is used for compu-
tation; going forward, we will assume 25% of average power (5 W)
for communication of events from somas to synapses. One for-
mulation for switching energy, which is commonly used in digital
for charging or discharging a capacitor is

1
Energy= éCLV(,%,,, 4)

where G is the capacitive load, andgy is the power sup-
ply, which for a biological communication is between 140 and
180 mW (Hodgkin et al., 195 The total energy for a biological
event is twice this value (using the digital modeling of charg-
ing and discharging a capacitance). Calculating capacitance from
power in a digital model, given a typical spike rate in the cortex
occurring once every 2s (0.5 Hz bring rate), and?iieurons
in the cortex, this results in 245 pF total capacitance on an axon
line for a biological system, corresponding to 30.6 mm average
total cable length of fum diameter axon cable (fairly thin axon).
This calculation shows that digital communication must be con-
strained to replicate the low switching energy of the biological
system. Average event rate for neurons in cortex has been consen-
sus below 1 Hz, although that level depends on region to region of
cortex [i.e., Early auditory cortex is 2.5D4 Hz average katel(
and Sakmann, 2009; Koulakov et al., 2009; Roxin et al.,)P011
(Sejnowski and Churchland, 1992; Kock and Sakmann, )2009
Typical axons range in diameter from 1 to 26n, although val-
ues outside this range are foundefveen, 1962; Debanne et al.,
2011, and typically have elaborate arborization patterns to large
numbers of neurons, often within a single region of the brain
(Debanne et al., 20).1IMylenation will extend the length due to
lower capacitance, particularly for larger axons which also have
larger diameters; small, thin axons tend to have little mylenata-
tion axons. If a typical sum total length of all mylenated axons in
the human brain is 1.5« 10°m (Kandel et al., 20Q0the result-
ing axon length for a particular neuron is 1.5mm increase of
the 30.6 mm average cable length per neuron; the effect mostly
increases the length of long-distance connections.

The net result is that with most communication on biolog-

discussion, a computational scheme that bts the power budg=tl axon lines, even though they might be present everywhere,
is assumed, as modeled in the previous section, particularly fanaluding intricate three-dimensional patterns, one does bnd an
cortical structure. To consider the power consumption for comexponentially decreasing distribution of axon cable length in cor-
munication, we must consider communication of events, mentex, consistent with the neural communication being constrained
ory access, and resulting infrastructure requirements, discussitms tight power budget. This result is consistent with data that

we did not address in the previous section.

most neurons have a high level of local interconnectioni{glas
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and Martin, 200%, such as nearby cortical neurons; any cortical
architecture must explicitly incorporate these effects to achi v R, T N

: ) S o o o o
the necessary power efbciency gains. Further, these results are a :ﬁ 1] Df E% E; E % E;
consistent with the low average spike rates found in cortical sys- . - [LL¥] =oaooo
tems (1 spike per second); an entire cortical network operating - AT BEEEEE

with rate encoded signals (i.e., 3D300 Hz) would consume 100n-Chip Comm  NearestIC Comm  On-Board Comm  Board-to-Board Comm
times the power, and therefore the axon cable length for a cor-
tical power dissipation requires 100 times shorter cables, whic
impractical. We expect that constraining silicon communicatio
power may be required based on this biological inspiration.

-
Exponentially Increasing Distance, Capacitance, Power Required

CONSTRAINTS FROM DIGITAL COMPUTATION SYSTEMS 1oowr ]

5W 3B events 200B events

On-Board connection

experience in communication of digital signals, including event W} 1
structures. For typical CMOS communication, (4) is directl Eg?gr;;torcommmzsw
relevant to digital systems communication; for source coupled
approaches (Emitter or Source Coupled Logic), th%i Yerm
is modiPed by voltage swing timeg,V resulting in somewhat
lower dynamic power but potentially higher static current; we will ~ 100uw- 1
focus on the classical approach through this discussion, which will
have minimal differences for other encoding schemes. Classically,
communication of information over a longer distance is expen-
sive in power; a good summary for these approaches is written oo 601 0.1 I 10 00 1000
elsewhereulurciello and Andreou, 2006The capacitance for Events (Billion/s)
a line is a function of the distance of the connection, as well ) ) o
as making connections from one package to another or making,eL 1% 11201 7P S e e
connections between boards or other approaChes' Given dlgltagighboring ICs, on a single board, and distances beyond a single board
communication is fast, in theory, communication could happen (.e., between two boards). Each of these steps requires considerably more
with small delay; a low average spike rate is essential in having thewer for communicating the resulting event; the more local the
communication being nea”y instantaneous. communigatipn, the more power efficient the resu\tirjg computa.tion. (B)
. . Communication power versus number of events (Gbit) communicated. We
Flgur_e 21A shows a fe_W representatlve I,evels for C,O “consider the three cases of transmitting a bit on a chip (average C; = 1pF,
munication of events, typical boundary locations for typic Vgg = 0.5V), transmitting a bit to a neighboring chip (average C; = 10pF,
communication. Where possible, we want to have as much comv,y = 2.5V), and transmitting an event address of 8 bits on a board
munication locally on a single IC for low-power operation, sincg faverage C;, = 80pF, Vg4 = 2.5V). Each case requires 0.12, 31.3 pJ, and 2
that decreases the total amount of capacitance needed to| [3é&nerdy communication per bit, respectively. We would expect even
. X . more power consumption for longer distance communication (i.e., between
Charg_ed and dISCharged (I'e" 1pF for Iong distance connect Okﬂ)ards), because of the larger capacitance for these approaches. On board
on Ch|p), as well as allows for a (|0W6I’) range of ¢ould be requires address communication, because when transmitting sparse
supplied as well as a range of possible communication schemesents encoding the address gives an optimal solution.
Further, the tighter integration between memory elements and
computation further decreases communication power; ideally, as
in the STLS approaches, the memory and computation are iniedependent of the communication scheme. Such event commu-
grated together, eliminating this particular issue. The types oication schemes could transmit an event in only a single bit on
approaches at a local level needed to optimize the use of meire resulting line. Further, the introduction of 3D silicon pro-
ory in the routing architecture. For example, efpcient FPGeessing (die stacking, multiple grown layers, etc.) has introduced
approaches achieve both approaches, integrating the non-volagehnologies that can reduce the effective off chip capacitance by
memory for the connections with the communication of eventan order of magnitude, and therefore, such approaches should be
in a low capacitance infrastructure. Further, dendritic struadtilized where available in a particular technology for multichip
tures bring more of the information rePnement to the axorapproaches.
outputs. When we communicate over distances longer than nearest
Almost all systems require communication between multneighbor chips, we typically employ an Address Event communi-
ple chips. When communicating events with a neighbor chigation scheme (i.e., AER), which requires sending the location of
(e.g., 1 chip right next to the transmitting 1C), the minimum a particular spike between chips. At least, this requires an address
capacitance is typically set by 10 pF by specibcation (due to packthe particular line, as well as the particular chip we are consid-
aging, bonding, etc.), as well as off chip communication ten@sing; on a single board, an 8 bit address would be a lower limit
to be at larger \Y; (5, 3.3, 2.5V; we assume 2.5V for thes®r such approaches. In such an approach, a communication of
calculations), resulting in a higher energy computation. Suan event would travel multiple minimum chip distances (i.e., 8
an approach results in 31.3pJ per bit [or 3{\8/(Mbit/s)] is a lower bound for an average number), resulting in roughly

On-Chip comm

IuWH 8
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2nJ per operation. As we go to longer distances, and particuldrly

when we go to different boards, we see a signibcant increase in 81\;:%&“ > Micro
capacitance and addressing as well as routing infrastructure; theg Processor
goal is to minimize the number of such long distance events that 5 < Mbyiels | Instructions

: : . o =l ImW Data flow
need to be communicated, while preserving the capability. & (1 MMAC

Figure 21Bshows a graph of the power required for commur S computation) i T

nicating a number of events for these different schemes. When
trying to reach biological efbciencies for communication, we j§u 0425mW
have signibcant limits even communicating single events betweef? MMAC /Processor
neighboring ICs, not to mention longer distance communication.

For 132 events per second results in 30 W of power consumption Memory Element

(1 Thbit/s). The result requires most of the computation to be local;

g - T g Signal Input
fortunately, neurobiological systems use a similar approach in the Y YV YVYYVYVYVVYY
fact that over 90% of neurons in cortex project locally to nearby FEE s e E ]
. . g OEEEEE TS|
neurons (i.e., nearest 1000 pyramidal cells). g L
For example, if the off chip (not nearest neighbor communica- *;i I | | ||| | L o
tion) to is budgeted for 1 W of power, then only 0.05% of events g Sl el el e el SE]
can use this communication channel. Further, if we budget 1W © j j j j j j j j j j j %*%
for off-board events, then with the additional capacitance and bts%D e e e T:.é
for selection needed, one would see 64 times more capacitance; MCTOW . &
resulting in 0.001% events communicating off board. As addi- C i P
: : ; : . omputing SpEaEaER =A== = ==
tional technology becomes available, such as multiple die stacking Element il
. . . . . . . . (T Y e
in a given package or three-dimensional circuit fabrication, the —

resulting capacitance for communication will decrease, improv-
ing some of these numbers, but the containing concepts will stilFIGURE 22 | Diagram showing typical computation models for digital
be the same. We expect similar type issues in neurobiological sﬁ-d analog approaches. For a typical digital computation, we must access
R ) - the data (as well as instructions), communicate it to the processor, perform
tems; even thoth the brain can communicate over Iong distan CE&Re computation, and communicate the results back to the memory. When
by many wires, the resulting energy to do so would be prohibitiyenis memory is an off-chip device, the resulting power consumed for
in its current energy budget_ Such constraints keep the commusommunication is much higher than an efficient processor. The analog
nication overhead for the system manageable, and therefore |tH@rroach directly computes through the memory, and therefore minimizes

. . h Iting i d lexity due t ication. O Id
communication structure never becomes too large a burden fof ¢ '¢3|n9 'ssues and complexity due to communication. ©ne could use
digital based computation and memory to achieve some advantages,

the SyStem Sc_aling to Iarge Si?es- ) limited by the computational efficiency limits for digital techniques.
The low spike rate has a similar effect for synthetic systems-as

it does in biological systems; increasing spike rate by a factor of
100, typically necessary for implementations using rate encodgth synapses. Using external memory as the primary approach for
approaches, increases power by at least a factor of 100, sigpfegrammability and conbgurability, as is the typical use of AER
cantly limiting where such systems can be used. Of course, m@sthmunication schemes, comes at a huge cost that makes scaling
rate encoding approaches simplify neuron elements to elementgsYarge systems impractical. The advantages of AER communica-
sigma-delta converters, eliminating most of the computationgibn, which include enabling long-range, sparse interconnections,
possibilities. comes with the added cost of digital communication, costs that
Rarely is the digital communication included in power forare very small for sparse, infrequent events, and that depend
computation Figure 29. For example, the computation poweron the distance required for communication (on-chip, off-chip,
to access 1 MMAC of data from a nearby memory block, requiringff-board). Adding the additional cost of FPGA or other high
two 2 Mbyte, 32 bit input data, and 1 Mbyte, 32 bit output dataperformance digital processing only further weakens the appli-
results in 3.1 mW (}; = 2.5 V) of power, even though one mightcability of these approaches going forward. One sees exactly the
Pnd a DSP chip computing at 4 MMAC(/s)/mW power efPciencyame issue when using multiplexing of a memory with an analog
(TMS320VC5416, 20REA memory chip or data source further system, whether to load synaptic weights in an external memory.
away requires even higher level of power. As another exampiis result shows the heavy energy cost of computation and mem-
using a memory element one chip away for remapping neuraty that are not co-located; although this approach might have
addresses, which is usually a Prst step to storing synaptic weiglfgantages in initial system building, it requires communication
in off-chip memory, requires sending an 8 bit address off thgcross sizable capacitance, and therefore requiring more power, as
chip and an 8 bit address back on the chip. Just this power alogell as system complexity.
requires 0.5nJ per remapping in the best case; & dgents/s,
we require 500 W for this simple computation. Such an expensiENERGY EFFICIENCY COMPARISONS FOR OTHER NEUROMORPHIC
computation must be used in particular targeted areas. IMPLEMENTATIONS
Figure 23shows the tradeoffs between these systems, as welllasy neuromorphic systems claim to be power efbcient, and
simple comparisons between a small network of simple neurocempared to typical digital off-the-shelf approaches, these claims
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FIGURE 23 | lllustration of the costs of external communication for
configurability and storage. \Where possible, we want data-flow
operations where memory and computation are co-located with local
routing/configurability. Moving configurability is moved off of the
processing die substantially increases computational cost because of the
power and complexity requirements for moving the data to an external
processor/memory, even if next to the IC. Moving memory away from
Processing, say for multiplexing Synaptic values, further increases the
resulting power and complexity cost, even if the original device gets
simplier and smaller. These schemes include rate encoded approaches
encoding synapse values because of the increased event rate. We include
values for a small network of 1000 neurons with 100 synapses operating
with a 1 KSPS operating speed assuming a typical ANN (i.e., Vectormatrix
multiplication) neuron structure.

We will comment on a few representative neuromorphic sys-
tems, while amazing feats of engineering as platforms for neural
simulation and modeling, do not reach the desired power efp-
ciency targets. The Caviar project illustrated a heroic effort
building large-scale neuromorphic processing capabilities using
the computation from the DVS imageelliChtsteiner et al.,
2009. The resulting convolution IC, the primary workhorse
of the architecture, was capable of 12 GMAC, low-precision
operations in roughly 100 mW of power; these impressive num-
bers are still two orders of magnitude less power efpcient than
VMM type operations, even though the core operations are sim-
ilar. The resulting system integration cost is signibcantly higher
(even when not using USB monitors of USB events) as well
as requiring FPGA ICs for routing (i.e., synapse mapping), as
a tradeoff for system modularity; lower event rates would fur-
ther improve the resulting system. Related algorithms using
DVS imagers, while computationally interesting including stereo
processing i et al., 2012; Rogister et al., 20,18how use-
ful neuromodeling approaches considering practical algorithms,
but often computed on a standard digital computer. The pos-
sible efpcient implementation being better than the analog SP
line is neither demonstrated theoretically or experimentally at
this time.

The SpiNNaker approachF(rber and Brown, 2009; Rast
et al., 2011; Furber, 2012; Painkras et al., puses efpcient
event-based communication structures, but utilizes 18 standard
ARM968 integer-math processors4 GIPS in 1 W) for solving
any of the neuron dynamics, and therefore will be almost as efp-
cient as the digital power-efpciency wall, far from the analog SP
computation possibilities. Further power limitations occur when
the processors require off-chip memory, typical of many cur-
rent implementations. Other resulting systems, such as Neurogrid
(Lin et al., 2006; Silver et al., 2Q@hd Wafer level implementa-
tions from the group centered in Heidelber§d¢hemmel et al.,
2008a,b in best cases get close to the analog VMM efbciency,
typical of an ANN.

Any practical neural implementation must make sure that the
resulting infrastructure does not overwhelm the efbcient compu-
tation. Such an implementation must consider system communi-
cation of events, communication to outside processors, and other
multiplexing structures. Without architectures that can, in the

are often right. In each of these approaches, the IC power effarticular implementation technology scale from one to billions

ciency is between the digital and analog SP techniques, with mwémeurons, clearly has advantages over other approaches. Many
lower system power efpciency due to the high-level for commuigrevious attempts to scale up single or small networks of neu-
cation overhead (including FPGAs for routing). Many techniqua®ns have often slowed down development because of these issues.
start with a power efbcient neuromorphic sensor , such as tfie Silicon Cortex Project (SCX, from INI) spent enormous engi-
DVS imager [(ichtsteiner et al., 2003 which compares well neering effort to communicate between a few neurons on a single
to commercial cameras, making it a favorite sensor interfabeard in the multi board systenijeiss et al., 1999; Indiveri et al.,

for many neuromorphic platforms. Unfortunately, neuromorphic1999; the Central Pattern Generator (CPG) system by Patel et al.,
techniques have not often improved past the analog SP efleed similar issue®gtel et al., 1999, 200G he resulting system
ciency; often the approaches, including event-based approaclgesign for the communication, programming, and conbguration
reduce down to Vector-Matrix Multiply operations, as sometimeisfrastructure far outweighed the neuromorphic computation
explicitly said by the authorsSerrano-Gotarredona et al., 2009 issues. Even successful multilayer model implementation are con-
These facts leave us with a small list of potential neuromorphstrained by similar approaches, and face signibcant challenges to
computational models currently used; the authors believe maoseale past current levels, primarily due to the digital communica-
efbcient algorithms will be discovered/invented over the comitign infrastructure (in et al., 2006; Silver et al., 2007; Schemmel
years. et al., 2008b; Serrano-Gotarredona et al., 2009
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COMMERCIAL CONSIDERATIONS TO DRIVE THESE sensory processing, particularly sensory systems interacting with
SYSTEMS other humans, enabling companies like Synaptics (touch pads),
Although one can discuss how to build a cortical computer ohoveon (CMOS color imagers), and Sonic Innovation (analogb
the size of mammals and humans, the question is how will tiggital hearing aids); Gilder provides a useful history of these two
technology developed for these large systems impact commerefghpanies elsewher&i(der, 200%. From the early progress in
development. The cost for ICs alone for cortex would be approxalog signal processing we see companies like GTronix (acquired
mately $20 M in current prices, which although possible for lardsy National Semiconductor, then acquired by Texas Instruments)
users, would not be common to be found in individual houseapplying the impact of custom analog signal processing tech-
holds. Throughout the digital processor approach, commerciaiques and programmability toward auditory signal processing
market opportunities have driven the progress in the Peld. Gettiitlgat improved sound quality requiring ultra-low power levels.
neuromorphic technology integrated into commercial environFurther, we see in companies like Audience there is some success
ment allows us to ride this powerful economic OengineO ratifi@m mapping the computational Bow of the early stage audi-
than pull. tory system, and implementing part of the event based auditory
In most applications, the important commercial issues includgont-end to achieve useful results for improved voice quality.
minimization of cost, time to market, just sufbcient performanc8ut the opportunities for the neuromorphic community are just
for the application, power consumed, size and weight. The costlasfginning, and directly related to understanding the computa-
a system built from ICs is, at a macro-level, a function of the aréi@nal capabilities of these items. The availability of ICs that have
of those ICs, which then affects the number of ICs needed systérase capabilities, whether or not one mentions they have any
wide, the number of components used, and the board space useeuromorphic material, will further drive applications.
Efbciency of design tools, testing time and programming time One expects that part of a cortex processing system would have
also considerably affect system costs. Time to get an applicatiosigniPcant computational possibilities, as well as cortex struc-
market is affected by the ability to reuse or quickly modify existirigres from smaller animals, and still be able to reach price points
designs, and is reduced for a new application if existing hartr commercial applications. In the following discussion, we will
ware can be reconbgured, adapting to changing specibcatimesisider the potential of cortical structures at different levels of
and a designer can utilize tools that allow rapid modibcatiorg@mmercial applicationgzigure 24shows one typical block dia-
to the design. Performance is key for any algorithm, but for gram, algorithms at each stage, resulting power efbciency (say
particular product, one only needs a solution to that particulabased on current technology), as well as potential applications
problem; spending time to make the solution elegant is oftencf the approach. In all cases, we will be considering a single
losing strategy. die solution, typical for a commercial product, and will mini-
The neuromorphic community has seen some early entrig¥ze the resulting communication power to I/O off the chip (no
into commercial spaces, but we are just at the very beginningwer consumed due to external memories or digital process-
of the process. As the knowledge of neuromorphic enginedpg devices). We will assume a net computational efbciency of 10
ing has progressed, which have included knowledge of senSBtAC/mW, corresponding to a lower power supply (i.e., mostly
interfaces and analog signal processing, there have been tfa§¥emV, but not 180 mV) and slightly larger load capacitances;
who have risen to the opportunities to commercialize these tecive make these assumptions as conservative pull back from possi-
nologies. Neuromorphic research led to better understanding blle applications, although we expect the more aggressive targets

2 - IOMMAC / pW ~ I0OMMAC / uW ~4.5GMAC / uwW ~4.5GMAC / pW
Refined
Sensor Sensor Sensor Signal to First Layer Second Layer Symbols
Tnputs > Signal > Signal > Symbol i >»| Cortical 5 Cortical 5}.. [ ]
Conditioning Processing Conversion Classification Classification
Speech | Microphone Cepstrum Basic Auditory Phoneme Low SNR
Recognition | Interface / filtering p Features (VQ, GMM) | Classification Wordspotting
Image | Image aquistition, | Retina Edge / Corner Movement Sequence Gesture
Processing | color calculations | (edge enhancement) | Detection Classification Recognition, etc.
Baseband | Demodulation of | Frequency Fundamental Comm Frequency Complex Signal
Communications | desired band Decomposition Symbol Detection Hopping Recognition Detection
FIGURE 24 | Typical signal processing chain using configurable symbols, through a WTA approach (Lazzaro et al., 1988), we
analog approaches and neural based classifiers. Once the input have a cascade of classifier layers typical of processing in
signal becomes established as a refined probability of low-level cortex.
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would be reachable. We assume the external power consunasdume roughly 1000 neurons project outside of the IC per sec-
is set by 1 event/second/neuron average event-rate off chip toral, therefore with addressing bits would require 4 kb/s, resulting
nearby IC. Given the input event rate is hard to predict, we dori®tL25 nW of average output communication.
include that power requirement but assume it is handled by the Even at the price point for a high-volume commercial device
input system. In all of these cases, getting the required comf®2 rangeTable 3, we have computational power rivaling most
tation using only digital techniques in a competitive size, weightpmputer clusters and arrays of graphics chips integrated as a
and especially power is hard to foresee. component on a board. Potential applications are as a word
We expect progress in these neuromorphic systems and tepbtting front-end, and robust speech recognition in low SNR
should Pnd applications in traditional signal processing arehvironments. A practical application would require some level
graphics handling approaches. We will continue to have neeafsanalog signal processing to create the input symbols for the
in computing that outpace our available computing resourcespmputation, similar to the pathways we see leading up to cortex
particularly at a power consumption required for a particulafrom the sensory systems. Further, these systems can be operated
application. For example, the recent emphasis on cloud computt frequencies higher than real time, requiring a linearly increase
ing for academic/research problems shows the incredible needifopower consumed for increase in operating frequency; these
larger computing resources than those directly available, or exagrproaches could enable using these techniques for front-end
projected to be available, for a portable computing platform (i.eclassibcation of baseband communication systems.
robotics). Of course a server per computing device is not a com-
puting model that scales well. Given scaling limits on computingpTENTIAL OF A NEUROMORPHIC PROCESSOR IC
both in power, area, and communication, one can expect to sgeanother case, we will consider a large die of 40(rtte size
more and more of these issues going forward. of an entire reticle, typical of the microprocessor ICs, graphics
We expect that a range of different ICs and systems will i®s, and other higher end commercial ICs. We might expect a
built, all at different targets in the market. There are options faghip cost of $100 range, resulting from a die cost under $50 per
even larger networks, or integrating these systems with other peile, given current pricing models. These chips would probably
cessing elements on a chip/board. When moving to larger systeedst in handheld or other electronic devices that sell above a
particularly ones with 10D300 chips%3L0’ to 10° neurons) or  $350 range, which enables a wide range of commercial applica-
more, one can see utilization of stacking of dies, both decregigns. In 40 mn? area, we could imagine a network of 30,000,000
ing the communication capacitance as well as board complexiggrtical neurons, resulting in 500 TMAC equivalent computation
Stacking dies should roughly increase the Pnal chip cost by thes0 mwW of power. We assume roughly 10,000 neurons project
number of dies stacked. outside of the IC per second, and with addressing bits would
In the following subsections, we overview general guidelingguire roughly 256 kb/s, resulting in 8 mW of average output
to consider when considering using neuromorphic ICs in theommunication power.
commercial market, Prst for low-cost consumer electronics, and By comparison, these numbers show effectively a hand held

second for a larger neuromorphic processor IC. device having the computational power rivaling the largest of
todayOs supercomputers in the power consumed by less than
SMALL, HIGH-VOLUME CONSUMER ELECTRONICS ICs most handheld devices, and at a price point that could be put

In one case, we will consider a small die of 10 nm pro- into higher end commercial devices, such as tablets or lap-
cess node), typical of commodity parts say in audio devices or daps. Potential applications would include the speech recognition
phones componentsTable 3. The cost is roughly a linear func- examples for the smaller chip, as well as (or in addition to)
tion of the die area, but also a function of packaging, testing tim@age processing emulation, particularly on 1M pixel images,
production costs, and sales cost. We might expect a chip cosingiuding receptive beld processing, image/scene classibcation,
$2 range, resulting from a die cost less than $1. In Zranea, and pre-attention mechanisms.

we could imagine a network of 60,000 cortical neurons, result-

ing in 10 TMAC equivalent computation in 1 mW of power. WeT0OLS FOR DESIGNING NEUROMORPHIC SYSTEMS
Modern system design expects a design environment to work

through all of the layers of abstraction to achieve reasonable appli-
cation performance; we should expect a similar approach for
neuromorphic systems.

In many cases, we can utilize existing tools, where they exist,
such as microcontroller programming or FPGA compilation

Table 3 | Table of possible specifications for commercial
Neuromorphic ICs.

Consumer IC Processor IC

tools, where some even have interfaces from higher level lan-
Die size 1 mm? 40 mm? guages lik& or Simulink. Such tools even exist for analog signal
Chip cost $2 $100 processing compilation, such as the tool suite controlled through
Neurons 60,000 3,000,000 MATLAB (Koziol et al., 201)) using Simulink Schlottmann
MAC 10 TMAC 500 TMAC et al., 2012gat the high level that compiles to a spice deck, which
Comp power 1 mwW 50 mW in turn, can be compiledBaskaya et al., 200t programmable
Out events 1000/s 10,000/s object code for the FPAA device. Higher-level tools also enable
Comm power 70nW 8w the use of these systems in educational experieficagq and
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Hasler, 2008 which will be essential to educating engineers EVICE-LEVEL QUESTIONS FOR ADAPTATION AND LEARNING
design with neuromorphic concepts for system applications thaDevice-level neural system learning starts looking at synapse cir-
are superior to state of the art solutions. cuit models, as well as bPnding approaches to implement these
In the literature, we Pnd a large number of proposed tool§unctions using as little additional synapse circuitry as possible
typically being used by a few computational neuroscientists, eaohenable tight computation. One metric of a learning model
being rewritten for a particular feature, or concept. Examples &f quantifying (and minimizing) the percentage increase in base
these tools would include PyNND@vison et al., 20Q3written  synapse cell size from an programmable synapse to an adap-
in Python, and JAERIAER, 201}, based on Java and connectsive synapse. The Roating-gate based learning structures, single
to Python interfaces. Further, there are classic neural computeansistor learning synapses (STLS)agler et al., 1995 the
tion tools such as GenesiB{wer and Beeman, 199&Neuron Roating-gate LMS adaptive blteédgsler and Dugger, 20)7and
(Hines and Carnevale, 199and Brian Goodman and Brette, Roating-gate STDP synapsésaakrishnan et al., 2011; Brink
2009 which have wide applicability, and are known to be usest al., 2012; Nease et al., 2Jj1all show this overhead met-
ful at different levels of abstraction/computation for the resultingic is manageable and approaches zero in some cases; the cell
ODE solutions required. size is relative to EEPROM type devices, with the size, complex-
Unfortunately, there are few approaches that attempt to briddsy, IC processing, and manufacturing benebts mentioned earlier.
across a range of approaches, in particular, tools used by multhe LMS structure increases the cell size over a VMM structure
ple computational groups as well as multiple hardware groupSchlottmann and Hasler, 20)Lby a factor of roughly 2, and
The notable exception is the PyNN tool, originating from thehe STDP synapse structure sizgaakrishnan et al., 20)Lis
Heidelberg group (EU FACETs program) which shows promiséentical to the resulting Roating-gate transistor-channel model
for a tool to unify multiple groups through an open commu-(Gordon et al., 2004 Mesh-type conbgurations are good for
nity type tool used by multiple academics. PyNN is designed ¢gnaptic arrays when the dendrites are considered wires even
be a simulator-independent, Python-based open source languageen utilizing learning in the network, with additional circuit
designed for describing spiking neural network models. PyNN dgntrol on the periphery of the array. Further, other parame-
the one tool that is currently used for multiple heterogeneous neters such as additional power dissipation and added noise should
ron platforms. For example, the FPAA tool 3ow shows initial toolse low relative to the non-adapting computation, often seen in
(Schlottmann et al., 201pthat could also utilize a PyNN struc- Boating-gate based approachésgler et al., 1996; Hasler and
ture to compile to hardware. The base language we used for thisgger, 200p
approach is PyNN[pavison et al., 20Q8rather than a spice deck, = Some nanotechnology elements, such as memristors, also have
to specify the netlist level of the neuron structure. Extending PyN&lclear multiple-timescale behavior that would enable potentially
as atool for design approaches would move further along this goadlaptation and long-term storage in a single device. WidrowOs
original adaptive blter work was performed by what he called
OVERVIEW OF ADAPTATION AND LEARNING three-terminal memristors \(Vidrow, 1960); enabling learning
In this section, we give an overview considering adaptation afithction in two terminal memristors is a challenge because in
learning in this hardware roadmap. Because learning functios,mesh (crossbar) array it is hard to get desired functionality,
not to mention computation, is an open area of research, thethough some early simulation results showing the approach
ability to predict potential long-term issues is challenging. Wmight the possible{amarreo-Ramos et al., 201 What is also
have some visability into the device-level issues for adaptation dikdly with similar nano device structures is to enable circuit ele-
learning, programming versus learning for an entire array, as welents that can modulate a conductance on a slow-timescale based
as some development questions for learning synaptic elementsnetwork dynamics, in a dense structure, potentially integrated
we will consider each of these in the following subsections. We ageve the Si IC. Neuroscience uses a wide range of timescales for
key issues for learning and adaptation to address going forwarits computation and learning requiring we eventually need these
mechanisms$ejnowski and Churchland, 1992
e FG approaches sets the standard for a single 3-terminal devicéntroduction of dendritic structure, motivated by previous
providing integrated (non-volatile) memory, synapse densitgections for its computational importance and efbciency, sig-
resolution (digital EEPROM store 4 bits/cell at 22 nm), lownibcantly changes the elegant mesh array of synaptic devices.
power, and local adaptation. Easy local control and mismat@&endrites add complexity both in terms of required added cir-
control are nice to have features. cuitry as well as potentially additions to the learning algorithms,
 Development/Investigation of system level (groups of evestich as requiring local & and localized synaptic learning,
neurons) learning rules, including normalization of neuwhere the detailed biological modeling in these areas are still open
ron/synaptic activity. qguestions. A dense conbgurable array of adapting synapses with
e Neuron learning utilizing dendritic structure. Recent resultgendritic reconbgurability still enables these approaches, even
on dendritic computation gives hope to understand algorithwith the ever improving research in this area.
mic issues. Circuit approach requires dense circuit models in
conbgurable architectures. WRITING/READING SYNAPSE VALUES FROM A CORTICAL MODEL
e Axon routing as well as slower timescale chemical chandiethe synapse strengths/weights are learned, this alleviates the
could further add capability, particularly once key neuromeed for loading a large number of parameter values into a
learning aspects are stable. system. Assuming we are loading a cortex of®I€ynapses,
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Table 4 | Summary table for loading synapses in a human brain (10'°).  set the behavior in a similar way the parameters of billions of
neurons and 1¥ synapses.

Load time 15 min 1 day 10 days

Communication THOUGHTS ON LEARNING AND DEVELOPMENT OF NEURON ARRAYS

Rate 1.3 bit/s 116 Gbit/s 1abiys ©One classic question for biological learning networks is hoyv

Power 10.4 KW 109W MW the synapses from an array of neurons, say from one__or_mult|-

ple layers in cortex, would converge to a system equilibrium to

investigate the resulting functions of the neuron array, and com-

pare with biological studies. Several fundamental studies exist

this requires signibcant communication time and overall systeff this area treating neurons as an ANN type model with dif-
power.Table 4shows the cost and complexity for communicatingerent learning rules bnding patterns corresponding to Principle
the resulting digital values to the synapses. The computations ¢mponent Analysis (PCA) (e.g-insker, 1988; MacKay and
10 bit accuracy for the device values, 300 pF system load capiéier. 1990, Independent Component Analysis (ICA) (e.g.,
tance, and \; at 2.5 V. We expect to have many parallel input datge!l and Sejnowski, 1995, 1997; Hoyer and Hyvarinen, 2000
streams to load the entire array for a sustained rate of 11.3 Thi§d a range of modibed approaches based on this wokkig
probably coming from multiple memory sources to hold the 1008t &l-, 1998; Zylberberg et al., 2001; Falconbridge et al., 2006;
TByte golden memory target. These issues are typical for loaditigi€ €t al., 20).IThese approaches are built around fundamen-
a supercomputer systenT©P500 List, 2072 We have a simi- tal continuous-time ANN algorithms on PCA algorithm®ja,
lar issue for reading the network; reading the entire state of tA882; Sanger, 19B@as well as ICA built from non-linearities
weights (and/or all potentials) once is an expensive propositior(HyvSrinen and Oja, 1997each with grounding to talk about
Loading a single IC with fosynapses (say 4@®eurons) in potential computation and applications coupled with approaches
a second would require 10 Gbit/s data link into the 1C requirl© build such algorithmsohen and Andreou, 1992, 1995; Hasler
ing 1.6 W for communication for a 50 pF load (minimum leveland Akers, 1992
for IC test with zero-insertion force socket). The challenge of Thefundamentalissue is the difbculty of making such progress
parallel programming these number of synapses on chip is matith spiking neurons. The lack of computational models in spik-
agable, and the resulting power requirements are signibcantly iBgshetworks, including representations of events and resulting
than the data communication. These numbers directly impact tigalistic sensory data, complicates the analysis of the resulting
Pnal cost of such a system; IC testing can be a signibcant cod@@ning network. Most learning experiments use encoding struc-
manufacturing of a bnal product; loading values in 1s preverfiges that reduce the network (e.Gavin et al., 20)0although
one such product limitation. For the 3B synapse data loadingthey recognize issues of rate encoding, reducing many of the
the power consumption and performance will be limited by théesults to ANN approaches.
system communication, not the IC complexity. The case becomes even less studied when considering realistic
For a 20 W system, loading the weights frequently is not pdgendritic structures. Development with dendrites with spike rep-
sible; this point further illustrates the untenable case of storif§Sentation is an open question, and an exciting area of research.
synapse weights in one place and using them somewhere da¢ly research on the wordspotting dendritic computation with
even in a multiplexed system. Once a memory is programme%iTDP learning has some similarity to HMM learning rules, but
adapted, and/or learned, reloading the memory is costly; thef@e careful connection is yet to be understood. Further questions
fore, non-volatile memory is critical to minimize the cost offome from understanding and implementing the development
loading a system. On the other hand, occasionally loading 8%on growth/routing algorithms used in development, particu-
entire cortex of 18P synapses, say on the order of once a day,/@ly as implemented in hardware3gerlin et al., 2000 Some
initial condition or reset condition for a commercial machine. tions of the axonal projections (e.grichardson et al., 20).9Ve
One might wonder if every synaptic weight, as well as evéd¥Pect wide-open opportunities as well as high-impact results
neuron parameter, can be learned or adapted from the resuf@ming from investigations in this area.
ing environment. History developing with adaptive systems,
both non-spiking Hasler and Dugger, 20pand spiking @rink CONCLUSIONS
et al.,, 2012; Nease et al., 2)jlfequired some precisely pro-This study concludes that useful neural computation machines
grammed elements, although fewer than the total number bfsed on biological principles at the size of the human brain
learned parameters. Often these programmed parameters sha#dms technically within our grasp. Building a supercomputer
be insensitive to environmental conditions, often requiring a felike structure to perform computations in human cortex is within
precision current and voltage sources. The programming of thesar technical capability, although more a question of funding
few parameters often have a large effect on the resulting algoritfmesearch and development) and manpowegure 25shows a
behavior. This behavior leads one to speculate whether the bregpresentative cortical system architecture of silicon neuron struc-
uses the precise data from the human genome, estimated totbees. The heavy emphasis on local interconnectivity dramatically
roughly 3.2 billion base pairs long contain 20,000025,000 distinetiuces the communication complexity. We show these capabil-
genes represented by 800 Mbytes of d&ige(national Human ities are possible in purely CMOS approaches, not necessarily
Genome Sequencing Consortium, 2004; Christley et al.,)2008relying on novel nanotechnology devices.
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Power Efficiency Scaling

Semsons 10MMAC(/s)/W —}— 1st DSPs (1978 - 1981)
Micro 100MMAC(/s)/W ——
phones Retina
ic
IMMAC(/s)/mW ——
_ | Energy Efficiency Wall
1% 10MMAC(/s)/mW (32bit inputs)
> <
k] 100MMAC(/s)/mW ——
>
B
< IMMAC(/s)/luW ——
+
mil 10MMAC(/s)luW —— Typical Analog VMM
Mem |Neuron ) ) IOOMMAC(/Q)/UW |1 FPAA complled Dendritic
| Amay o R Next Chip Classifier (350nm IC)
FPAA Routing -« Neuron Routing
Fabric ‘ Array IMMAC(/s)nW ——
A ) Dendritic Classifier
Ch Xt Chi
Routing "~ Ronting ” 10MMAC(/s)nW —— (350nm IC)
1 Shrink by
FIGURE 25 | A potential view of how one could build a brain/cortical 100MMAC(/s)/nW sealing L, V.
structure; the approaches follow constraints outlined throughout this R .
discussion. The approach could be integrated as a set of boards with a IMMAC(/s)/pW —— (<) Biological Neuron

large number of neural ICs, where at each level of complexity, local
communication is emphasized for power efficient computation as well as
low integration complexity. Most of the on-chip communication would be
local, most of the chip-to-chip communication would be between
neighboring ICs in an extended FPGA like fabric. The system would
Interface to typical biological sensors, like retina (vision), microphones for
audition, and chemical sensors, as well as non-biological (i.e.,
communication spectrum) inputs. A particular neuron array could be
integrated with additional FPAA structures enabling integration of analog SP
for the front-end processing (i.e., acoustic front-end processing).

FIGURE 26 | A summary comparison of power efficient computational
techniques, including digital, analog Signal Processing (SP)
techniques, and the potential for neuromorphic physical algorithms.
The potential of 8-9 orders of magnitude of achievable computational
efficiency encourages a wide range of neuromorphic research going
forward.

Communication Cost Area /
(Power) Volume
(Cost)

Physical Implementation (i.e. Analog)
of Neuromorphic Algorithms

Computation Cost

ciency. These approaches show huge potential for neuromorphic (1/Computational Efficiency)

systems, showing we have a lot of room left for improvement

(Feynman' 19®Oas W_e” as pOtentlal directions (_)n howto achie eFIGURE 27 | Overview figure illustrating the three dimensions

these approaches with technology already being developed; @Wmputational efficiency, communication power, and system area) to
technologies only improve the probability of this potential being optimize to reach large-scale neuromorphic systems. Using physical
reached. based (i.e., analog) approaches help to decrease computational efficiency

Figure 27illustrates the key metrics of computational efb and system area, and h.eavy use of local communica.tion, integration of

. . . R memory and computation, as well as low-event architecture reduces the
ciency, communication power, and system area. Physical cOMgmmunication power required.
puting, based on neuromorphic concepts, potentially can

dramatically improve system area and computational efbciency,

as illustrated throughout this discussion. Understanding that theeen in cortical structures. Communication power efpciency is
nervous system is power constrained is not only a key techrtandled by minimizing long-distance communication events,
logical parameter, but understanding its implication for comfocusing architectures on local communication, and rebning
munication enables building systems that wonOt be handicappath to minimize the number of long-distance events communi-
by its control infrastructure. This comparison requires keepzated. These points give some metrics for successful neuromor-

ing communication local and low event rate, two propertiephic systems, in particular how much improvement in power
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efpciency achieved compared to a standard analog signal procesgrove the computational efbciency and other metrics of these
ing approach. systems.

Probably the largest hurdle is not about what we can build, Finally, the research in this area will accelerate by the pull
but identifying novel, efbcient computation in neurobiology anaf commercial ventures that can start utilizing these technolo-
employing these techniques in engineering applications. Tlggs to competitive commercial advantage. The pull of commer-
question is the fundamental open question for neuromorphicial success, particularly if ICs are available, will rapidly help
engineering as well as neuroscience. Given that the neuromadvance the pace of neuromorphic engineering and computa-
phic engineering building blocks also can be accurate modétsal neuroscience.
for neurobiological behavior, these questions are directly related.

We painted a picture of the potential computational model&CKNOWLEDGMENTS

arising from neuro-modeling, including their potential com-A successful roadmap can neither be made in isolation nor
putational efbciency; we expect these models are just a staade by undirected group/committee discussions. As a result, the
to what is possible. We expect neuroscientists are bound dothors heavily appreciate discussions, debates, and thoughts that
make more fundamental discoveries about the nature of tlecurred at Capo Caccia and Telluride Neuromorphic workshops
biological computation, discoveries that most likely will furthe2011 and 2012.
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