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Abstract 

In this paper we describe a programmable and adaptive jilter based on floating-gate technology. 
We review the basics offloating-gate techniques and how they enable programmable and adaptive 
jilter circuits. We describe our programmable filter concepts, and show experimental results of pro- 
grammable Jilter operation. We also describe programming methods, and extend the programma- 
bility to a wide range of functions and circuits using the same approach. Further; we describe our 
techniques and custom programmer board for  joating-gate programming of an IC. We show how 
to extend our programmable jilters as  adaptive jilters both through weight perturbation methods 
and continuously adapting correlation rule methods. 

1: Analog Computing Arrays 

We introduce the use of high density analog computing arrays for signal processing based on non- 
volatile semiconductor memory cells. We base this model on an efficient computing paradigm in 
which highly parallel signal processing computations are performed through analog memory ele- 
ments based on modified EEPROM cells. The high density analog computing arrays (referred to 
as computing arrays) require a core memory cells similar to a standard EEPROM or S R 4 M  cell 
with a small amount of additional circuitry. The enabling technology of this approach is a lloating- 
gate circuit technology that allows for simultaneous storage, computation, and programming in 
each cell. Unlike digital memory, each cell acts as a multiplier that multiplies the analog input 
signal to that cell by an analog value stored in a floating gate. By performing the computation 
in the memory cells themselves we avoid the through-put bottlenecks found in most signal pro- 
cessing systems. We can also extend this computational approach to many other signal processing 
operations and algorithms in a straightforward manner. The range of applications for computable 
memories reaches from auditory and speech processing, to beam-forming, multidimensional signal 
processing, and radar computations, communications processing, and image processing and recog- 
nition. We believe that the high density analog computing arrays will be an important option for 
designers who want to implement advanced signal processing algorithms for embedded and very 
low-power systems. 

Our analog computing arrays are based on arrays of dense floating-gate transistors that pro- 
vide non-volatile storage, compute a product between this stored weight and the inputs, allow for 
programming that does not affect the computation, and adapt due to correlations of input signals. 
Figure l a  shows a general block-diagram of our floating-gate computing array. Each processor is 
composed of two floating-gate transistors, and therefore corresponds closely to EEPROM densi- 
ties. The memory cells may be accessed individually (for readout or programming) or they may 
be used for full parallel computation within the array (as in matrix-vector multiplication or adap- 
tation). Therefore, we have full parallel computation with the same circuit complexity and power 
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Figure 1 : Illustration of our Computing in Floating-Gate Memory Arrays. (a) A typical system is an array of 
floating-gate computing elements, surrounded by input circuitry to precondition or decompose the incoming 
sensor signals, and surrounded by output circuitry to post-process the  array outputs. We use additional 
circuitry to individually program each analog floating-gate element. (b) Top level picture of our Programmable 
Analog Fourier Processor. We separate the signal into frequency bands not by computing a DFT algorithm, 
but by a series of band-pass filters. We divide our frequency space exponentially, instead of linearly as in 
typical DFT algorithm. One current implementation for auditory and low MHz filtering. Here we choose a 
Fourier-transform like basis function; therefore the function is similar to DSP filtering using DFT and inverse- 
DFT stages. 

dissipation as the digital memory needed to store this array of digital coefficients at 4-bit accuracy. 
This technology can be integrated in a standard digital CMOS process or in standard double-poly 
CMOS processes. Further, we only need operate this system with one memory access per incoming 
sample, or in other words, the system only needs to operate at the incoming data speed (maximum 
input frequency); therefore, reducing requirements on overall system design. 

This technology has its roots in three key technologies. The first technology comes from re- 
search in Analog VLSI applied toward neural applications. This technology borrows on the history 
of the early technology development of analog matrix-vector computations from neural network 
implementations. This technology also borrows several neuromorphic concepts [24], including 
sigmoid (tanh) functions [24], Winner-Take-All (WTA) circuits, resistive or diffusor networks [2], 
cochlea models [23, 251, and retina models [24, 21. This technology, particularly the neuromor- 
phic directions, has potential for low-power computation. The second technology comes from 
research in data flow architectures and parallel processing [21]. Instead of having data stored and 
then fetched, etc, the idea is to directly process the data as it comes into the system, and store 
coefficients locally. Our technology extends this approach by removing the need for the digital 
processor in the locally stored memory. The third technology comes from floating-gate devices, 
circuits, and systems. To build this technology, we have already experimentally demonstrated the 
development of a Floating-gate technology in standard CMOS processes that can store or adapt 
its memory while simultaneously computing an analog multiplication [9]. This technology is the 
fundamental element in this approach, and provides the memory density in our large parallel com- 
putations. Since this previous work is critical to the success of this proposal, we describe this area 
in more detail in section 2, and one of the three proposed research directions is to improve this 
technology to be compatible with industrial practices. 

In this paper, we will describe one important subset of these analog computing arrays, that is 
the space of programmable and adaptive analog filters based upon computing arrays. Figure l b  
shows the top level description of our programmable filter chip. In this figure we show four band 
taps which can be expanded to as many as needed. The architecture is based on a modified DFT 
implementation in a DSP filter. We present analysis and experimental measurements of these pro- 
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Figure 2: Layout, cross section, and cir- 
cuit diagram of the floating-gate pFET in a 
standard double-poly n-well MOSIS process. 
The cross section corresponds to the horizon- 
tal line slicing through the layout view. The 
pFET transistor is the standard pFET transis- 
tor in the n-well process. The gate input ca- 
pacitively couples to the floating-gate by either 
a poly-poly capacitor, a diffused linear capac- 
itor, or a MOS capacitor, as seen in the cir- 
cuit diagram. We add floating-gate charge by 
electron tunneling, and we remove floating- 
gate charge by hot-electron injection. Be- 
tween V,,, and the floating-gate is our sym- 
bol for a tunneling junction, a capacitor with 
an added arrow designating the charge flow. 
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grammable and adaptive filter chips fabricated in a double-poly, 2.Opm, 1.2pm, and 0.5pm MOSIS 
processes; we have fabricated these elements on 0.25pm MOSIS single-poly process as well. Sec- 
tion I1 overviews the relevant floating-gate circuit technology for analog computing arrays. Section 
I11 describes our analog programmable filter. Section IV describes our floating-gate array program- 
ming scheme and floating-gate array programming board. Section V describes our adaptive filter 
techniques, including weight perturbation and continuous-time correlation techniques. 

2: Overview of Floating-Gate Circuits 

We have come to see floating-gate devices as not just for digital memories anymore, but circuit ele- 
ments with analog memory and important time-domain dynamics [9, 161. “Floating-gate ciacuits” 
is used to refer circuits where floating-gate devices are used as circuit elements and not simply 
as digital memory elements. Floating-gate devices and circuits typically divide into three major 
classes: 

1. Floating-gate devices used as analog memory elements. 

2. Floating-gate devices used as part of capacitive-based circuits. 

3. Floating-gate devices used as adaptive circuit elements 

Figure 2 shows the layout, cross-section, and circuit symbol for our floating-gate pFET device. 
A floating gate is a polysilicon gate surrounded by silicon-dioxide. Charge on the floating gate 
is stored permanently, providing a long-term memory, because it is completely surrounded by a 
high-quality insulator. From the layout, we see that the floating-gate is a polysilicon layer that has 
no contacts to other layers; this floating-gate can be the gate of a MOSFET and can be capacilively 
connected to other layers. In circuit terms, a floating-gate occurs when we have no DC path to a 
fixed potential, precisely the effect avoided by many circuit designers and circuit simulators,. NO 
DC path implies only capacitive connections to the floating node, as seen in Figure 2. 

2.1: Basics of Floating-Gate Circuits 
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Figure 3: (a) Four-quadrant weighted multiplication using floating-gate devices. Between Vt,, and V f ,  
is our symbol for a tunneling junction, which is a capacitor between the floating-gate and an n-well. (b) 
Experimental data showing the multiplication transfer characteristics of these devices. (c) dwldt  vs. w for 
varying AVd and fixed AVg. This data gives strong evidence for our learning rule, ~’Azir = -Aw + qE[zy]. 
(d) Experimental measurements of floating-gate weight adaptation based upon a correlation learning rule. 
Change in the steady-state weight values due to degrees of correlation (phase difference) between sinusoidal 
voltage signals at the gate and drain terminals. 

The floating-gate voltage, determined by the charge stored on the floating-gate, can modulate a 
channel between a source and drain, and therefore can be used in computation. Floating-gate 
circuits provide IC designers with a practical capacitor-based technology; capacitors, rather than 
resistors, are a natural result of a MOS process. Floating-gate devices can compute a wide range 
of trans-linear functions by a particular choice of capacitive couplings into floating-gate devices 
[16, 10, 91. The charge on this floating-gate can be modified by projecting UV light on the chip, 
by applying large voltages across a silicon-oxide capacitor to tunnel electrons though the oxide, or 
by adding electrons using hot-electron injection. Floating-gate technology can eliminate off-chip- 
biasing voltages by providing these voltages on-chip with arrays of programmable floating-gate 
bias sources (e-pots) [6] .  

Adaptive floating-gate circuits utilize continuous programming currents to continuously adapt 
the floating-gate charge based upon the input signals. The list of currently demonstrated con- 
tinuously adapting floating-gate circuits are the Auto-zeroing Floating-Gate Amplifier (AFGA) 
[lo, 111, the adaptive floating-gate differential amplifier and bump circuit [12] the Second Order 
Section AFGA [17], the Gain-Adapting AFGA, and the Adaptive Synapse Element [13, 141. Adap- 
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tation in floating-gate circuits is derived from the feedback mechanism caused by electrons moving 
from the transistor channel to the floating gate by hot-electron injection [12, 141. Hot-electron in- 
jection modifies the channel current, and gate current is proportional to channel current; therefore, 
floating-gate adaptation is a direct function of the computations being performed. 

2.2: Four-Quadrant Adaptive Floating-Gate Synapses 

Four-quadrant adaptive floating-gate synapses are a fundamental element in analog computing 
arrays. We call these elements synapses because of their relationship to synapses in adaptive 
filters [5] and neural networks [18], and their loose connection with biological synapses. The 
output current is proportional to the four-quadrant multiplication between the differential input 
voltage and the stored weight, and the weight is updated by a four-quadrant correlation between 
the differential input voltage and an error voltage. The weighting is performed by storing charge on 
floating-gate transistors [lo]; a typical circuit used for the multiplication is shown in Figure 3, but 
many other approaches are possible depending upon the application. The benefit of using a floating 
gate for the weighting is small size and circuit simplicity. By using the floating-gate transistor for 
the weighting we use the actually memory element as part of the computation, which allows for 
the highest obtainable chip density. This density is needed to realize chips with large number of 
taps or chips with multiple band weighted outputs. This memory element retains its value even 
when power is not applied to the device, and eliminates the need for separate memory cells with 
A/D and D/A circuitry to store and reproduce the actual analog weight in the circuit. 

Another current research direction involved making the computation cells signal adaptive. Ini- 
tial attempts used single transistor floating-gate synapses and complicated weight-update equations 
based upon the programming physics [7, 101. Later, we showed the spectrum of adaptive floating- 
gate dynamics [12]. We also showed a weight-update rule based upon correlations of circuit termi- 
nals [13, 14, 151. This weight update rule shows that the equilibrium weight value is proportional 
to the correlation between changing signals at the gate and drain voltages: 

T ’ A ~  = -Aw + qE[~y], ( 1 )  

where q is a function of device parameters, x is the AC portion of the gate voltage signal, and 
y is the AC portion of the drain voltage signal. The steady state solution to this equation is 
Aw = 17E[x?~], or the correlation between the gate (input) and drain (error) signals. We can 
see this correlation effect by applying voltage signals (fast timescale) at the gate and drain and ob- 
serving the steady-state of the weight (slow timescale). Assume that the input for the drain signal is 
VI sin(&) and the gate signal input is Vz sin(wt + 0). Substituting these two inputs and computiing 
the expected value, yields 

Figure 3 shows the result of an experiment where we sweep 0 from 0 to 27r and measure ithe 
steady state value of the weight (weq). We see definite correlations due to phase differences where 
Aweq c( - cos (8). This is a Hebbian learning rule, based on the correlations between the signals 
x and y. 

awes. c( v,v2 cos(e). (2) 

3: Programmable Analog Filters 

Figure l b  shows the top-level description of our on-chip programmable analog filter concept In 
this figure we show three-to-four band taps that can be expanded to as many as desired. Each 
tap consists of two pieces, one piece that separates the signal into a set of analog basis functions, 
and a second piece that multiplies each signal by a stored weight and outputs this current onto a 
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Figure 4: Experimental measurements of frequency response of our programmable band-pass filters. 
(a) Frequency response for a single band-pass filter, and for the array band-pass filters with programmed 
weighting function. We set zero tilt on the frequency line; therefore all corner frequencies should be iden- 
tical aside from mismatch. The result of this programmable filter is a tighter band-pass filter, with a corner 
frequency roughly half of the original corner frequency. (b) Frequency response for this programmable filter 
with 10 band-pass elements exponentially spaced in frequency. The ripples on both curves show the loca- 
tion of these band-pass elements. We show an initial programmed frequency response, where the weights 
are nearly equal, and a second programmed frequency response to program an additional notch in the fil- 
ter's response. We obtain similar frequency responses generated by our Spectre simulation model used for 
simulating floating-gate circuits. 

common interconnection line. The output of each basis function is a voltage that can be broadcast 
to several weighted multipliers; therefore, with one processor we can output multiple different 
filtered versions of the original signal. We use two floating-gate MOSFETs to both store and 
perform either a two or four quadrant multiplication of signal and weight. By using the floating- 
gate transistor for the weighting we use the actually memory element as part of the computation, 
which allows for the highest obtainable chip density. The output of the weighted multiplier from 
each band is a current to allow simple addition via KCL (sum of the currents entering a node equals 
the sum of currents leaving that node) to compose the final output signal. With one processor we 
can output multiple band weighted versions of the original signal. We can post-process this current 
into a voltage for easy broadcast to further stages. This approach directly extends to multiple inputs 
and multiple signal-decomposition bases. 

To separate the input signal into several time-dependent basis functions we use a voltage that 
can be broadcast to multiple band-pass filters. These filters are referred to as Capacitively Cou- 
pled Current Conveyors or C4 [8,20]. C4 filters operate from audio range to MHz range and their 
comer frequencies can be either arbitrarily spaced to provide , for example, linear or exponential 
spacing. These band-pass filters give a frequency decomposition of the incoming signal into mul- 
tiple bands which are chosen based on the biases of each filter. We use an all-transistor version of 
the auto-zeroing floating-gate amplifier (AFGA), that we described elsewhere [S, 201, to achieve a 
broadly tuned band-pass response. We can program the filter comer frequencies using floating-gate 
elements and can program these values within our programming scheme; this ability allows for an 
arbitrary basis of filter responses. By adding feedback between the stages, we sharpen the filter 
response roll-off if desired. The frequency limitations of this approach depend upon the frequency 
limitations of the FETs, which depends upon the biasing point, and other known factors. Arrays 
of band-pass, low-pass, or high-pass filters are not the only basis functions to be used with these 
programmable filters, but are often the clearest to implement. 
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We show the frequency response of individual bands multiplied by their weighted outputs for 
constant effective weights. Figure 4a shows experimental measurements from our programmable 
Fourier filter. The result of this programmable filter is a tighter band-pass filter, with a comer 
frequency roughly half of the original comer frequency. The floating-gate devices used for the 
multiplication were built with W/L = 10; therefore the devices were biases near threshold with an 
average bias current of 1pA (total current was 20.58pA). We found that dynamics of the multi- 
pliers did not affect the filter transfer function, and that the harmonic distortion is limited by the 
multipliers, and not the band-pass filters. 

Figure 4b shows the frequency response for a programmable filter with 10 band-pass elements 
that are exponentially spaced in frequency. For the initial frequency response, we used an expo- 
nential spacing with nearly identical weight values at each tap. We can see the exponential spacing 
of these band-pass elements by looking at the ripples on the initial frequency response. We also 
show a second programmed frequency response, where we programmed an additional notch in the 
spectrum of this initial filter. In current versions of this programmable filter, the parameters of 
each band-pass element are programmable, and, therefore, we can build our programmable filters 
utilizing band-pass filters with an arbitrary spacing. 

We have developed simulation models of this circuit to assist in developing future revisions of 
this circuit. We recently presented a methodology for simulating floating-gate circuits in Cadence's 
simulator, Spectre, using a modified EKV MOSFET model [22] .  The frequency responses that we 
obtain from this simulation model agree closely with experimental results. 

4: 

We present a systematic method for programming an array of floating-gate devices, which is a 
critical part of this single-chip system. These techniques are important when one is building signal- 
processing algorithms with thousands of floating-gate elements; currently we have fabricated and 
programmed arrays of 1 to 10 thousand floating-gate elements for signal processing applications. 
Alternate approaches, such as e-pots [6] require significant circuit complexity, and therefore .are 
inefficient for large floating-gate arrays. In this system we trade-off user-friendly circuits, with all 
their circuit complexity, for simpler circuits programmed by well-controlled computer algorithms 
that could be used by industrial testers. 

We also desire a programming algorithm that is based on controlling values actually wed 
during operation; therefore there is no need for any compensation circuitry. As a result, we halve 
developed a programming scheme where we perform injection over a fixed time window, and then 
measure the results after putting the cell in operating mode. Figure 5a shows the control logic we 
use to automate the programming of an array of floating gate devices. Once programmed, these 
floating-gate devices retain their channel current in a non-volatile manner. 

Before deciding on a particular programming scheme, we first consider how the synapses inter- 
act when coupled into an array. We choose the tunneling and drain terminals to be common along 
a row; therefore, when programming one row, the other rows remain unaffected. We simplified our 
initial circuit by tying all tunneling rows together to consume only one pin on the package. This 
approach avoids the need for high-voltage transistor switching to tunnel along an individual row. 
This simplified approach can only select a column to be modified via tunneling with our imple- 
mentation. This approach works successfully because we are using tunneling primarily for erasing, 
but in future revisions we will add row decoding to tunneling, which will add additional control of 
programming. Developing an efficient algorithm for pFET programming requires discussing the 
dependencies of the gate currents, and the ability to modify a single device with high >z!ectivity. 
We program a device by increasing the output current using hot-electron injection, and -':crease 
the output current using electron tunneling. For this described method, devices are programm.. 1 

Programming Approach for Floating-Gate Arrays 



155 

Gater D E C O D E R  
Pin 

column 1 2 3 4 5 6 7 8 9  
m Iteraticn "br 

(b) 

Figure 5: Our programming method for floating-gate pFET arrays. This approach is designed to be 
transparent to the computation of the pFET synapse array. (a) Circuit diagram of chip design to allow dual 
programming I operation. When the control signal S is 1, then we close the switches to the decoder circuitry, 
enabling programming, and open the switches to the normal operating circuitry. Both decoders either set their 
outputs to V d d  if 0 or select an output to an external pin. When the control signal S is 0, then we open the 
switches to the decoder circuitry, and close the switches to the normal operating circuitry. (b) Plot showing 
the programming of four current values. All four values converged within 9 steps. 

with hot-electron injection and are reset by tunneling the devices below the level to which they 
are to be programmed. This is chosen due to device selectivity for each method which will be 
described. Because of the poorer selectivity, we use tunneling primarily for erasing and for rough 
programming steps. 

The programing results where from an 1.2pm MOSIS process. A 2x4 array of floating gates 
were used for this experiment. The operation voltage for the chip was 3V. For programing, a voltage 
of 8V was used to allow for significant injection in this process to occur. During programming, the 
drain voltage was held at 5V to take the current measurements for system operation. The time T 
used for injection was 2 seconds. This value was chosen only to ensure that no timing problems 
arose in the test environment. There is no reason fast T values cannot be used, and future revisions 
of the test setup will include on board timing circuits to ensure constant timing at faster values. 
These fast values are critical to program mass production or large arrays of floating gates. Figure 
5b shows the pulse steps at programming four devices in the array to different values. 

We designed a custom programming board to program large floating-gate arrays. The program- 
ming board shown diagramatically in Figure 6 allows for flexible floating-gate array programming 
over a wide range of IC processes, and allows for nearly transparent operation to the user. Using 
custom circuits to program the floating gates allows for a self-contained programmer at a much 
lower cost than a rack of testing equipment. This programming board is connected to the chip via 
a standardize header allowing the option of additional logic when used as part of a larger testing 
approach. At the heart of the programmer is a PIC 16C77 that provides support for the serial inter- 
face, the D/A, the current measurement circuits, and the accurate timing necessary for programing. 
This board controls the programming sequences as instructed by software control over a standard 
RS232 port. The circuits found on this programming board besides the PIC control most of the 
actual programming operations as instructed by the PIC. The DAC provides voltages for the gate 
and drain, as well as driving a voltage regulator to set the voltage of the chip to program. Level 
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Figure 6: Block diagram of our custom programming board for automatic programming of large floating- 
gate arrays. This board, controlled by a PIC microcontroller and interfaced with a computer through a serial 
port, is capable of programming floating-gate arrays fabricated in a wide range of processes. This board 
allows easy integration with a larger testing platform, where programming and computation are both required. 

shifters shift the PIC’S logic levels to the chip’s logic levels. To measure the current, a circuit has 
been designed that integrates the charge on the drain line. The integrated value is measured by the 
PIC as a pulse and then sent back over the serial line to the controlling PC (currently we are using 
MATLAB). The accuracy of this current measurement, measured as signal-to-noise ratio, has been 
experimentally been found to be equivalent to 9 bits of accuracy over 2 orders of magnitude in 
current. Initially a calibration is performed to calibrate the capacitor used to integrate the current; 
once this capacitor is calibrated, future time measurements from the programmer can easily are 
directly converted to currents. 

5: Programmable Filters: Scalability and Comparison to Digital Filters 

With our discussion on programmable analog filters, one might ask how this approach compares 
with a standard digital approach. A digital processor would require converting the incoming signal 
to a digital representation, computing an FFT operation, weighting the frequencies, and combin- 
ing the resulting output. One could compare these techniques based on various functions of area, 
speed, and power dissipation. For illustration, we will compare the power dissipation of an analog 
and a digital implementation for the same functionality; power dissipation is important given the 
increasing demand on portable electronics. The analog approach will be smaller, because we per- 
form the same computation in the space required to store less than 4bits of the required coefficients. 
We will compare these two approaches towards two applications, one using exponentially spaced 
output frequencies, and one using linearly spaced output frequencies. In general, analog will be 
more efficient at some level, if and only if the analog processors take advantage of digital CMOS 
scaling trends; therefore the analog circuitry does not become obsolete in a few design cycles. Our 
floating-gate technology has scaled, and will continue to scale, with digital CMOS scaling. Com- 
parison of digital processing with adaptive analog floating-gate techniques-described in Section 
6-will lean further towards the analog computation, because the enhanced computation occurs 
using the same current and same area. 
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Figure 7: A practical example com- 
paring using analog or digital signal 
processing for a particular output res- 
olution (Signal-to-noise). One com- 
mon signal processing step with in- 
coming sensor data is taking an FFT, 
or equivalent Fourier based algorithm. 
For DSP computation, we would re- 
quire a l6bit N D  converter to get 
some output channels at lObit resolu- 
tion. For ASP computation, we would 
require a bank of bandpass filters with 
1 Obits of Signal-to-noise ratio coupled 
with a bank (or multiplexed) lObit N D  
converter to get the output channels at 
lObit resolution. Both analog systems 
have similar design complexity. These 
computations are transparent (in reso- 
lution) to the engineers developing the 
remainder of the algorithm, and there- 
fore tradeoffs could be made at these 
levels. 

Program 
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First we consider a typical speech / audio signal processing problem, Fourier decomposition at 
audio frequencies (20Hz to 2OkHz) with exponentially spaced comer frequencies. Figure 7 illus- 
trates this comparison in the context of a larger signal processing system. For digital computation, 
we would require a 16bit A/D converter to get some output channels at lObit resolution. For ana- 
log computation, we would require a bank of bandpass filters with lObits of Signal-to-noise ratio 
coupled with a bank (or multiplexed) lObit A/D converter to get the output channels at lObit res- 
olution. We use exponentially spacing as a measure of comparison because it closely compares to 
the response of biological sensors (cochlea-Me1 spacing) [24] as well as other physical systems. 
This approach is typically difficult for digital algorithms, for n-exponentially spaced outputs, we 
either need to take an n2 point FFT, or an n point DFT with the appropriate coefficients. A modest 
auditory filter with 64 exponentially spaced outputs requires 4096 multiply operations and 4096 
addition operations for a real FFT transform. As a result, we require 600million operations to use 
the Fourier transform as a filter bank, similar to the analog approach. Current DSP processors can 
achieve 20 MIPS / mW [l], which consumes 30mW for this computation, assuming no processor 
overhead; our analog processor would consume approximately l p W  for the same computation. 

Second, we consider a typical higher-frequency problem, Fourier decomposition at MHz fre- 
quencies (1MHz - 33MHz) with linear spaced comer frequencies, such as a filter bank for IF 
signals. Because we are using Fourier decomposition with linearly spaced output frequencies, one 
expects a closer comparison on consumed paper. We would require at least 4 billion operations for 
this computation, which will consume 200mW El] using 5 processors; our analog processor would 
consume approximately 400pW for the same computation. 

6: Adaptive Techniques 

In this system we describe adaptation mechanisms built from the programming mechanisms; the 
result is adaptive memory arrays of computing elements. Our approach not only shows the applica- 
bility of matched filter algorithms and weight perturbation algorithms, but also provides a common 
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Figure 8: Top level figure of our adaptive filter topology, and a diagram of the adaptive floating-gate ciircuit. 
We adapt the synapses with the non-inverting inputs while keeping the synapses with the inverting inputs 
at a programmed level; in this way, we can account for the large offsets between equilibrium weights due to 
mismatches in the tunneling and injection processes. 

framework to compare these approaches. 

6.1: Continuously adapting filters 

In this subsection, we will expand the functionality of our arrays of pFET single transistor synapses 
by making the computation cells signal adaptive. Our building computing elements that adapt as 
a function of the input and control signals; in general, we will input in the appropriate voltages to 
the gates, measure the output current coming from the drain, and apply the desired error signal as 
a drain voltage. Figure 8 shows the block-diagram of this approach as well as shows the circuitry 
used for our adaptive node. We programmed the negative synapses to eliminate the signal effect of 
the steady-state current of the positive synapses for similar input sizes (the resulting bias current 
increases). Also, since we use a differential input voltage, we get our output current by summation 
on one line, rather than taking the difference of two currents. This approach also compensates 
for the mismatch between synapse equilibrium points at the point where tunneling current equals 
injection current at each synapse. The goal is to develop a continuously adapting neural network 
layer using these floating-gate analog filters that will be used in our multilayer, adaptive control 
networks. 

One straightforward example is that we apply the target signal as a drain voltage, and therefore 
we mathematically and experimentally connect our adaptive floating-gate devices to a class of 
adaptive filters. Other choices of circuitry at the drain terminal results in different weight-update 
rules. For the floating-gate element in Figure 3a, we have that the output, which is proportional 
to the output current (Iout) from the device, is Wi,jAvj ( Wi,jzj), as well as the weight of an 

- individual device adapting along the following equation: 

as a result, AWi,j -+ X(Vd)E [AyAVd,i] = X(Vd)E[zy]. Considering a typical LMS adaptation 
[5 ] ,  we get the weight update equation as 

dw - = -2E [X[Y - 611 = - 2 Q W  + 2E[xjj], 
dt 

where W is the weight matrix, x is the vector inputs, and Q is the covariance matrix of the inputs. 
The steady-state (solution) weight is W = Q-lE[xjj] -+ E[xjj], if the inputs are uncorrelated. 

We will show the behavior of this algorithm through two separate experimental measurements. 
Fig 9 shows results on a simple adaptive node using floating-gate devices; we have shown this 
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Figure 9: Experimental measurements (Current outputs) from our differential synapses showing frequency 
correlations for sinusoidal inputs to the two-input node given by Vgl = sin(Zn3ft) and Vg2 = s in (2r f t ) .  The 
learning signal, Vd = sin(Znfdt), takes on three different frequencies fd = 0.7f, f, 3f. When fd = 0.7. 
neither side adapts; when fd = f, only Vg2 adapts; when fd = 3f,  only Vgl adapts. We programmed our 
negative weights to offset the positive synapse current measured with input signals with the same signal 
variance. We see that the synapse that has an identical synapse input frequency as the drain signal has a 
non-zero weight. 

mathematical formulation over a range of inputs. In the first experiment, we show adaptation to 
frequency correlations when we apply a different frequency to each of the synapse inputs, and we 
apply another sinusoid as a learning signal. Figure 9 shows experimental time-course measure- 
ments from our adaptive circuit, where the inputs are sinusoids at a fundamental and related third 
harmonic frequency, and the drain voltage is also another sinusoid. We observe that the circuit 
identifies a correlation between its input and the drain learning signal. As a second experiment, 
we step our adaptive circuit with inputs sinusoids at a fundamental and related third harmonic fre- 
quency, and with the drain voltage learning signal as a square wave of the fundamental frequency. 
Figure 10 shows the normalized amplitude and frequency of the Fast Fourier Transform of the 
resulting output (drain current) signal to make it easy to compare relative amplitudes at relative 
frequencies. From this experimental data, we get the expected square wave Fourier coefficients 
for the fundamental and third harmonics. This experiment demonstrates this circuit’s behavior in 
extracting Fourier coefficients. 

6.2: 

Weight perturbation can be thought of an algorithm between continuous adaptation and direct 
programming. The algorithm is straightforward: first, make a random change in a weight vector, 
second, if the vector improves the system, we keep this change, otherwise flush this change, and 
finally, repeat until converged [3, 4, 191. Convergence is not surprising, because only weight 
improvements are used, and there is a non-zero probability that we ”stumble” on useful directions. 
Some methods continue making using the good weight updates as long as it improves the system. 
Although these methods have a simple descriptions, these methods can be compared with gradient 
type methods [3, 4, 191. Further, weight perturbation allows training using a computer in the 
adaptation loop. These algorithmic approaches are still the only adaptive algorithms for hybrid 
analog4igi ta l  computer solutions that has consistently converge for simple problems over a wide- 
range of parameters [3,4]. Other adaptive approaches perform far worse than expected, primarily 

Weight Perturbation Adaptation in Analog Programmable Arrays 
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Figure 10: Experimental measure- 
ments of a square wave learning sig- 
nal applied to Vd The output current 
spectrum shows the amount of each 
node input frequency matched to fre- 
quency components in learning signal. 
The frequency axis is normalized; the  
frequencydoes not affect these results 
until it approaches the adaptation rate. 
We obtain 1 and 1/3 for the  fundamen- 
tal and third harmonics as  expected. 
The fifth harmonic appears due to the 
drain voltage coupling into the floating 
gate through overlap capacitance. 0 5  

Third Hamarc'  0 33 

because other approaches end up using the worst of the analog and digital computing directions. 
We will initially consider weight perturbation algorithms coupled with a simple microcon- 

troller for diagnostics, external control, random-number generation. We use a microcontroller, 
because adding complexity to the synapse elements greatly increases the cost and decreases the 
overall effectiveness. This approach also has the advantage that it can work with existing ICs or 
slightly modified ICs with analog computational arrays. Our current approach is use the same IC 
programming infrastructure and board to perform this algorithm that was described earlier, and 
slightly adapt the PIC microcode. Generally, the additional cost of adding a microcontroller to 
a board is fairly inexpensive, and it is somewhat straightforward to integrating a special purpose 
controller on-chip if desired. Adding additional circuitry into each computational element is very 
costly for even medium size arrays, and should be avoided in practice. 

The algorithm for weight perturbation is a simplification of our basic programming algorithm. 
We start with the positive and negative weights close (within a factor of 2) to each other as its initial 
conditions. We either program the weights to these starting values, or we use various continuous- 
time adaptation mechanisms to adapt the array to these starting values in a single array parallell step 
[12]. During each programming step we randomly perturb every weight in the matrix either up or 
down by a fixed ratio by either injecting either the positive weight or the negative weight to increase 
or decrease this weight. After testing this system with this new weight vector, we combine the 
decisions of keeping or flushing the particular weight update and providing the next weight update. 
To erase the effect of a weight update, we only need to inject the opposite weight (positive or 
negative) that was programmed. Our approach benefits from fast programming methods to update 
the weights in an array; since we only needing a "course" update for each element, we can envision 
pulse widths of Ips for each array element. We use a global tunneling pulse to proportionally 
reduce the positive and negative weights (identical drops in the floating-gate voltages); after a few 
iterations, we tunnel such that the sum of the positive and negative weights returns to a fixed bias 
value. 

7: Conclusions 

This paper focused on the the first step of signal processing algorithms by analog computing ar- 
rays, namely programmable and adaptive analog filters. The fundamental element of these analog 
computing arrays is a floating-gate circuit, roughly the size of 3 EEPROM cells in a given CMOS 
process, where each of these analog processors stores a weight the can be programmed, multiplies 
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the weight by incoming input signals, and can be signal adaptive based on signal correlations. 
We see these analog computing arrays to appreciably advance technology that makes possible the 
integration of very low-power, highly functional analog signal processing circuits with digital sig- 
nal processing circuits. We presented our analog programmable filter based on this floating-gate 
technology and from programmable on-chip band-pass filter arrays, as well as experimental results 
showing that we get widely different filters from a single structure. We presented our programming 
method for arrays of floating-gate elements, which is practically necessary to program thousands of 
floating-gate elements. We described our corresponding off-chip programmer board for transpar- 
ent user programming of these values. We presented techniques to make these analog computing 
arrays signal adaptive, both through continuous-time adaptation that is directly dependent on the 
correlations of gate and drain signals, and through weight-perturbation schemes. Our experimental 
results on continuous-time adaptation gives hope that we can build an adaptive node capable of a 
wide range of adaptive algorithms. 
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