
Hardware and Software Infrastructure for a family
of Floating-Gate Based FPAAs

Scott Koziol, Craig Schlottmann, Arindam Basu, Stephen Brink, Csaba Petre, Brian Degnan,
Shubha Ramakrishnan, Paul Hasler, and Aurele Balavoine

School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332–0250
Email:{skoziol,phasler}@ece.gatech.edu

Abstract—Analog circuits and systems research and education
can benefit from the flexibility provided by large-scale Field
Programmable Analog Arrays (FPAAs). This paper presents the
hardware and software infrastructure supporting the use of a
family of floating-gate based FPAAs being developed at Georgia
Tech. This infrastructure is compact and portable and provides
the user with a comprehensive set of tools for custom analog
circuit design and implementation. The infrastructure includes
the FPAA IC, discrete ADC, DAC and amplifier ICs, a 32-Bit
ARM based microcontroller for interfacing the FPAA with the
user’s computer, and Matlab and targeting software. The FPAA
hardware communicates with Matlab over a USB connection.
The USB connection also provides the hardware’s power. The
software tools include three major systems: a Matlab Simulink
FPAA program, a SPICE to FPAA compiler called GRASPER,
and a visualization tool called RAT. The hardware consists of
two custom PCB designs which include a main board used to
program and control an FPAA IC and an FPAA IC adaptor
board used to interface a QFP packaged FPAA IC with the 100
pin ZIF socket on the main programming and control board.

Index Terms—FPAA, Simulink, Reconfigurable Analog

Field Programmable Analog Arrays (FPAAs) are useful for
both research and teaching [1]. Previous Georgia Tech FPAA
ICs have been programmed using a self contained develop-
ment platform that included a commercial FPGA development
board, a custom FPAA board, and a AC-DC power module.
This previous hardware platform [2] fit into an enclosure
about the size of a shoe box and communicated with the
computer using ethernet. The new platform described in this
paper is significantly smaller (about twenty-six square inches)
and communicates over USB. The power supply systems have
also been changed and improve upon the portability. A picture
of the programming and control board is found in Fig. 1,
and a block diagram of the system is found in Fig. 2. The
infrastructure is a proven system as it has seen use in a DARPA
project workshop at the University of Southern California;
two workshops in Telluride, CO; and two more workshops
at Gerogia Tech. The boards have also been the primary lab-
oratory infrastructure for two semesters of a graduate course
in Neuromorphic Analog VLSI Circuits at Georgia Tech.

Section I discusses the basics of FPAAs, Section II discusses
software tools, Section III discusses the hardware, Section IV
shows the design flow using a demonstration test circuit, and
Section V is a closing summary

Fig. 1: FPAA Programming & and Control Board (25.76 square inches).
Note the USB connection on the top left; 40 pin DIP microcontroller module
to the right of the serial connector; the 100 pin ZIF socket for inserting the
FPAA ICs; many 2x4 pin headers connected to FPAA I/O, DAC outputs,
ADC inputs, FPAA control pins, and power/ground; 4 SMA for FPAA I/O
interface; and the audio jacks (on the lower right).

I. IMPLEMENTATING CIRCUITS ON A

FIELD-PROGRAMMABLE ANALOG ARRAY (FPAA)

A family of floating-gate based large-scale FPAAs are
being developed at Georgia Tech. This family includes the
Reconfigurable Analog Signal Processor (RASP) IC [3], [4],
the Reconfigurable Smart Sensory Chip (RSSC), [5] as well
as FPAAs with biological and adaptive computational blocks.
In this work we present the latest software and hardware used
to map circuits onto these FPAAs.

The RASP and RSSCs are reconfigurable analog platforms
that utilize a switch matrix of programmable floating gate
transistors as switch elements. The reconfigurable nature of the
platforms allow rapid building and testing of different circuit
configurations [4].

Fig. 3 shows a RASP 2.8 block diagram and resulting die
photo of the working IC. The IC is arranged in an 8 x 4 array of
computational analog blocks (CAB)s, with two CAB versions:
one that includes a 4x4 vector-matrix multiplication (VMM)
placed along the top and bottom rows, and one that does
not. The arrays have a mixture of analog granularity, so that
one has access to transistor-level functions, as well as some
higher signal processing features. Programmable floating-gate
circuit technology enables the FPAAs to provide area-efficient,

978-1-4244-5309-2/10/$26.00 ©2010 IEEE 2794

USB
Circuitry

μC

3.3, 5, 12V
Power

40 Channel
DAC

4 Channel
ADC

Serial
Com

FPAA
Audio

Amplifiers

Fig. 2: Block Diagram of the FPAA programming and control board. The
board has been designed to be self contained and portable, only needing a
laptop. The user chooses between USB or serial communication. The power
is supplied by the USB port. The microcontroller (µC) is a 40 pin DIP plug-in
module which uses an ATMEL 32 Bit ARM processor. The FPAA I/O can be
reconfigurably connected to the discrete ADC and DACs using headers and
jumpers. MP3 players can easily be used as inputs to the FPAA by using the
audio input port and audio amplifiers.

CAB1 CAB2

3 OTAs

nFET & pFET

2 Bandpass
Filters

4 input x
4 output VMM

3 Capacitors

Max & Min
Detect

3 OTAs

nFET & pFET

2 Bandpass
Filters

3 Capacitors

Max & Min
Detect

CAB2

L
oc

al
 R

ou
tin

g

G
lo

ba
l R

ou
tin

g

CAB2

L
oc

al
 R

ou
tin

g

G
lo

ba
l R

ou
tin

g

CAB1

L
oc

al
 R

ou
tin

g

G
lo

ba
l R

ou
tin

g

CAB1

L
oc

al
 R

ou
tin

g

G
lo

ba
l R

ou
tin

g

CAB1

L
oc

al
 R

ou
tin

g

G
lo

ba
l R

ou
tin

g

CAB1

L
oc

al
 R

ou
tin

g

G
lo

ba
l R

ou
tin

g

Output Lines

O
utput L

ines

(a)

(b) (c)

Fig. 3: A Reconfigurable Analog Signal Processing IC. (a) Block Diagram
of the RASP 2.8 IC; the IC utilizes 32 CABs in a multi-level routing scheme.
(b) Block diagram of the CAB components. (c) Die Photo of the RASP IC
which consumes 3mm x 3mm area in 0.35µm CMOS process.

accurately programmable analog circuitry that can be easily
integrated into a larger digital/mixed-signal system [3] [2]. The
programmable elements allows for switch elements that have
a dual role as computational elements [6].

A closed loop control system is used to program the
floating-gate elements [7]. Using the software tools that will
be described in Section II, a list of FPAA switches is first
selected to be programmed. Some floating-gate switches may
be fully on whereas others may be programmed to specific

currents. Matlab and the ARM Core Microprocessor are the
brains of the control system. The Matlab interface needs to
communicate to the FPAA that it would like to program switch
X to some current Y. It does this by sending a message via
USB to the FPAA board’s ARM core microprocessor. This
microprocessor then communicates switch coordinates and
calculated programming voltages to the FPAA IC using an
SPI bus. This completes the active programming part of this
iteration. The FPAA IC’s on-chip programming structures then
measure the result of this programming iteration and reports
the level to which the floating-gate is programmed. This
feedback is communicated from the FPAA IC to the ARM core
microprocessor using SPI. In some cases the microprocessor
uses this feedback to control the FPAA IC, in other cases
the feedback is communicated from the microprocessor to
MATLAB over USB and corrective signals are calculated
in MATLAB. This iterative control loop continues until the
desired floating-gate switch current is reached.

II. FPAA SOFTWARE INFRASTRUCTURE

The FPAA software tools include three major systems: a
Matlab Simulink FPAA program, a SPICE to FPAA compiler
called GRASPER (Generic Reconfigurable Array Specifica-
tion & Programming Environment), and a visualization tool
called RAT (Routing Analysis Tool).

The Matlab Simulink Tool is an automation tool which
converts Simulink models to a Spice netlist, which can then
be automatically compiled to FPAA targeting code and im-
plemented on an FPAA. This allows DSP and neuromorphic
engineers to have a fast method of implementing low power
analog solutions without having to gain the necessary expertise
in circuit design [8] [9]. The current system allows the user
to program floating gates at a rate of approximately one per
second. This Simulink Tool is described in greater detail in
[10].

The GRASPER tool converts a circuit’s SPICE file into a
list of FPAA switches that implement the circuit on the FPAA.
GRASPER has features which grant the user various levels of
control as to what components are used and how the circuit
is mapped onto the FPAA IC [11] [12] [13] [14].

The RAT is a Matlab GUI which graphically shows the
topology of how a circuit is routed on the FPAA switches
[15]. New designs can be created or existing designs can be
modified by pointing and clicking with the mouse. The RAT
can easily be configured to support FPAA ICs with different
number of computational analog blocks.

Once an FPAA is targeted, the user can interface with the
FPAA I/O in a couple of ways. First the user can jumper
FPAA I/O to the discrete DAC and/or ADC ICs. These ICs
are controlled through the Matlab interface. Table I lists a few
sample Matlab commands. The user can also interface with
the FPAA by using the audio amplifier ports. Fig. 5 shows the
legend used to identify the various headers. There are thirty-
two header pins on the board that are considered ”factory
settings” and are normally jumpered to specific control pins.

2795

Simulink

GRASPER

SPICE

FPAA

Block
Model

Sub-
Circuit

.mdl

MATLAB
Struct

Netlist

Switch
List

sim2spice

RAT

Library

Netlist
Generator

Parser

Fig. 4: Software flow for designing systems on the FPAA. Top level designs
are done in Simulink. Sim2Spice converts it to a Spice netlist, which can then
be compiled into an FPAA switch list. [10]

Fig. 5: Header Map used as a legend to identify pins on the programming
and control FPAA board. U *, D *, L *, R * are FPAA I/O pins

III. FPAA HARDWARE INFRASTRUCTURE

The hardware consists of two custom PCB designs: a main
programming and control board and an FPAA IC adaptor
board. The programming and control board, Fig. 1, is the
workhorse of our FPAA infrastructure family. It has header
pins which allow easy access to most of the FPAA pins. This is
helpful for many things including power measurements, circuit
debugging, etc. This board has a 100 pin zero insertion force
(ZIF) socket into which the FPAA IC is placed. This socket
makes this board a good general platform for testing many
families of FPAAs such as our General, Sensor, Bio, MITE,
and Adaptive versions. Our FPAAs are typically packaged in
plastic surface mount packages. We have developed an adaptor
board PCB, Fig. 6, which connects the surface mount packages
to pins. These pins then plug into the ZIF socket on the

TABLE I: Sampling of Matlab commands used to interface
with FPAA

Matlab Function Description
SET DAC USB sets one of the 40 channels on the DAC IC

READ ADC USB reads into Matlab a value from the ADC IC.
PROGRAM aa used to program a list of elements on the FPAA

Fig. 6: Adaptor Board (4.16 square inches) This custom PCB has a quad
flat pack (QFP) packaged FPAA IC on one side and pins on the other side.
The pins plug into the 100 pin ZIF socket on the programming and control
board.

programming and control board.
The programming and control board has the following

features: USB or Serial communication capabilities, USB
power or external DC power, SMA connectors for connecting
to FPAA I/O pins, a discrete 14-Bit DAC IC which has forty
channels (most of which can be used as inputs to FPAA I/O
pins), a discrete 8-bit ADC that can also be used to connect
to FPAA I/O pins, amplifiers to be used as I/O buffers, and
finally an audio amplifier and audio jacks which can be used
for audio input and output connections to the FPAA. The board
also has 3.3V, 5V, and 12V supplies. The board uses an Atmel
AT91SAM7S ARM based microcontroller to communicate via
USB to the any desktop or laptop computer. The software
emulates a serial communications device class (CDC) con-
nection, and most modern operating systems have drivers for
this software out-of-the-box. The ARM Core microprocessor
on the board was purchased as a 40 pin DIP plug-in module.

IV. DESIGN FLOW USING A DEMONSTRATION TEST

CIRCUIT

Fig. 7 shows the design flow for implementing a lowpass
filter on an FPAA. First a Simulink block diagram of the
system was generated, Fig. 7(a). Although not shown in this
picture, this system can be digitally simulated in Matlab. Next,
the Sim2spice tool, Fig. 4, is used to generate a SPICE file
from the Simulink block diagram, Fig. 7(b). Fig. 7(c) shows
the text file which is the output of the GRASPER compiler.
The first two numbers in each line are the row and column
locations of a particular floating-gate transistor on the FPAA,
and the last number on the line represents the desired current in
the transistor. Fig. 7(d) shows the topology of the GRASPER
routing on a RASP 2.9 IC. The switch list was targeted onto
a RASP IC and a step input (blue) was applied to the input
pin. The result was measured and shown in black in Fig. 7(e).

2796

0 5 10 15 20 25 30 35

0

20

40

60

80

100

0 5 10 15 20 25 30 35

0

20

40

60

80

100

IO
 D

N
<

2>

IO
 D

N
<

3>
IO

 D
N

<
4>

IO LT<0>IO RT<0>IO LT<1>IO RT<1>

IO LT<2>IO RT<2>IO LT<3>IO RT<3>

IO LT<4>IO RT<4>IO LT<5>IO RT<5>

+
−

+
−

+
−

+
−

+
−

+
−

+
−

+
−

(0,13)

(19,1) (19,31)

(42,20) (42,31)
(43,13) (43,31)

(44,20) (44,31)

(20,20) (20,31)

(24,1) (24,31)
(25,20) (25,31)

(26,4) (26,31)
(27,20) (27,31)

(28,4) (28,31)
(26,32)

(42,32)

0 1 2 3 4 5 6

x 10
−4

0.05

0.1

0.15

0.2

0.25

0.3

Time (Sec)

Vo
ta

ge
 (V

)

Out 1

1

lpf

Vin Vout
first−order

low−pass filter

OTA _buffer

Vin VoutOTA _buffer

In1

1

0 13 1.8
81 1 1.8
42 20 1.8
43 13 1.8
44 20 1.8
82 20 1.8
86 1 1.8
87 20 1.8
88 4 1.8
89 20 1.8
90 4 1.8
88 32 1e-3
42 32 1e-09

(a)

(c) (d) (e)

*spice file generated by sim2spice.
.INCLUDE fpaa_tech.sp

*INPORT invector
*>> pin io_lt 0 net vin

xlpf vin vout lpf PARAMS: Ibias=10n

;Low Pass Filter - 1st order
.subckt lpf Vin Vout PARAMS: Ibias=10n
XOTA Vin Vout Vout ota PARAMS: Ib={Ibias}
XC1 Vout 0 C500F
.ends

*OUTPORT Out1
*>> pin io_up 0 net vout

*>> devicefile rasp2_8.dev
*>> project work

(b)

Fig. 7: Design Flow for a low pass filter (a) Simulink Block Diagram (b) SPICE list generated by Sim2Spice tool (c) FPAA switch list generated by
GRASPER tool (d) RAT Figure showing switch list routing on RASP 2.9 IC (e) Measured Results from RASP IC, Blue is the input signal, black is the
lowpass filterd output

V. CONCLUSIONS

We have described a comprehensive set of software and
hardware tools that let users quickly and easily create custom
AVLSI circuits. The software tools allow users with varying
levels of circuit design experience to be successful at syn-
thesizing circiuts. The hardware infrastructure platform allows
users extreme flexibility to monitor and control the FPAA pins.
The adaptor board allows users to quickly interchange FPAAs
on the main programming and control board.

REFERENCES

[1] C. Twigg and P. Hasler, “Incorporating large-scale fpaas into analog
design and test courses,” Education, IEEE Transactions on, vol. 51,
no. 3, pp. 319–324, Aug. 2008.

[2] C. Twigg, P. Hasler, and F. Baskaya, “A self-contained large-scale
fpaa development platform,” in Circuits and Systems, 2007. IEEE
International Symposium on, May 2007, pp. 1187–1191.

[3] T. Hall, C. Twigg, J. Gray, P. Hasler, and D. Anderson, “Large-scale
field-programmable analog arrays for analog signal processing,” Circuits
and Systems I: Regular Papers, IEEE Transactions on, vol. 52, no. 11,
pp. 2298–2307, Nov. 2005.

[4] A. Basu, C. Twigg, S. Brink, P. Hasler, C. Petre, S. Ramakrishnan,
S. Koziol, and C. Schlottmann, “Rasp 2.8: A new generation of floating-
gate based field programmable analog array,” in Custom Integrated
Circuits Conference, 2008. IEEE, Sept. 2008, pp. 213–216.

[5] S.-Y. Peng, G. Gurun, C. Twigg, M. Qureshi, A. Basu, S. Brink,
P. Hasler, and F. Degertekin, “A large-scale reconfigurable smart sensory
chip,” in Circuits and Systems, 2009. IEEE International Symposium on,
May 2009, pp. 2145–2148.

[6] C. Twigg, J. Gray, and P. Hasler, “Programmable floating gate fpaa
switches are not dead weight,” in Circuits and Systems, 2007. IEEE
International Symposium on, May 2007, pp. 169–172.

[7] A. Basu and P. Hasler, “A fully integrated architecture for fast pro-
gramming of floating gates,” in Circuits and Systems, 2007. IEEE
International Symposium on, May 2007, pp. 957–960.

[8] C. Twigg, P. Hasler, and D. Anderson, “Large-scale fpaa devices
for signal processing applications,” in Acoustics, Speech and Signal
Processing, 2007. IEEE International Conference on, vol. 2, April 2007,
pp. II–69–II–72.

[9] C. Schlottmann, C. Petre, and P. Hasler, “Vector matrix multiplier on
field programmable analog array,” in Acoustics, Speech and Signal
Processing, 2010. IEEE International Conference on, March 2010.

[10] C. Petre, C. Schlottmann, and P. Hasler, “Automated conversion of
simulink designs to analog hardware on an fpaa,” in Circuits and
Systems. IEEE International Symposium on, May 2008, pp. 500–503.

[11] F. Baskaya, B. Gestner, C. Twigg, S. K. Lim, D. Anderson, and
P. Hasler, “Rapid prototyping of large-scale analog circuits with field
programmable analog array,” in Field-Programmable Custom Computing
Machines. 15th Annual IEEE Symposium on, April 2007, pp. 319–320.

[12] F. Baskaya, D. Anderson, and S. K. Lim, “Net-sensitivity-based opti-
mization of large-scale field-programmable analog array (fpaa) place-
ment and routing,” Circuits and Systems II: Express Briefs, IEEE
Transactions on, vol. 56, no. 7, pp. 565–569, July 2009.

[13] I. Baskaya, “Physical design automation for large scale field pro-
grammable analog arrays,” Ph.D. dissertation, Georgia Institute of Tech-
nology, Atlanta, Aug. 2009.

[14] F. Baskaya, D. Anderson, P. Hasler, and S. K. Lim, “A generic reconfig-
urable array specification and programming environment (grasper),” in
Circuit Theory and Design, 2009. European Conference on, Aug. 2009,
pp. 619–622.

[15] D. Abramson, “A mite based translinear fpaa and its practical imple-
mentation,” Ph.D. dissertation, Georgia Institute of Technology, Atlanta,
Nov. 2008.

2797

