
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Large-Scale
Field-Programmable
Analog Arrays

By JENNIFER HASLER , Senior Member IEEE

ABSTRACT | Large-scale field-programmable analog array

(FPAA) devices could enable ubiquitous analog or mixed-signal

low-power sensor to processing devices similar to the ubiqui-

tous implementation of the existing field-programmable gate

array (FPGA) devices. Design tools enable high-level synthesis

to gate/transistor design targeting today’s FPGA devices and

the opportunity for analog or mixed-signal applications with

FPAA devices. This discussion will illustrate the FPAA concepts

and FPAA history. The development of FPAAs enables the

development of multiple potential metrics, and these metrics

illustrate future FPAA device directions. The system-on-chip

(SoC) FPAA devices illustrate the IC capabilities, computa-

tion, tools, and resulting hardware infrastructure. SoC FPAA

device generation has enabled analog computing with levels

of abstraction for application design.

KEYWORDS | Analog-digital integrated circuits, analog inte-

grated circuits, CMOS integrated circuits, field-programmable

analog arrays (FPAAs), field-programmable gate arrays

(FPGAs).

I. P O T E N T I A L O P P O R T U N I T Y O F P R O -
G R A M M A B L E A N D C O N F I G U R A B L E
A N A L O G D E V I C E S
The programmability and configurability of digital com-
putation have been the primary capability enabling the
decades rise of digital computation. Programmability and
configurability enabled one group to build machines and
another group to program those machines. The VLSI revo-

Manuscript received December 31, 2018; revised August 6, 2019; accepted
October 17, 2019.
The author is with the School of Electrical and Computer Engineering (ECE),
Georgia Institute of Technology, Atlanta, GA 30332-250 USA (e-mail:
jennifer.hasler@ece.gatech.edu).

Digital Object Identifier 10.1109/JPROC.2019.2950173

lution [1] enabled further separation of roles to address
the increasing complexity resulting from Moore’s law
scaling [2]–[4]. Digital microprocessors (µP) are ubiqui-
tous from embedded applications to general-purpose (GP)
computing. Programmability enables changing parame-
ters or coefficients in a particular algorithm. Changing the
stored matrix of weights for a vector–matrix multiplication
(VMM) is an example of programmability. Configurability
enables changing the data flow, topology, as well as the
order or operations. Changing the program for an µP is an
example of configurability. Field-programmable gate array
(FPGA) devices, programmable and configurable gate-level
digital devices, enabled digital designers’ design capabili-
ties from gate- to system-level designs. FPGAs are ubiq-
uitous digital computing devices found everywhere over
the last two decades, arising from their initial conception
(1980) and commercialization (mid-1980s) [5].

Modifying the parameters or control flow requires sig-
nificant changes, such as soldering new components

In contrast to digital computation, analog functionality
is considered to be a fixed function. Although digital
computation is considered programmable and config-
urable, where a user can just sit at their laptop and
execute many programs, analog computation is believed
to require building custom physical hardware (see Fig. 1).
Typically, engineers see that digital computing requires
writing code, and analog functions require soldering a
printed circuit board (PCB). Analog elements could include
physical devices, sensors, actuators, or other devices oper-
ating over real or integer values. As these structures are
the other in most systems, the components that are not
programmed such as digital components. The early neu-
romorphic design began to change this viewpoint utilizing
several hand-tuned parameters (see [6]), and it only prac-
tically changed with the invention of the first long-term
analog memory element in 1994 [7].

0018-9219 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

PROCEEDINGS OF THE IEEE 1

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 10,2020 at 21:10:37 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-6866-3156


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Hasler: Large-Scale Field-Programmable Analog Arrays

Fig. 1. Large-scale FPAAs enable configurable and programmable

computation utilizing both analog and digital techniques. Classical

digital techniques are ubiquitous and powerful because of

parameter programmability and control-flow configurability (e.g., µP

and FPGAs). Classical analog techniques are considered fixed and

are built custom for a particular application. The typical perception

of analog techniques requires significant changes in soldering new

components to modifying the parameters or control flow. Dense

analog memories enable both programmable and configurable

techniques for analog and digital approaches.

The hope for programmable and configurable analog
and mixed-signal devices has been at least as strong if
not stronger than the original drive for digital reconfig-
urability. An equivalent analog and mixed-signal concept
could enable the ubiquitous low-power sensor to process-
ing devices. Many perceive analog design as an artistic
skill and community; utilizing artists on a large scheduled
project requires careful handling. Having design tools,
enabling the efficient high-level synthesis of mixed-signal
components would greatly improve application opportuni-
ties as well as reduce potential schedule risk.

Current programmable and configurable devices
(see Fig. 2) have the potential to transform low-
power embedded system design, much the way FPGAs
transformed physical digital implementations (see Fig. 1).
Large-scale field-programmable analog arrays (FPAAs)
look toward analog system applications and computa-
tion [8], similar to the focus of FPGAs for over 20 years,

starting from its introduction in 2002 [9]. Early FPGAs
(e.g., 1980s), such as early programmable analog arrays
(see [10]–[12]) and early commercial devices (see
EPAC [13] or Anadigm [14]), were useful for glue logic
and functions and small occasional computations. Analog
computing techniques result in 1000× improvement in
power or energy efficiency and a 100× improvement
in area efficiency, compared to digital computation as
Mead originally predicted [15]. For example, an FPAA
implemented a command-word acoustic classifier (spectral
classification) with hand-tuned weights, achieving
command-word recognition in less than 23 µW with
standard digital interfaces (see Fig. 2) [16]. The full
classification results in less than 1 µJ per classification
(or inference), which has 1000× improvement over
similar digital neuromorphic solutions requiring roughly
1 mJ or higher for just an inference (see [17]).

This article illustrates the capabilities of these FPAA
devices and the opportunities possible with these FPAA
devices. Looking over the range, FPAA approaches show a
move toward computing and signal processing devices (see
Section II), including improving approaches in memory
(see Section II-A), architectures (see Section II-B), and
process scaling (see Section II-C). One can evaluate a
number of metrics for previous, current, and future FPAA
device directions, giving a roadmap for scaling these sys-
tems to larger architectures (see Section II-D). The system-
on-chip (SoC) FPAA concept and family illustrate both the
most advanced FPAA family of devices (see Section IV)
built to date as well as the most advanced tool and
hardware infrastructure (see Section V) developed to date.
Any future FPAA device would likely need to build an
infrastructure or fit within the existing infrastructure. The
existing tool approaches directly extend to larger chips,
smaller IC processes, and a number of chips for a given
system. The SoC FPAA device family enabling analog sys-
tem function makes answering questions in analog com-
puting [18] and abstraction, numerics, and architecture
complexity (summarized in Section IV) [19]–[21] both
possible and necessary for application design.

II. P R O G R A M M A B L E A N D C O N F I G -
U R A B L E A N A L O G D E V I C E H I S T O R Y
FPGA and FPAA are combinations of components and con-
nections between these components (see Fig. 3) and off-
chip communication. FPGAs could have a number of I/O
lines that typically can be programmed to be inputs or out-
puts (see Fig. 3). FPAA I/O lines could transmit or receive
analog or digital signals as well as direct connection lines
typical of analog circuits. FPGAs are composed of logic
and routing between these devices (see Fig. 3). The logic
is referred to as a configurable logic block (CLB) that
is typically implemented as lookup tables with flip-flop
registers. FPAAs can also have digital logic and routing
between digital components. Most FPGAs store the device
state using SRAM elements, with a small minority of
devices using floating-gate (FG) storage techniques; the

2 PROCEEDINGS OF THE IEEE

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 10,2020 at 21:10:37 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Hasler: Large-Scale Field-Programmable Analog Arrays

Fig. 2. SoC large-scale FPAA device showing a command-word speech recognition (spectrum classification). We show the high-level block

diagram of the SoC FPAA device (left), a typical measurement setup and computational block diagram for command-word speech

recognition, and measured input and classifier output response classifying the word dark in the TIMIT database phrase. The SoC FPAA

includes a processor, as well as analog (A) and digital (D) blocks in the routing infrastructure. This analog computation (<23 µW) is radically

different from the class of expected analog operations.

energy required for SRAM storage in modern processes
(100 mW–1 W) can limit some FPGA applications.

FPAAs have analog components as well as routing
between analog and digital components (see Fig. 3).
The routing between analog and digital blocks could
occur between the blocks of devices, with converters
between these blocks, or more finely connected hetero-
geneous analog and digital component populations. The
components are often organized into regions called com-
putational analog blocks (CABs). CAB components vary
considerably between implementations but often include
nFET and pFET transistors, transconductance amplifiers
[TA or operational transconductance amplifier (OTA)],
other amplfiers, passives (e.g., capacitors), as well as more
complicated elements (e.g., multipliers), starting from the
earliest devices (see [10]–[14] and [22]–[24]). Once FPAA
ideas exist, one needs to consider questions of what FPAA
memory to use (see Section II-A), of what FPAA architec-
ture to use (see Section II-B), of the impact of FPAA scaling
to smaller CMOS linewidths (see Section II-C), and of how
FPAA implementations compare (see Section II-D).

A. FPAA Memory Techniques
The memory technology for FPAA devices heavily

impacts the application complexity, area, and energy effi-
ciency. The combination of CAB complexity, as well as the
memory technology used, categorizes the types of FPAA
devices (see Fig. 4). Early FPAA approaches (see [10]–[14]
and [22]–[24]), whether from research or commercial
sources, utilized SRAMs or similar registers. Analog para-
meters require a digital-to-analog converter (DAC) for
each parameter in one form or another, implemented as

ratioed capacitors or transistors. These approaches enabled
switching between a few amplifiers or filters, giving the
user a few parameters to tune a particular analog function.
As a result, these devices rarely reached large-scale con-
figurable systems, and were only used by analog designers
because the devices did not have the capabilities to be used
at a higher level of integration. These approaches are used
as glue components for analog systems and continue to
generate commercial interest (e.g., Anadigm) partially as
the hope of analog reconfigurable systems.

One SRAM-based FPAA approach reaches a large-scale
size for implementing the solutions of nonlinear ordinary
differential equations (ODEs) [25]–[27]. The original IC
resulted in 400 configurable circuit components (e.g., mul-
tipliers and integrators) in 100-mm2 area (250-nm CMOS)
utilizing 16 CABs organized with 25 components in a
smaller crossbar array in each CAB. Roughly, one program-
mable parameter, set by a DAC- or DAC-type structure,
is included with each component. An updated CAB with 20
(4 × 5 array, four integrators) components with additional
digital infrastructure to access and reuse the computing
infrastructure through DACs, analog-to-digital converters
(ADCs), SRAM, and SPI interface in 3.7 mm × 3.9 mm
(65-nm CMOS) area [26]. These devices are used for
the solution of general ODEs [25], as well as iterative
solutions of linear ODE systems generated from linear
partial differential equations (PDEs) [27].

Analog FG devices provide the memory elements for
FPAA devices. Section III focuses on FG devices because
of their significant impact on FPAA devices, different from
the SRAM heavy implementations for FPGA devices. FG
elements set the parameters for computational elements

PROCEEDINGS OF THE IEEE 3

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 10,2020 at 21:10:37 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Hasler: Large-Scale Field-Programmable Analog Arrays

Fig. 3. FPAA and FPGAs are related forms of configurable

technologies, where FPGAs are typically a combination of logic gates

and routing, where FPAAs also include analog components in

addition to logic gates and routing. These structures can be

programmed and reprogrammed several times depending on the

user’s requirements.

(e.g., OTAs) while using SRAM or similar digital registers
for routing [28]–[32]. Programmable subthreshold and
above-threshold current sources are routinely programmed
over six orders of magnitude (e.g., 30 pA–30 µA) with
better than 1% accuracy at all values, including sub-
threshold current levels [33]. One recent approach enables
FPAA devices targeted for analog at the boundary between
analog designers and system designers [30]. FG elements
are primarily used for setting current and voltage sources
for traditional analog circuits with good performance over
the programming range, providing an excellent framework
for system-level analog designers to utilize these systems;
80 CABs with roughly 260 circuits are controlled through
296 FG device memories for spectral analysis functions.
The required FG programmable voltages are provided
through on-chip charge pumps [34].

Analog FG devices provide both the FPAA memory ele-
ments and the FPAA routing elements. The chip stores
the parameters as well as configuration as nonvolatile
analog and digital values. Starting from the earliest of
these approaches in 2002 [9], these techniques con-
tinued to develop (see [35]–[38]) to the current SoC

FPAA [16], utilizing 600 000 programmable parameters
in 350-nm CMOS. The fabric switches use a single FG
pFET device that can be programmed in an analog manner,
enabling computation in routing fabric as well as CAB ele-
ments [39]. These techniques enable 1000× improvement
in computational energy efficiency compared to custom
digital [40], retaining the custom analog computation
improvement [41] even though systems are compiled on
an FPAA. Section IV discusses further the SoC capabilities
and infrastructure.

B. FPAA Architecture Designs

The capability of memory devices for configurable sys-
tems has enabled a wide range of FPAA architectures (see
Fig. 5). Component and routing architectures distinguish
between different FPAA devices, following some similar
paths and lessons learned from FPGA devices. Memory
elements’ crossbar can enable selectivity similar to digital
configurability (see Fig. 5), where the routing might be an
extended crossbar between all the components and out-
puts. Early FPAA approaches typically used these schemes
(see [9]–[12]).

Another approach uses the computational elements for
routing to decrease the area and load capacitance from
large crossbar arrays. The classic approach utilized OTAs
as the computation and routing in a hexagonal routing
pattern [42]–[45]. These approaches have resulted in the
highest frequency response for a given IC process by this
simple routing structure [42], [44]. Using switches in a
crossbar as computation seems to take a related approach
to these concepts, utilizing switches for computation as
needed [39].

Fig. 5 also shows the routing architecture for a Manhat-
tan routing scheme. Manhattan routing is typical of FPGAs,
as well as in some form for modern FPAAs (see [16], [25],
and [32]). Manhattan FPAA architecture connects CABs
and CLBs through connection (C) and switch (S) blocks.
The CABs or CLBs are the buildings, the C blocks enable

Fig. 4. Complexity comparison between FPAA implementations.

FG parameters and switches allow larger and more complex FPAA

structures. Enabling SoC infrastructure with FPAA devices utilizes

and manages the larger computation, assisting access to most of

the available computation.

4 PROCEEDINGS OF THE IEEE

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 10,2020 at 21:10:37 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Hasler: Large-Scale Field-Programmable Analog Arrays

Fig. 5. FPAA (and FPGA) routing architectures. Simple crossbar: CABs are simply components made up of different configurable elements

(A1, A2, . . . ) (Manhattan, simple crossbar internally). Element-to-element routing: routing through the computational devices, such as OTAs,

to potentially decrease routing parasitics. Element-to-element routing is typically arranged in geometrical patterns, hexagonal or

rectangular. Manhattan routing: multilevel routing architecture connecting CABs and/or CLBs, which have their own connection patterns

(e.g., crossbar), through a set of connection blocks (C blocks) to the higher level interconnection which are routed through the (S blocks).

the street and street access for the routing, and the S blocks
are the intersections between these routing, allowing to go
straight or make turns. This routing scheme is typical of the
earlier Xlinix architectures (e.g., Virtex 2 or 3). VPR/VTR
[46] can place and route for these architectures. These
techniques can allow for a number of unique CAB compo-
nents, such as detailed biologically modeled neurons [47],
a technique roughly repeated recently for simpler neurons
using digital computation [48].

C. FPAA IC Process and Frequency Scaling
FPAA operating frequency for a particular Manhattan

architecture, similar to other architectures, is ideally an
inverse as a quadratic function of the minimum IC process
linewidth. Decreasing the minimum linewidth quadrati-
cally decreases the capacitance, typically resulting in an
inversely proportional improvement in energy efficiency
and ideally the same improvement in fabric operating
frequency. One expects the number of parameters to
increase by inverse of the square of the process linewidth.
FG-based routing follows the ideal scaling as the FG
switches are typically programmed to the maximum con-
ductance value [49]. Fig. 6 shows the operating band-
width of a Manhattan architecture, similar to the SoC
FPAA architecture, based on modeling and experimental
data (350, 130, and 40 nm) [49]. This FPAA architecture
in the 350-nm process operates at 50-MHz bandwidth,
while in 45 nm, this architecture is capable of 4-GHz
bandwidth. A 7-, 10-, or 14-nm FPAA design would enable

very wide bandwidth RF computation. FG approaches have
no apparent limitations in FinFET or silicon on insulator
(SOI) although the capacitor structures modify, given the
technology capabilities. Therefore, although an FPAA can
have a significant performance at a large process node
(e.g., 350-nm CMOS), the opportunities only improve in
terms of improved bandwidth, higher energy efficiency,

Fig. 6. Scaling of FPAA architectures using FG device fabric to

anchored from data in 350-, 130-, and 40-nm CMOS, bandwidth is

from dc to −3-dB corner frequency. Bandwidth of FPAA architectures

is a quadratic function of minimum process dimension.

PROCEEDINGS OF THE IEEE 5

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 10,2020 at 21:10:37 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Hasler: Large-Scale Field-Programmable Analog Arrays

Table 1 FPAA Comparison Table for Significant and Updated FPAA Devices

Fig. 7. FPAA devices are plotted as the percentage of control path implemented versus analog parameter density. Recent FPAA ICs

effectively maximize both parameters. Analog parameter density is the number of analog parameters per mm2, normalized to a 1-µm

process. Analog parameters directly set the complexity possible by the particular FPAA device.

and higher density similar to the improvements seen
in FPGAs.

D. Metric Comparisons of FPAA Devices
Comparing FPAA devices shows the computational pos-

sibilities for multiple architectures from experimental data
from the current generation of FPAA devices. Table 1
shows another comparison among FPAA devices in a table
form, and Fig. 7 plots various FPAA devices showing the
percentage of control path implemented versus analog
parameter density. Fig. 7 shows the two metrics from
many published FPAA devices [9]–[14], [16], [22]–[25],
[28]–[32], [35]–[38], [42]–[45], [50]–[58].

Because physical implementations of these FPAA devices
show the quadratic scaling of operating frequency with
the inverse of minimum channel linewidth for devices

from 2.0-µm to 40-nm CMOS (see Section II-C), we nor-
malize the metrics by this parameter. We define analog
parameter density as the number of programmable para-
meters per mm2, normalized to a 1-µm CMOS node.
Analog parameter density determines critically the IC
computation complexity, particularly when using routing
as computation. Fig. 7 shows that the FG-based FPAAs
enable ≈1000 parameter density improvement, particu-
larly when used for routing, as will be discussed further
in Section III providing increased computation on a single
device.

An FPAA should have a large number of programmable
parameters, as well as having the infrastructure to get
data communicated to these processing devices. Our sec-
ond metric describes the amount of control flow (mostly
digital) relative to the amount of analog and digital data

6 PROCEEDINGS OF THE IEEE

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 10,2020 at 21:10:37 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Hasler: Large-Scale Field-Programmable Analog Arrays

Fig. 8. Single-poly cross-section typical for FG devices. Double

poly is used as available, but this device is available in a wide range

of IC processes (e.g., 130 and 45 nm [49]). Practical devices often

have additional process-dependent modifications.

flow capability. Getting data to all the processors can be
a primary limitation for a series of application spaces,
such as image processing, where data do not always arrive
in the desired order for the computation. Recent RASP-
based FPAA designs (see [16], [26], [37], and [38]) have
started to focus on improving this second metric. The SoC
FPAA is a strong example (discussed further in Section IV)
optimizing both metrics; the SoC FPAA is nearly 600 000×
parameter density improvement to the closest high utiliza-
tion structure (i.e., PSoC5) [50].

III. F G D E V I C E S A S M E M O R Y A N D
C O M P U T I N G E L E M E N T S F O R
F P A A D E S I G N
FG devices will be considered briefly in the context for
FPAA device design, given its huge impact on these archi-
tectures. The original FG circuit concept in the standard
CMOS process [7] enabled nonvolatile parameter storage,
computed using that parameter, and used the compu-
tation potentially modifying (or learning) the long-term
parameter. These concepts were built on a long history
on FG device development, starting from the initial dis-
covery of an MOS FG device [59], [60]) and early uses
of FG devices to store analog quantities (see [61] and
[62]). These devices were the original crossbar compu-
tation. Other nonvolatile devices with the same analog
programmability, selectivity, and density could make a sim-
ilar impact, although non-Si substitute technology seems
unlikely to satisfy these requirements in the near-term
future (see [63]).

Fig. 8 shows the top-level (e.g., layout) generic view
of a single-poly (standard CMOS) FG device. This core
structure is used in every FG test structure since it

characterizes baseline performance of these devices, start-
ing from its initial introduction [64]. The transistor gate
is capacitively coupled by one or multiple capacitors.
Recent ferroelectric capacitors further enable FG circuit
capabilities (see [65]); FG techniques can utilize any
process improvements. The FG charge is modified by
the combination of transistor hot-electron injection and
electron tunneling through a separate tunneling capacitor
(see [33]). The tunneling and hot-electron injection volt-
ages (e.g., 12 and 6 V, respectively, for 350-nm CMOS)
are easily handled through the process (see [33]) and
can be generated on-chip using charge-pump circuits [34].
Handling high-voltage signals, signals higher than the
applied external power supply, can be easily handled on-
chip. High-voltage handling can sit with precision analog
circuits, including not affecting the long-term behavior of
these FG analog circuits. Decades of FG circuit designs
that include memory devices demonstrate this high-voltage
design.

With typical ESD protection I/O pads, even if higher
voltages for non-FG programming pins are applied, the
overall IC can be designed to not be affected by these
higher voltages. Practical devices have additional improve-
ments; some are process dependent (e.g., covered by
NDAs). Process nodes below 350-nm CMOS use the thicker
insulator for all devices, including pFETs. Process nodes
below 65 nm use thicker HfO2 insulators for MOSFETs,
including pFETs, including for bulk, SOI, and FinFET

Fig. 9. FG switches in the connection (C) blocks, the switch (S)

blocks, and the local routing are a single pFET FG transistor

programmed to be a closed switch over the entire fabric signal

swing of 0–2.5 V [58].

PROCEEDINGS OF THE IEEE 7

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 10,2020 at 21:10:37 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Hasler: Large-Scale Field-Programmable Analog Arrays

Fig. 10. Using FG parameters results in significantly higher parameter density (100× or larger). We compare between FG parameters and

its next closest solution, having an n-bit DAC at every device. Optimistically, a DAC grows by a factor of 2 for an increase of 1 bit. At 8-bit DAC

precision, 100 FG parameters are smaller than 1 DAC for 350-nm CMOS. We assume an increase for a DAC of 2× for 1 bit. Typically, the cost

will increase at a higher level. Handling mismatch is a key risk for any analog (as well as digital) system; only programmability makes analog

computation practical in a system (including high-precision ADCs).

devices. Sometimes this thicker insulator device is used
for I/O devices, so the IC directly interfaces to board-level
infrastructure. Economic constraints strongly encourage
multiple gate insulator thicknesses. One should never put
contacts on the FG node to avoid lower retention rates.

FG devices have demonstrated long-term (ten-year
lifetime) across multiple IC processes from 2-µm to 40-
nm linewidths [66]–[68] as well as have shown precision
targeted (re)programming of heterogeneous arrangements
of FG devices (see [33]); FG devices have been used for
high-matching analog circuits [69], including references
[67], amplifiers [66], sensor interfaces [70], filters [71],
[72], and data converters [73]–[75], enabling dense high
signal-to-noise ratio (SNR) devices. FG devices have
demonstrated multiple commercially qualified and sold
devices. FG devices have been used in acoustic [76] and
imaging [77], [78], utilizing energy-efficient (1000× ver-
sus custom digital) signal processing [79] as VMM [41],
filterbanks [71], Gaussian mixture models (GMMs) [80],
support vector machine [81], VMM+Winner-Take-All
(WTA) classifiers [82], and adaptive filters [83].

A single FG pFET can approximate an ideal switch in
FPAA routing crossbar (see Fig. 9). One might be surprised
that a single pFET operates as a good switch, because of
traditional wisdom states that an nFET can only pass lower
signal values, while a pFET can only pass higher signal val-
ues. Transmission (T)-gates use a parallel combination of
an nFET and pFET with a CMOS inverter for a good switch
throughout all power supply rails. A T-gate is programmed
digitally, either ON or OFF, controlled by a stored digital
value. Digital storage limits the computing opportunities
of this T-gate switch.

A single pFET device is a good switch over the
entire operating range, because the FG voltage can exist

above or below the power supply rail. The FG pFET is
a standard pFET device whose gate terminals are not
connected to signals except through capacitors (e.g., no dc
path to a fixed potential). With no dc path to a fixed poten-
tial, stored FG charge results in an FG voltage that can
be inside or outside the power supply rails. The maximum
FG voltage is limited by the programming scheme for the
device [58]. To program an OFF-switch, the pFET FG gate is
set well above Vdd, setting the transistor in accumulation,
effectively conducting no current (e.g., <1 pA) throughout
the entire operating range [84]. To program an ON switch,
the pFET FG gate is set well below GND, setting the
transistor above threshold throughout the entire operating
range [84]. Fig. 9 shows the measured ON-switch resis-
tance for a 2.5-V supply for a pFET with its gate at GND
and an FG pFET with the FG programmed below GND.
This maximum ON conductance is roughly independent
on process minimum channel length. The conductance
is set by velocity saturation of electrons/holes for the
MOSFET channel [49]. These devices allow for nearly ideal
switches, including in a crossbar array configuration (see
Fig. 9), and do not constrain the FG voltage that can be
programmed between the ON and OFF states. Although
one might consider the nonlinear behavior if using this
switch as a resistor, typically the resistance is significantly
smaller than other circuit elements. One typically can
ignore these nonlinear behaviors and often can ignore the
resistances entirely.

FG elements provide a dense analog nonvolatile para-
meter integrated within a computational fabric, a memory
element for both parameters and routing. The alternative
to using FG memory elements is using a DAC or DAC device
(e.g., capacitor bank) for every parameter. Dynamically
storing voltages on a capacitor and refreshing from a

8 PROCEEDINGS OF THE IEEE

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 10,2020 at 21:10:37 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Hasler: Large-Scale Field-Programmable Analog Arrays

Fig. 11. FPGA and FPAA computing architectures. A basic FPGA

includes CLBs and routing to connect the CLBs and I/O for a

particular computation. Larger FPGAs are more structured forms of

these blocks. Practical FPGAs are only efficient with VMM support

for signal processing and matrix algebra computations (e.g., deep

NN), implemented through specialized rows of multipliers (often

with adders) and specialized local memory for cycling through

required VMM coefficients. These additions improve many FPGA

computations while eliminating area for additional CLBs. A basic

FPAA also includes CABs or CLB and routing. At a high level, the two

approaches look similar. A closer look shows that the FG-enabled

routing crossbar is excellent switches, as well as enabling VMM in

the routing as a result of analog programming. Unlike FPGAs, all

switches in some FG-enabled FPAA devices are potential places of

computation. For FPAAs, switches are not dead weight. FG stores a

charge, Q, at the floating node, allowing storage of analog voltages

that can be inside or outside the power supplies (GND and Vdd).

single DAC results in higher complexity and energy for
these operations. Fig. 10 shows the significant oppor-
tunities of programmable FG analog concepts compared
to alternative approaches, a DAC for every parameter.
The DAC approach is a set of ratioed current source
transistors (and similar to ratioed capacitors), where the
number of devices doubles for each increasing bit to
minimize mismatch; in practice, the situation is prac-
tically less favorable to the DAC design. The FG area
requires infrastructure [33] for FG programming. If one
only needs 2–8 parameters, then 6–8-bit DAC area is
similar to the resulting FG area. FPAA devices practically
require thousands, if eventually not millions to billions of
parameters. For 1-mm2 die area in 350-nm CMOS, 220
6-bit DACs take a similar area to 16 000 FG parameters
(see Fig. 10). The FG device in this process is capable of

far higher precision (>14 bit [33]). FG device comparison
only improves for scaled-down technologies. Fig. 7 shows
that the FG-based FPAAs enable ≈1000 parameter den-
sity improvement, providing increased computation on a
single device.

Using FG parameters explains the 1000× advantage of
using FG devices for parameters and routing (see Fig. 7).
Only using FG for parameters, and not routing, improves
the density metric from 0.55 parameters per normalized
mm2 using DACs [25] to 2.8 parameters per normalized
mm2 using FG parameters [32]. The full advantage is
not apparent because of the large amount of resulting
routing that only connects devices but is not useful for
computation. On average, utilizing FG routing improves
parameter density by 200× in area.

These FG pFET retains its analog programming range,
unlike T-gate switches, not constraining analog computa-
tion in the crossbar array (see Fig. 9). Because the array
FG pFET can be programmed anywhere between the OFF

and ON states, the resulting device still is an operational
transistor for multiple uses, including a current source, cas-
code element, or a resistor. These FG pFETs are integrated
into a crossbar network, typical of VMM topologies [40].
One effectively gets crossbar computations, originally
described in FG devices [7]. for free in an FPAA approach.
The FPAA computes in the colocated memory space
of switches.

Computation in FPAA fabric represents a dramatic
departure from classical FPGA architectures. (see Fig. 11).

Fig. 12. Analog and digital computation are typically separated

through data converters. Reinvestigating this assumptions shows

many systems that are a combination of analog and digital,

including data converters. Recent FPAA ICs, including the SoC FPAA

IC, enable utilization of analog and digital configurable components,

where components are positioned near each other.

PROCEEDINGS OF THE IEEE 9

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 10,2020 at 21:10:37 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Hasler: Large-Scale Field-Programmable Analog Arrays

Fig. 13. SoC FPAA IC. (a) Functional block diagram illustrating the resulting computational blocks and resulting routing architecture. The

infrastructure control includes a µP developed from an open-source MSP 430 processor [86], as well as on-chip structures that include the

on-chip DACs, current-to-voltage conversion, and voltage measurement, to program each FG device. Eight, four-input Boolean logic element

(BLE) lookup tables with a latch comprise the CLB blocks. Transconductance amplifiers, transistors, capacitors, switches, as well as other

elements comprise the CAB blocks. (b) Table of important SoC FPAA IC parameters. (c) Summary of application complexity of analog and

digital elements. The chip has 98 CLBs and 98 CABs.

Many FPGA architectures are optimized for VMM opera-
tions as a fundamental computation and signal processing
operation. GPU architectures are optimized for similar
computations. These FPGAs are specialized with multiplier
units as well as specialized memory blocks to enable
efficient VMM computations, cycling through memory for
different matrix coefficients. In the FPAA with FG switches,
the switches are not the dead weight to connect com-
ponents [39], but they are computing memory elements
greatly increasing the potential computation available in
an FPAA. The FG FPAA does not require these special-
izations, but rather VMM computations are computed in
routing fabric. The boundary computations of the VMM
computation primarily set the architecture complexity, and
the VMM is nearly free in as a unique routing pattern.
Other computations can be implemented in the rout-
ing infrastructure (see [85]). Further routing infrastruc-
ture improvements can enable additional computation
advantages.

IV. S o C F P A A I C A N D R E P R E S E N TA-
T I V E A P P L I C AT I O N S
The SoC FPAA IC represents the most complex FPAA and
the first FPAA to be a complete SoC [16]. The SoC FPAA

interdigitates analog and digital computation at a fine-
grain level in the same routing fabric. Classically, one
assumes that analog and digital computations are widely
separated, communicating through ADCs and DACs (see
Fig. 12). Many operations, such as classifiers, require
analog and digital logic together. An N -bit ADC is a
specialized simple classifier identifying an incoming signal
with one of 2N levels. This classification occurs by utiliz-
ing one or multiple comparators using analog inputs and
digital outputs (see Fig. 12). Analog computation often
requires digital control flow, again typical in ADC concepts.
These examples show the need and simplicity of integrat-
ing these spaces. From the experience compiling a number
of systems in earlier FPAA designs, some FPAA designs
started integrating digital infrastructure control [37], as
well as interdigitated analog and digital fabric [38]. The
SoC FPAA fully integrated analog and digital columns,
enabling analog and digital signals routed on the same
fabric (see Fig. 12).

Fig. 13 shows and summarizes the SoC FPAA IC [16].
This SoC FPAA utilizes a configurable fabric integrating
analog (A → CAB) and digital (D → CLB) components,
specialized blocks, as well as an on-chip µP, SRAM memory,
and digital I/O communication ports [see Fig. 13(a)].

10 PROCEEDINGS OF THE IEEE

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 10,2020 at 21:10:37 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Hasler: Large-Scale Field-Programmable Analog Arrays

Fig. 14. Use of T-gates in FPAA fabric for rapid reconfigurability. (a) Circuit diagram of the digital-enabled routing fabric using a set of

T-gate switches to dynamically reconfigure the SoC FPAA fabric. (b) Simple circuit compilation using this SoC FPAA fabric for a compiled

physically unclonable function (PUF) element. Mismatch in the indirect FG programming infrastructure creates the unique code.

Fig. 13(b) shows the table of parameters for the result-
ing SoC FPAA. Analog FG enables both analog and dig-
ital functionality within the Manhattan geometry. The
CAB devices are typical of earlier CAB designs, being
combinations of transistors, OTAs, FG transistors, OTAs,
capacitors, T-gates, current mirrors, and signal-by-signal
multipliers (see [35]–[37] and [84]). The low-power
programmable and configurable FPGA fabric, streamlines
the routing of analog and digital signals through a con-
tinuous fabric. Fig. 13(c) shows the representative cir-
cuits compiled and experimentally measured [16], as
well as a summary of the resources used in each case.
The hardware platform directly maps to compiler tools
(see Section V).

The processor supplements the digital processing system
capability and increases overall implementation flexibility;
portions of a problem can be mapped to reconfigurable
analog, reconfigurable digital, or a GP digital processor.
The FPAA employs an open-source MSP 430 microproces-
sor (µP) [86] with on-chip structures for 7-bit signal
DACs, a ramp ADC, memory-mapped GP IO, and related
components [see Fig. 13(a)]. The processor is able to
send information to and from the array through memory-
mapped I/O special-purpose peripherals. These peripher-
als include 16 memory-mapped 7-bit signal DACs for the
architecture, allowing measurements to be performed on-
chip, with the data taken by and stored in the processor,
as well as additional DACs (and one 14-bit ramp ADC) for
the FG programming.

Additional digital control infrastructure in the routing
fabric enables rapid reconfiguration of the analog data
path. The routing fabric is capable of partial rapid recon-
figurability, while using mostly FG devices, by adding an
additional set of switch configuration into the fabric. This
rapid reconfigurability comes by adding a row of T-gate
switches set by a shift register into the switch fabric,

originally started in [37]. The I/O lines for the added
T-gate row and the shift register signals are available
through the routing fabric. These volatile switches are
found directly at the interface between the C block
and the local interconnect; depending on the desired
higher level of abstraction, these switches may be con-
sidered as part of either block. One simple applica-
tion of this technique is enabling a scan chain for
either digital or analog circuit debugging. Fig. 14 shows
the added routing structure component that enables
rapid reconfigurability in the FPAA fabric. These tech-
niques minimize the amount of intermediate data stor-
age required for many computations, enabling data flow
techniques for analog processing. Intermediate data stor-
age often requires the largest power and complexity
system cost. The rapid fabric reconfigurability can
change between programmed aspects in a single clock
cycle or asynchronous request–acknowledge loop. SoC
FPAA shift register control signals are directed by locally
routed signals in the fabric, thus determining the control-
ling clock (Clk) and data signals [see Fig. 14(a)]. Data
stored in the FG fabric would be as optimal as data stored
in an off-chip nonvolatile memory without the complexity
of loading the resulting computation.

The SoC FPAA, as well as earlier families of FG-enabled
FPAAs, demonstrated a number of core concepts. FPAA
temperature behavior, modeling, and design [87]–[89] are
an essential issue for computation. FG circuits can be
programmable and can have weak functions of temper-
ature. FG devices enable directly eliminating mismatch
or setting desired targeting values in the configurable
structure. These FPAA devices demonstrated many on-
chip classifiers sensor-to-output ultralow power classifica-
tion [16], [82], [90]–[92], embedded machine learning
for sensor-to-output classifiers [90], [91], robotics and
path planning [93]–[95], image processing [37], and

PROCEEDINGS OF THE IEEE 11

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 10,2020 at 21:10:37 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Hasler: Large-Scale Field-Programmable Analog Arrays

Table 2 Measured Power Numbers for Compiled Command-Word Classi-

fier Function

Fig. 15. FPAA devices provide the ultralow energy/power

capability for future embedded system applications.

low-power biomedical implementations [96]–[98]. The
largest existing signal processing functions take a small
percentage of the available IC (≈12 CABs and minimal
CLB resources). Table 2 shows the energy breakdown for
an FPAA device for the application in Fig. 2. FPAA devices
as potential applications for embedded Internet of Things
(IoT) and remote sensor nodes are capable of secure
operation, both in currently demonstrated capabilities such
as the implementation of PUF circuits [see Fig. 14(b)]
and implementable functions for secure embedded FPAA
devices [99].

FPAA integration with sensors, including sensors fab-
ricated on the FPAA fabric [57], [100], opens addi-
tional new possibilities. FPAA devices can enable parallel

development of sensors and their integration, greatly
improving the speed of sensor integration. Custom analog
circuit design tends to be the primary limitation for inte-
grated sensor development.

V. S o C F P A A T O O L S A N D H A R D W A R E
I N F R A S T R U C T U R E
Ubiquitous use of FPAA devices requires an IC infrastruc-
ture and tools, as well as a user base who can utilize these
capabilities. The user of these technologies is more likely
to be system design and application engineers, individuals
who have not obtained a higher degree in analog IC design.
A set of user-friendly, high-level tools (e.g., graphical)
is enabling chip design to compile FPAA IC for a wide
range of energy-efficient applications integrating a number
of sensory modalities (acoustic and imaging), potentially
for context-aware applications (see Fig. 15). System-level
FPAA development requires these capabilities, particularly
because designers are used to similar tools for digital-based
design. Although these capabilities might have seemed
mostly theoretical a decade ago, a reasonable system
design time by a wide community requires these capabil-
ities. The success of these tools requires a framework for
analog computing [18].

This discussion will focus heavily on the SoC FPAA
design tools, infrastructure, and implications [16], because
it has developed and reported, by far, the largest amount
of tool and infrastructure discussion, to date (see Fig. 16).
Fig. 16 shows a high-level view of demonstrated SoC
FPAA infrastructure and tools, including FG programming,
device scaling, and PCB infrastructure, through system
enabling technologies as calibration and built-in self-test
methodologies and through high-level tools for design as
well as education (see [101]). Sections V-A–V-C discuss

Fig. 16. SoC FPAA approach consists of key innovations in FPAA

hardware, innovations and developments in FPAA tool structure, as

well as innovations in the bridges between them. One typically

focuses on what circuit and system applications can be built on the

FPAA platform, but every solution is built up for a large number of

components ideally abstracted away from the user.

12 PROCEEDINGS OF THE IEEE

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 10,2020 at 21:10:37 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Hasler: Large-Scale Field-Programmable Analog Arrays

these capabilities, including FPAA tool framework (see
Section V-A), FPAA infrastructure (see Section V-B), and
FPAA education (see Section V-C). This tool framework is
directly applicable to other FPAA devices (see [25], [32],
and [45]), and we encourage an open community in these
directions. The SoC FPAA tools and PCB infrastructure are
openly available as open-source tools.1 A standard tool
and infrastructure platform enables faster utilization and
development of next-generation FPAA applications.

A. Analog Tools and the SoC FPAA Toolset

Tools are essential for FPAA system design. While iden-
tifying every switch is easier than IC layout, design,
verification, fabrication, and testing for analog IC engi-
neers, system designers will expect higher level capabili-
ties. Most of these designers do not want to know about
transistors and analog transistor circuits, and yet, the tools
must enable efficient use by analog IC designers to enable
blocks for application designers. Tools are essential for
application-based system design using physical systems,
given the modern comfort with structured and automated
digital design from code to working application.

Digital design tools for FPGAs are widely accessible.
Well-established FPGA design tools include Simulink [102]
compilation for Xlinix [103] and Altera FPGAs [104],
[105] devices. FPGA manufacturers also have their
own toolset for Verilog/VHDL compilation to hardware.
Simulink, and to a lesser extent some open-source
tools (see [106]), provides the framework to input into
Xlinix/Altera compilation tools, completely abstracting
away the details from the user, by allowing both standard
Simulink blocks to compile to Verilog blocks to targetable
hardware, as well as support for specific blocks on that
hardware platform.

In contrast, analog design tools have a brief history,
including theoretical analog automation tools, as well as
early FPAA ICs [107]–[111]. Macromodeling techniques,
making a simplified algebraic or numerically simple ODE
circuit model, remain a key framework for analog design
(see [112] and [113]). Some techniques are coupled with
digital tools for joint analog and digital system verifica-
tion [114], [115]. Labview is a nonopen-source approach
for representing analog and digital components that do
have some aspects to connect to physical instruments
(see [116]) and with an infrastructure that might be
adapted to create a similar flow. Custom analog IC design
has little additional tool support than low-level IC design
tools. Many companies (see [117]) have tried to automate
the analog design process but failed because the solution
was aimed for analog IC designers who are artistic critics
of other analog designs.

Physical FPAA implementations drove the development
for analog and mixed-signal design tools, particularly the
SoC FPAA implementation, as well as FPAA ICs leading
up to the SoC FPAA devices [87], [118], [119]. These

1Tools can be downloaded at hasler.ece.gatech.edu.

tools give the user the ability to create, model, and sim-
ulate analog and digital designs. High-level design tools
(see Fig. 16) have been essential to the SoC FPAA devel-
opment [118]. High-level design tools, implemented in
Scilab/Xcos, enable automated compilation to a switch list,
the description of the programmed FPAA hardware [118].
The tools designed to enable a noncircuits expert, such
as a system applications engineer, to investigate particular
algorithms. Tools enable system-level design (level = 1)
and circuit-level design (level = 2) (see [87]), including
both FPAA targeting and simulation [120]. Tools enable
physical noise modeling (see [87]) allowing for simulated
prediction of the effect of noise on a compiled system as
well as the resulting system SNR. The chip details are
specified in architecture files for analog-to-digital SoC.

Analog block library is similar to a high-level software
definition or library. The graphical high-level tool uses
a palette for available blocks that compile down to a
combination of digital and analog hardware blocks, as
well as software blocks on the resulting processor. The
analog Scilab/Xcos system is a visual programming lan-
guage in the same tradition as Simulink, building on
aspects of visual programming languages [121], [122],
and data flow languages [123], [124]. Abstracting ana-
log design for system designers increases the chance
of automation to be utilized. Graphical algorithms are
popular for graphical FPGA tools, such as the recent
and independently developed open-source tool, Icestu-
dio [125]. The result is a rich set of analog and digital
blocks similar to FPGAs when using graphical design tools
(see [102]).

This open-source tool platform creates an integrated
environment running in Scilab/Xcos integrating multiple
tools, such as x2c, with modified open-source digital place
and route (VPR [46]) tools. x2c converts high-level block
description by the user to blif format, the input to the
modified VPR tool, utilizing vpr2swcs (scilab → blif), as
well as modified architecture file. The resulting tool uses
analog, as well as mixed-signal, library of components.
A single Ubuntu 12.04 Virtual Machine (VM) abstracts the
entire tool flow from the user, from Scilab/Xcos, device
library files, through sci2bliff, vpr2swcs, and modified VPR
tools, by simply requiring pressing one button to bring up
the entire graphical working toolset.

Tools open the space for abstraction. The multiple levels
of analog abstraction in a typical implementation (see
Fig. 17) can be abstracted from the designer who only
needs to use higher level blocks (blocks in measurement
setup of Fig. 17). Fig. 17 shows a typical use of the C4

block in an acoustic front end for creating subbanded
outputs. The core computational chain, C4 Bandpass filter
+ Amp Detect + LPF, all compiles into a single CAB.
FG elements (e.g., FG-enabled OTA elements), as well as
tunable capacitor banks, enable this abstraction and can
be tuned around mismatches (see [126]). The abstraction
includes computation and testing instrumentation blocks
into a single complete compiled system. This measurement

PROCEEDINGS OF THE IEEE 13

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 10,2020 at 21:10:37 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Hasler: Large-Scale Field-Programmable Analog Arrays

Fig. 17. Tool blocks for acoustic subband computation: Bandpass filter bank, amplitude detection, and time window filtering for later

processing. Measuring this block introduces the amplitude detection and first-order LPF blocks, both requiring one OTA each. These three

elements make up a subband compute block. The structure requires the scanner block, targeted as a set of T-gate switches and shift register

in routing between the CABs and C block routing, to multiplex the multiple signals. The scanner is controlled by digital output block taking

µP signals into the CAB. The measure voltage block is a low-frequency (200 SPS) block utilizing the 14-bit ramp ADC in the programming

infrastructure [33] to connect with the digital system. The approximate gain from In through the ADC is nearly 1 and calibrated on-chip [126].

illustrates the measure voltage block, effectively a slow-
speed (200 SPS), high-resolution (14-bit) voltage mea-
surement. The structure uses the FG programming
circuitry, including the 14-bit measurement ramp ADC, still
available in the run mode. These blocks abstract further
as the subband processing stage as the front end of an
acoustic classifier (see [16]).

With the higher level of abstraction, handling the code-
sign issue between at least analog code, digital code,
and µP code becomes immediately apparent. Tools should
enable designers to effectively and efficiently design
through the large number of open questions in this
analog-to-digital codesign space. Digital-only Hardware-
Software CoDesign is an established, although unsolved
and currently researched, discipline (see [127]–[130]);
incorporating analog computation and signal processing
adds a new dimension to codesign.

B. SoC FPAA Hardware Infrastructure
Infrastructure is essential for FPAA system design, as a

critical aspect to use the IC developments and tool capa-
bilities. Treating infrastructure design with the same atten-
tion as IC design eliminates unnecessary bottleneck for a
user base, as well as the original designers, to innovate
using these devices. The goal of this section is to illus-
trate the range of infrastructure possible with the existing
FPAA devices (see Fig. 18), primarily SoC FPAA devices
(see [131]), to encourage additional creativity for FPAA
users to innovate using these devices.

Programming the FPAA IC sets the software and hard-
ware infrastructure for the FPAA board [see Fig. 18(a)].

A simple structure facilitates user integration and adop-
tion. The SoC FPAA programs the FG elements using the
µP. A single data stream is downloaded to the processor
that includes processor object code and programming data
(e.g., the switch list from tool compilation); the final
processor data are its operational code after programming.
The structure is simple enough to enable simple down-
loading code libraries (e.g., python and Java) to stream
the device data as well as the TCL framework used by
the design tools. The primary hardware infrastructure is
µP IC controlled 6- and 12-V charge-pump ICs, as shown
in Fig. 18(a). Charge pumps for FPAAs, as already demon-
strated [30], reduces the board infrastructure further.
A history of on-chip FG programming development is
presented in [33], some of it connected with programming
FPAA devices.

The rest of the infrastructure should be simple to
minimize user challenges as well as complexities, and
yet functional enough for the desired range of applica-
tions. Fig. 18(a) shows a GP test infrastructure based on
earlier GP boards for earlier FPAA devices (see [132]).
The board uses a single USB interface for power [see
Fig. 18(a)], a simple serial (8n1) debug interface into
the chip, and an interface to other serial standards (e.g.,
SPI). Boards for specific applications will be optimized
along with required specifications while benefiting from
a GP open reference design.2 The FPAA board looks
like simple digital peripheral using a standard digital

2The boards developed at the Georgia Institute of Technology are
openly available at http://hasler.ece.gatech.edu.

14 PROCEEDINGS OF THE IEEE

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 10,2020 at 21:10:37 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Hasler: Large-Scale Field-Programmable Analog Arrays

Fig. 18. (a) Detailed picture of the SoC FPAA board. Top: process flow for chip-on-board (CoB) build for the resulting IC board. Bottom:

detailed block diagram for the SoC FPAA board. The FPAA control board primarily handles the USB to serial communication interface, the

programmable clock generator, as well as the multiple supply voltages, controlled by the FPAA, required for operation and programming of

the FPAA device. (b) Connecting the FPAA board to Android tablet. An OTG cable is used to handle USB I/O, allowing the device to recognize

the FTDI IC’s serial port. The tools described in this article allow programs to communicate at a high level with the FPAA µP. (c) Remote test

system based on FPAA devices that can be used within our current framework of high-level, open-source Xcos/Scilab tools. With a single

button click in the graphical tool, the system will e-mail the resulting targeting code for the FPAA device to a server location, to be picked up

by the remote system, which compiles, runs, and then e-mails back the target results.

communication interface (i.e., USB), allowing minimal
(Linux) code for programming and operation for contin-
uous data processing.

The simple structure and range of coding languages
to program the FPAA enable a range of user experiences
with this FPAA device. FPAA devices can be powered,
programmed, and controlled through Android devices [see
Fig. 18(b)] and therefore through a device app, using a

developed Java code library [133]. The package makes use
of the Android API to access the device’s serial port, making
it easily portable to other devices. FPAA devices can be
available as a remote device, controlled through a simple
Unix platform using a Python code library [see Fig. 18(c)],
operating using a POP e-mail server [134]. The high-level
tools are the same for the remote system or in-hand system,
where a user simply needs to choose a different button

PROCEEDINGS OF THE IEEE 15

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 10,2020 at 21:10:37 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Hasler: Large-Scale Field-Programmable Analog Arrays

to “e-mail” the compiled structure, verses to “program”
the local device with the compiled structure. An e-mail
server enables a relatively stable remote platform capable
with nearly zero administrative overhead. These systems
go beyond simple one-way updating of FPGA software
for fielded devices [135]–[139], enabling user interaction
of programming and data analysis. This device illustrates
using an FPAA as a small IoT block.

C. SoC FPAA Hardware Impacting Engineering
Education

The availability of FPAA devices with an abstracted tool
flow and user infrastructure enabled educational oppor-
tunities. Education becomes essential to the long-term
viability of FPAA opportunities, in much the same way
that education was essential to the viability of FPGA of
DSP processor opportunities over two decades ago, by
empowering generations of students with the knowledge
and framework to use these devices. These same stu-
dents greatly benefit using advanced technology to enable
learning about mixed-signal computation at several levels,
learning in a physically real system. Using FPAAs in the
classroom is a huge application area for any viable FPAA
technology. The focus of this section is to overview the
FPAA use in educational experiences.

Commercial FPAA devices open a number of academic
institutions to develop their own FPAA educational appli-
cations. Anadigm’s FPAA devices have found their way into
a range of applications over two decades. Anadigm FPAA
devices have been used for class development (see [140]),
as well as part of academic development (see [141] and
[142]). Anadigm has sufficient graphical tools for their
designs for their small but effective FPAA devices, obtain-
ing functional blocks with 90 dB of SNR [143]. As addi-
tional commercial FPAAs are available, the capabilities and
opportunities will increase exponentially.

FPAA hardware platforms have been central to hands-
on circuit courses at Georgia Tech (GT) for over a decade.
Neuromorphic Analog VLSI Circuits (ECE 6435)3 has
utilized FPAA devices since 2005 for its hands-on lab-
oratory experiences (starting with [35]). These devices
initially significantly reduced the required significant
bench infrastructure and before-class IC fabrication [144],
reducing the required generation equipment every few
years [145], and eventually eliminated the need for any
additional test equipment other than an FPAA board using
the SoC FPAA devices [131], [146]. The simple and acces-
sible laboratory framework is a student laptop-based setup
using an SoC FPAA device (through USB) and/or remote
SoC FPAA device designed through graphical Scilab/Xcos-
based tools. The SoC FPAA, and resulting infrastructure,
creates a portable student user experience different from
any typical laboratory.

3The course information is openly available at the website: http:
users.ece.gatech.edu/phasler/ECE6435.

Fig. 19. Moving from classical discrete circuit concept toward

system-level design, empowered by FPAA devices. A typical classical

first junior-level transistor circuits course focuses on learning many

forms of a traditional audio amplifier. The focus is on design with

discrete parts, where the transistor is the difficult element. The

system-focused first junior-level course covers many of the same

circuit fundamentals and results in students designing a system

component (e.g., a ramp ADC). FPAA concepts empower the ability

to move toward a system-level course as well as a hands-on circuits

course. The FPAA structure just requires a board connected (through

USB) to a student laptop with our open-source VM.

These techniques moved to other courses, including
a first transistor circuit class (see Fig. 19) taken by
undergraduate students in their third year (ECE 3400)4

in Fall 2016 [101], [147]. The course became a hands-
on, design, devices-to-systems course, resulting in a sig-
nificant difference in how students approached circuit
design. The classroom implementation only required FPAA
boards, without any other technology, specialized labo-
ratory spaces or additional human resources. This study
opened a number of undergraduate curriculum questions
due to the change in circuit implementation medium from
discrete circuit design to configurable mixed-signal hard-
ware [147]. The students heavily utilized remote FPAA
system during this course to characterize and design a
number of circuits (see Fig. 19). Several groups success-
fully designed and characterized a ramp ADC, includ-
ing full low-frequency linearity (INL and DNL). Previous
remote test systems that have to spend considerable time
in developing their hand-tailored configurable system for
educational directions [148]–[153]; the FPAA tools elimi-
nate this issue.

VI. F P A A S U M M A R Y, N E X T
D I R E C T I O N S , A N D L O N G-T E R M
I M P L I C AT I O N S
Current FPAAs have the potential to, as well as
started demonstrating the ability to, transform low-power

4The course information is openly available at the website: http:
users.ece.gatech.edu/phasler/ECE3400.

16 PROCEEDINGS OF THE IEEE

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 10,2020 at 21:10:37 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Hasler: Large-Scale Field-Programmable Analog Arrays

embedded system design, much the way FPGAs trans-
formed physical–digital implementations. The history of
FPAA approaches shows a move toward computing and
signal processing applications with sufficient metrics to
open these opportunities toward computing applications.
FPAAs, such as the SoC FPAA family, illustrate the system-
level capabilities, as well as tool and hardware infrastruc-
ture opportunities. Design tools enable that design from
high-level synthesis to gate/transistor design is the real-
ity for digital applications today with FPGA devices
and is appearing for analog or mixed-signal applica-
tions with FPAA devices. Large-scale FPAA devices already
have the potential to empower ubiquitous analog or
mixed-signal low-power sensor to processing devices sim-
ilar to the ubiquitous implementation of the existing
FPGA devices.

A usable programmable and configurable technology
(e.g., SoC FPAA [16]) requires maturing analog/physical
computing capabilities empowering this disruptive FPAA
technology toward commercial opportunities. Physical
computing, computing over real values versus integers,
includes the space of analog, neuromorphic, quantum,
and optical computing, unifying the mutual opportuni-
ties between these areas. Physical computing framework’s
recent development has focused on analog techniques,
including starting the analog framework [18], demonstrat-
ing and developing analog abstraction and hierarchy [19],
the development of analog architecture theory and algo-
rithmic complexity [21], and the development of analog
numerical analysis [20].

Related to the development of a physical computing
framework, one asks about the SNR of FPAA components
and the resulting computation. For simple FPAA devices
of isolated components of nontunable SNR with switch
matrix connections (e.g., Anadigm), SNR metrics can be
reasonably specified and estimated (see [142]). These sim-
ple estimates are no longer applicable with advanced FPAA
devices (e.g., SoC FPAA) due to programmable currents,
potential of fine-grain (e.g., transistor level) compilation,
and use of routing fabric for computing and passive ele-
ments. A circuit’s load capacitance is configurable to a wide
range of possible sizes [16]. One can compile an FG OTA
amplifier with greater than 1-V linear range (2.5-V supply)
with a load capacitance greater than 10 pF, resulting in
an SNR (thermal noise) greater than 100 dB (>16 bit).
One can choose even parameters for some circuits to
achieve even larger values. Such a response does not
say that every circuit will achieve 16 bit or higher SNR,
but rather the SNR of the circuits compiled will depend
upon the particular design and only have slight limita-
tions based on the infrastructure. A careful understanding
of the question is essential to set reasonable expecta-
tions and communication. Typically, the issues that limit
the operation of a particular FPAA design involve higher
input voltage levels (Vdd = 2.5 V) or handling of high-
power levels using a particular design; these issues can

be handled by analog circuits at the I/O pins or by more
specialized FPAA design at the edges or throughout the
routing fabric.

One might wonder about the future of FPAA devices
given current development, which we will discuss some
potential perspectives in the rest of this section as well as
directions to reach these opportunities. One can visualize a
world where analog and mixed-signal reconfigurability in
various forms will be as common as digital reconfigurabil-
ity today in all of its various forms (e.g., µP, FPGAs, and
GPUs). Even when custom analog and mixed-signal ICs
are designed in this future, some aspects of configurability
will still be used, just as custom digital designs still utilize
reconfigurability today.

FPAAs require commercial sources to fully unleash their
technological impact. Anadigm’s steady commercial mar-
ket shows the extremely high interest and hope in config-
urable analog and mixed-signal opportunities, particularly
given their heroic efforts with a very limited configurable
chip that could be replaced with less than $1 in parts.
These chips have already used for initial prototyping
and educational projects. Commercialization of SoC-type
FPAA ICs represents a generational improvement over the
existing capabilities. Many designs can be developed into
industrially hardened IC products. Early use of system-
level FPAA devices in education and research directions
shows numerous initial promising directions.

Families of FPAA devices, similar to FPGA devices, are
expected with a number of die sizes and optimizations
for energy consumption. Some FPAA devices should have
specialized fabrics and components for particular compu-
tations, such as embedded machine learning or neuro-
morphic approaches (e.g., as in early work [47], [154]).
Specialized FPAA devices for special voltage and power
conditions, such as neural stimulators or RF transmit-
ters, could integrate with general FPAA devices. These
generic FPAA devices that can be electronically mea-
sured at every node enable a trusted, secure, and legacy-
resistant computational platform. The existing FPAA
devices can be adapted to secure small embedded network
devices [99].

Scaling FPAA designs to state-of-the-art processes
enables computational problems beyond what is imagined
by current digital computing structures. Scaling opens up a
range of new architecture approaches between GPUs and
FPGAs in a uniquely mixed-signal manner. Scaling opens
FPAA designs to the complexity sizes of current GPUs (e.g.,
video and image processing), while offering far greater
energy efficiency per parallel operation, or the complexity
to directly compute a number of PDE computations (e.g.,
charged particle computations) on a single device. Scaling
FPAA designs enable higher density (100× expected from
350 to 40 nm), lower energy and power (100× lower
from 350 to 40 nm), as well as lower commercial cost
per computation from the existing designs. Smaller CMOS
linewidths (e.g., 40 nm) also enable RF signals through

PROCEEDINGS OF THE IEEE 17

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 10,2020 at 21:10:37 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Hasler: Large-Scale Field-Programmable Analog Arrays

routing fabric [68]. The improvements assume the design
iterations to optimize the resulting designs. The technology
risk in scaling is low, as devices and initial routing fabrics
for FG and non-FG structures have been demonstrated
in the 40-nm CMOS range (see [26] and [68]). Pro-
grammable techniques enable scaled-down analog design,
avoiding the difficulties that device mismatch creates for
analog IC design in scaled processes. Efforts and resources
enabling scaled CMOS FPAA implementations will have
many significant future applications.

Finally, one can envision a large community utilizing
these FPAA devices, contributing to a number of commer-
cial and open-source communities, empowered through
common tool frameworks. These directions require the
developing an FPAA user and developer community work-
ing around common tools, particularly tools that enable
system compilation including handling analog-to-digital
codesign through device programming and system

computation. One can imagine a large user community
developing a wide library of analog and digital components
for these new devices. Analog component and system reuse
will become a standard practice. The tools need to be
flexible enough to handle a wide range of architectures,
including multiple ICs. These communities will be heavily
built through integrating FPAA devices into educational
environments, whether in the classroom or in the research
laboratory, following along the inspiration from the rise
of DSPs and FPGA devices. Educational directions enable
a community who can utilize analog signal processing
and computing effectively toward commercial opportuni-
ties. Even IC design tools should be optimized to rapidly
generate FPAA fabric and related infrastructure, as well
as optimization tools to take an existing FPAA design to
optimize hardware solutions when necessary. Improved
tools decrease cost and open opportunities throughout the
commercial process.

R E F E R E N C E S
[1] C. Mead and L. Conway, Introduction to VLSI

System Design. Reading, MA, USA:
Addison-Wesley, 1980. [Online]. Available:
http://ai.eecs.umich.edu/people/conway/
VLSI/VLSIText/VLSIText.html

[2] G. E. Moore, “Cramming more components onto
integrated circuits,” Electronics, vol. 38, no. 8,
p. 114, Apr. 1965.

[3] B. Hoeneisen and C. A. Mead, “Fundamental
limitations in microelectronics—I. MOS
technology,” Solid-State Electron., vol. 15, no. 7,
pp. 819–829, Jul. 1972.

[4] B. Hoeneisen and C. A. Mead, “Current-voltage
characteristics of small size MOS transistors,” IEEE
Trans. Electron Devices, vol. ED-19, no. 3,
pp. 382–383, Mar. 1972.

[5] B. Santo, “25 microchips that shook the world,”
IEEE Spectr., vol. 46, May 2009.

[6] C. Mead, Analog VLSI and Neural Systems.
Reading, MA, USA: Addison Wesley, 1989.

[7] P. Hasler, C. Diorio, B. A. Minch, and C. A. Mead,
“Single transistor learning synapses,” in Advances
in Neural Information Processing Systems 7, G.
Tesauro, D. S. Touretzky, and T. K. Leen, Eds.
Cambridge, MA, USA: MIT Press, 1994,
pp. 817–824.

[8] S. Bains, “Analog’s answer to FPGA opens field to
masses,” EE Times, no. 1510, Feb. 21, 2008.

[9] T. S. Hall, D. V. Anderson, and P. Hasler,
“Field-programmable analog arrays:
A floating—Gate approach,” in Proc. Int. Conf.
Field Program. Logic Appl., Montpellier, France,
Sep. 2002, pp. 424–433.

[10] M. A. Brooke, “A reconfigurable general purpose
analog integrated circuit,” Ph.D. dissertation,
Dept. Elect. Eng., Univ. Southern California, Los
Angeles, CA, USA, 1988.

[11] M. A. Sivilotti, “Wiring considerations in analog
VLSI systems, with application to
field-programmable networks,” Ph.D. dissertation,
California Inst. Technol., Pasadena, CA, USA,
1991.

[12] E. K. F. Lee and P. G. Gulak, “A CMOS
fieldprogrammable analog array,” IEEE J.
Solid-State Circuits, vol. 26, no. 12,
pp. 1860–1867, Dec. 1991.

[13] H. W. Klein, “The EPAC architecture: An expert
cell approach to field programmable analog
circuits,” in Proc. IEEE Midwest CAS, vol. 1,
Aug. 1992, pp. 169–172.

[14] “Anadigm: Specifically generic analog functions
for FPAAs Anadigm says,” EE Times, Sep. 28, 2004.

[15] C. Mead, “Neuromorphic electronic systems,”
Proc. IEEE, vol. 78, no. 10, pp. 1629–1636,
Oct. 1990.

[16] S. George et al., “A programmable and
configurable mixed-mode FPAA SoC,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 24, no. 6,
pp. 2253–2261, Jun. 2016.

[17] P. Blouw, X. Choo, E. Hunsberger, and
C. Eliasmith, “Benchmarking keyword spotting
efficiency on neuromorphic hardware,” Apr. 2019.
arXiv:1812.01739. [Online]. Available:
https://arxiv.org/abs/1812.01739

[18] J. Hasler, “Opportunities in physical computing
driven by analog realization,” in Proc. IEEE ICRC,
San Diego, CA, USA, Oct. 2016, pp. 1–8.

[19] J. Hasler, A. Natarajan, and S. Kim, “Enabling
energy-efficient physical computing through
analog abstraction and IP reuse,” J. Low Power
Electron. Appl., vol. 8, no. 4, pp. 1–23, Dec. 2018.

[20] J. Hasler, “Starting framework for analog
numerical analysis for energy-efficient
computing,” J. Low Power Electron. Appl., vol. 7,
no. 17, pp. 1–22, Jun. 2017.

[21] J. Hasler, “Analog architecture complexity theory
empowering ultra-low power configurable analog
and mixed mode SoC systems,” J. Low Power
Electron. Appl., vol. 9, no. 1, pp. 1–37,
Jan. 2019.

[22] E. K. F. Lee and P. G. Gulak, “Field programmable
analogue array based on MOSFET
transconductors,” Electron. Lett., vol. 28, no. 1,
pp. 28–29, 1992.

[23] E. K. F. Lee, “Reconfigurable pipelined data
converter architecture,” in Proc. IEEE Midwest
CAS, vol. 1, Aug. 1996, pp. 162–165.

[24] S. Koneru, E. K. F. Lee, and C. Chu, “A flexible 2-D
switched-capacitor FPAA architecture and its
mapping algorithm,” in Proc. IEEE Midwest CAS,
vol. 1, Aug. 1999, pp. 296–299.

[25] G. E. R. Cowan, R. C. Melville, and Y. P. Tsividis,
“A VLSI analog computer/digital computer
accelerator,” IEEE J. Solid-State Circuits, vol. 41,
no. 1, pp. 42–53, Jan. 2006.

[26] N. Guo et al., “Energy-efficient hybrid
analog/digital approximate computation in
continuous time,” IEEE J. Solid-State Circuits,
vol. 51, no. 7, pp. 1514–1524, Jul. 2016.

[27] Y. Huang, N. Guo, M. Seok, Y. Tsividis, K. Mandli,
and S. Sethumadhavan, “Hybrid analog-digital
solution of nonlinear partial differential
equations,” in Proc. Micro-50, Oct. 2017,
pp. 665–678.

[28] C. M. Twigg and P. E. Hasler, “An OTA-based
large-scale field programmable analog array
(FPAA) for faster on-chip communication and
computation,” in Proc. IEEE ISCAS, May 2007,
pp. 177–180.

[29] C. Twigg and P. Hasler, “Configurable analog

signal processing,” Digit. Signal Process., vol. 19,
no. 6, pp. 904–922, 2009.

[30] B. M. Kelly, B. Rumberg, D. W. Graham, and
V. Kulathumani, “Reconfigurable analog signal
processing for wireless sensor networks,” in Proc.
IEEE Midwest CAS, Columbus, OH, USA,
Aug. 2013, pp. 221–224.

[31] B. Rumberg et al., “RAMP: Accelerating wireless
sensor hardware design with a reconfigurable
analog/mixed-signal platform,” in Proc. ACM/IEEE
Conf. Inf. Process. Sensor Netw., Seattle, WA, USA,
Apr. 2015, pp. 47–58.

[32] B. Rumberg and D. W. Graham, “A low-power
field-programmable analog array for wireless
sensing,” in Proc. ISQED, Mar. 2015,
pp. 542–546.

[33] S. Kim, J. Hasler, and S. George, “Integrated
floating-gate programming environment for
system-level ICs,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 24, no. 6, pp. 2244–2252,
Jun. 2016.

[34] B. Rumberg, D. W. Graham, and M. M. Navidi,
“A regulated charge pump for tunneling
floating-gate transistors,” IEEE Trans. Circuits Syst.
I, Reg. Papers, vol. 64, no. 3, pp. 516–527,
Mar. 2017.

[35] C. M. Twigg and P. Hasler, “A large-scale
reconfigurable analog signal processor (RASP)
IC,” in Proc. IEEE CICC, Sep. 2006, pp. 5–8.

[36] A. Basu et al., “A floating-gate-based
field-programmable analog array,” IEEE J.
Solid-State Circuits, vol. 45, no. 9, pp. 1781–1794,
Sep. 2010.

[37] C. Schlottmann, S. Shapero, S. Nease, and
P. Hasler, “A digitally-enhanced reconfigurable
analog platform for low-power signal processing,”
IEEE J. Solid State Circuits, vol. 47, no. 10,
pp. 2174–2184, Sep. 2012.

[38] R. B. Wunderlich, F. Adil, and P. Hasler, “Floating
gate-based field programmable mixed-signal
array,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 21, no. 8, pp. 1496–1505, Aug. 2013.

[39] C. M. Twigg, J. D. Gray, and P. E. Hasler,
“Programmable floating gate FPAA switches are
not dead weight,” in Proc. IEEE ISCAS, May 2007,
pp. 72–169.

[40] C. R. Schlottmann and P. E. Hasler, “A highly
dense, low power, programmable analog
vector-matrix multiplier: The FPAA
implementation,” IEEE J. Emerg. Sel. Topics
Circuits Syst., vol. 1, no. 3, pp. 403–411,
Sep. 2011.

[41] R. Chawla, A. Bandyopadhyay, V. Srinivasan, and
P. Hasler, “A 531 nW/MHz, 128 × 32
current-mode programmable analog vector-matrix

18 PROCEEDINGS OF THE IEEE

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 10,2020 at 21:10:37 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Hasler: Large-Scale Field-Programmable Analog Arrays

multiplier with over two decades of linearity,” in
Proc. CICC, Oct. 2004, pp. 651–654.

[42] J. Becker and Y. Manoli, “A continuous-time field
programmable analog array (FPAA) consisting of
digitally reconfigurable GM -cells,” in Proc. ISCAS,
May 2004, pp. I.1092–I.1095.

[43] J. Becker, F. Henrici, S. Trendelenburg,
M. Ortmanns, and Y. Manoli, “A continuous-time
hexagonal field-programmable analog array in
0.13 µm CMOS with 186 MHz GBW,” in Proc.
IEEE ISSCC, Feb. 2008, pp. 595–596.

[44] J. Becker, F. Henrici, S. Trendelenburg,
M. Ortmanns, and Y. Manoli,
“A field-programmable analog array of 55 digitally
tunable OTAs in a hexagonal lattice,” IEEE J.
Solid-State Circuits, vol. 43, no. 12,
pp. 2759–2768, Dec. 2008.

[45] F. Henrici, J. Becker, S. Trendelenburg,
D. DeDorigo, M. Ortmanns, and Y. Manoli, “A field
programmable analog array using floating gates
for high resolution tuning,” in Proc. ISCAS,
May 2009, pp. 265–268.

[46] J. Luu et al., “VTR 7.0: Next generation
architecture and CAD system for FPGAs,” ACM
Trans. Reconfigurable Technol. Syst., vol. 7, no. 2,
pp. 6:1–6:30, Jul. 2014.

[47] S. Ramakrishnan, R. Wunderlich, J. Hasler, and
S. George, “Neuron array with plastic synapses
and programmable dendrites,” IEEE Trans.
Biomed. Circuits Syst., vol. 7, no. 5, pp. 631–642,
Oct. 2013.

[48] M. Davies et al., “Loihi: A neuromorphic manycore
processor with on-chip learning,” IEEE Micro,
vol. 38, no. 1, pp. 82–99, Jan. 2018.

[49] J. Hasler, S. Kim, and F. Adil, “Scaling floating-gate
devices predicting behavior for programmable and
configurable circuits and systems,”
J. Low Power Electron. Appl., vol. 6, no. 3, p. 13,
Jul. 2016.

[50] PSoC5 Data Sheet, Cyprus Semi, San Jose, CA,
USA, 2011.

[51] C. A. Looby and C. Lyden, “A CMOS
continuous-time field programmable analog
array,” in Proc. FPGA, 1997, pp. 137–141.

[52] V. Gaudet and G. Gulak, “10 MHz field
programmable analog array prototype based on
CMOS current conveyors,” in Proc. Micronet,
1999, p. 1.

[53] D. Keymeulen, R. S. Zebulum, Y. Jin, and
A. Stoica, “Fault-tolerant evolvable hardware
using field-programmable transistor arrays,” IEEE
Trans. Rel., vol. 49, no. 3, pp. 305–316, Sep. 2000.

[54] A. Stoica, R. Zebulum, D. Keymeulen, R. Tawel,
T. Daud, and A. Thakoor, “Reconfigurable VLSI
architectures for evolvable hardware: From
experimental field programmable transistor arrays
to evolution-oriented chips,” IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 9, no. 1,
pp. 227–232, Feb. 2001.

[55] B. Pankiewicz, M. Wojcikowski, S. Szczepanski,
and Y. Sun, “A field programmable analog array
for CMOS continuous-time OTA-C filter
applications,” IEEE J. Solid-State Circuits, vol. 37,
no. 2, pp. 125–126, Feb. 2002.

[56] P. Lajevardi, A. P. Chandrakasan, and H.-S. Lee,
“Zero-crossing detector based reconfigurable
analog system,” IEEE J. Solid-State Circuits,
vol. 46, no. 11, pp. 2478–2487, Nov. 2011.

[57] S.-Y. Peng et al., “A large-scale reconfigurable
smart sensory chip,” in Proc. IEEE ISCAS,
May 2009, pp. 2145–2148.

[58] S. Brink, J. Hasler, and R. Wunderlich, “Adaptive
floating-gate circuit enabled large-scale FPAA,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 22, no. 11, pp. 2307–2315, Nov. 2014.

[59] D. Kahng and S. M. Sze, “A floating gate and its
application to memory devices,” Bell Syst. Tech. J.,
vol. 46, no. 6, pp. 1288–1295, 1967.

[60] G. Gilder, The Silicon Eye. New York, NY, USA:
Norton, 2005.

[61] M. Holler, S. Tam, H. Castro, and R. Benson,
“An electrically trainable artificial neural network
(ETANN) with 10240 ‘floating gate’ synapses,” in
Proc. Int. Joint Conf. Neural Netw., Washington,
DC, USA, vol. 2, 1989, pp. 191–196.

[62] A. Thomsen and M. A. Brooke, “A floating-gate
MOSFET with tunneling injector fabricated using
a standard double-polysilicon CMOS process,”
IEEE Electron Device Lett., vol. 12, no. 3,
pp. 111–113, Mar. 1991.

[63] J. Hasler and B. Marr, “Finding a roadmap to
achieve large neuromorphic hardware systems,”
Frontiers Neurosci., vol. 7, no. 118, pp. 1–29,
2013.

[64] B. A. Minch and P. Hasler, “A floating-gate
technology for digital CMOS processes,” in Proc.
IEEE ISCAS, vol. 2, May/Jun. 1999, pp. 400–403.

[65] X. Li et al., “Enabling energy-efficient nonvolatile
computing with negative capacitance FET,” IEEE
Trans. Electron Devices, vol. 64, no. 8,
pp. 3452–3458, Aug. 2017.

[66] V. Srinivasan, G. J. Serrano, J. Gray, and P. Hasler,
“A precision CMOS amplifier using floating-gate
transistors for offset cancellation,” IEEE J.
Solid-State Circuits, vol. 42, no. 2, pp. 280–291,
Feb. 2007.

[67] V. Srinivasan, G. Serrano, C. M. Twigg, and
P. Hasler, “A floating-gate-based programmable
CMOS reference,” IEEE Trans. Circuits Syst. I, Reg.
Papers, vol. 55, no. 11, pp. 3448–3456, Dec. 2008.

[68] J. Hasler and H. Wang, “A fine-grain FPAA fabric
for RF + baseband,” in Proc. GOMAC, 2015.

[69] V. Srinivasan, D. W. Graham, and P. Hasler,
“Floating-gates transistors for precision analog
circuit design: An overview,” in Proc. 48th Midwest
Symp. Circuits Syst., vol. 1, Aug. 2005, pp. 71–74.

[70] S.-Y. Peng, M. S. Qureshi, P. E. Hasler, A. Basu, and
F. L. Degertekin, “A charge-based low-power
high-SNR capacitive sensing interface circuit,”
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55,
no. 7, pp. 1863–1872, Aug. 2008.

[71] D. W. Graham, P. Hasler, R. Chawla, and
P. D. Smith, “A low-power programmable bandpass
filter section for higher order filter applications,”
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 54,
no. 6, pp. 1165–1176, Jun. 2007.

[72] R. Chawla, F. Adil, G. Serrano, and P. E. Hasler,
“Programmable Gm-C filters using floating-gate
operational transconductance amplifiers,” IEEE
Trans. Circuits Syst. I, Reg. Papers, vol. 54, no. 3,
pp. 481–491, Mar. 2007.

[73] G. Serrano, M. Kucic, and P. Hasler, “Investigating
programmable floating-gate digital-to-analog
converter as single element or element arrays,” in
Proc. IEEE Midwest CAS, vol. 1, Aug. 2002,
pp. 75–77.

[74] P. Brady and P. Hasler, “Offset compensation in
flash ADCs using floating-gate circuits,” in Proc.
IEEE ISCAS, vol. 6, May 2005, pp. 6154–6157.

[75] A. W. Pereira, D. J. Allen, and P. E. Hasler,
“A 0.5 µm CMOS programmable discrete-time
∆-Σ modulator with floating gate elements,” in
Proc. ISCAS, vol. 1, May 2004, pp. 213–216.

[76] P. Hasler, P. D. Smith, D. Graham, R. Ellis, and
D. V. Anderson, “Analog floating-gate, on-chip
auditory sensing system interfaces,” IEEE
Sensors J., vol. 5, no. 5, pp. 1027–1034, Oct. 2005.

[77] A. Bandyopadhyay, P. Hasler, and D. Anderson,
“A CMOS floating-gate matrix transform imager,”
IEEE Sensors J., vol. 5, no. 3, pp. 455–462,
Jun. 2005.

[78] A. Bandyopadhyay, J. Lee, R. W. Robucci, and
P. Hasler, “MATIA: A programmable 80 µw/frame
CMOS block matrix transform imager
architecture,” IEEE J. Solid-State Circuits, vol. 41,
no. 3, pp. 663–672, Mar. 2006.

[79] P. Hasler, “Low-power programmable signal
processing,” in Proc. Int. Workshop Syst.-Chip
Real-Time Appl., Jul. 2005, pp. 413–418.

[80] S.-Y. Peng, P. E. Hasler, and D. Anderson,
“An analog programmable multi-dimensional
radial basis function based classifier,” in Proc.
VLSI-SoC IFIP Int. Conf. Very Large Scale Integr.,
Oct. 2007, pp. 13–18.

[81] S.-Y. Peng, B. A. Minch, and P. Hasler, “Analog VLSI
implementation of support vector machine
learning and classification,” in Proc. ISCAS,
May 2008, pp. 860–863.

[82] S. Ramakrishnan and J. Hasler, “Vector-matrix
multiply and winner-take-all as an analog

classifier,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 22, no. 2, pp. 353–361,
Feb. 2014.

[83] P. Hasler and J. Dugger, “An analog floating-gate
node for supervised learning,” IEEE Trans. Circuits
Syst. I, Reg. Papers, vol. 52, no. 5, pp. 834–845,
May 2005.

[84] T. S. Hall, C. M. Twigg, J. D. Gray, P. Hasler, and
D. V. Anderson, “Large-scale field-programmable
analog arrays for analog signal processing,” IEEE
Trans. Circuits Syst. I, Reg. Papers, vol. 52, no. 11,
pp. 2298–2307, Nov. 2005.

[85] S. George, J. Hasler, S. Koziol, S. Nease, and
S. Ramakrishnan, “Low power dendritic
computation for wordspotting,” J. Low Power
Electron. Appl., vol. 3, no. 2, pp. 78–98, 2013.

[86] OpenMSP430 Project: Open Core MSP430.
[Online]. Available: http://opencores.org/
projectopenmsp430

[87] C. R. Schlottmann and J. Hasler, “High-level
modeling of analog computational elements for
signal processing applications,” IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 22, no. 9,
pp. 1945–1953, Sep. 2014.

[88] S. Shah, H. Toreyin, J. Hasler, and A. Natarajan,
“Temperature sensitivity and compensation on a
reconfigurable platform,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 26, no. 3,
pp. 604–607, Mar. 2018.

[89] S. Shah, H. Toreyin, J. Hasler, and A. Natarajan,
“Models and techniques for temperature robust
systems on a reconfigurable platform,” J. Low
Power Electron. Appl., vol. 7, no. 21, pp. 1–14,
Aug. 2017.

[90] J. Hasler and S. Shah, “SoC FPAA hardware
implementation of a VMM+WTA embedded
learning classifier,” IEEE J. Emerg. Sel. Topics
Circuits Syst., vol. 8, no. 1, pp. 28–37,
Mar. 2018.

[91] S. Shah and J. Hasler, “VMM + WTA embedded
classifiers learning algorithm implementable on
SoC FPAA devices,” IEEE J. Emerg. Sel. Topics
Circuits Syst., vol. 8, no. 1, pp. 65–76,
Mar. 2018.

[92] S. Shah and J. Hasler, “Low power speech detector
on a FPAA,” in Proc. IEEE ISCAS, May 2017,
pp. 1–4.

[93] S. Koziol, S. Brink, and J. Hasler, “A neuromorphic
approach to path planning using a reconfigurable
neuron array IC,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 22, no. 12,
pp. 2724–2737, Dec. 2014.

[94] S. Koziol and P. Hasler, “Reconfigurable analog
VLSI circuits for robot path planning,” in Proc.
NASA/ESA Conf. Adapt. Hardw. Syst., Jun. 2011,
pp. 36–43.

[95] S. Koziol, D. Lenz, S. Hilsenbeck, S. Chopra,
P. Hasler, and A. Howard, “Using floating-gate
based programmable analog arrays for real-time
control of a game-playing robot,” in Proc. IEEE
Syst. Man Conf., Oct. 2011, pp. 3566–3571.

[96] S. Shah, H. Toreyin, O. T. Inan, and J. Hasler,
“Reconfigurable analog classifier for knee-joint
rehabilitation,” in Proc. IEEE Eng. Med. Biol. Soc.,
Aug. 2016, pp. 4784–4787.

[97] S. Shah, C. N. Teague, O. T. Inan, and J. Hasler,
“A proof-of-concept classifier for acoustic signals
from the knee joint on a FPAA,” in Proc. IEEE
Sensors Conf., Orlando, FL, USA, Oct./Nov. 2016,
pp. 1–3.

[98] H. Toreyin, S. Shah, C. Gungor, and J. Hasler,
“Real-time vital-sign monitoring in the physical
domain on a mixed-signal reconfigurable
platform,” IEEE Trans. Biomed. Circuits Syst., to be
published.

[99] J. Hasler and S. Shah, “Security implications for
ultra-low power configurable SoC FPAA
embedded systems,” J. Low Power Electron. Appl.,
vol. 8, no. 2, pp. 1–17, Jun. 2018.

[100] M. Laiho et al., “FPAA/memristor hybrid
computing infrastructure,” IEEE Trans. Circuits
Syst. I, Reg. Papers, vol. 62, no. 3, pp. 906–915,
Mar. 2015.

[101] J. Hasler, A. Natarajan, S. Shah, and S. Kim, “SoC
FPAA immersed junior level circuits course,” in

PROCEEDINGS OF THE IEEE 19

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 10,2020 at 21:10:37 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Hasler: Large-Scale Field-Programmable Analog Arrays

Proc. MSE, May 2017, pp. 7–10.
[102] Accessed: Nov. 14, 2019. [Online]. Available:

http://it.mathworks.com/solutions/fpga-design/
[103] (2012). Zynq: All Programmable SoC Architecture.

[Online]. Available: http://www.xilinx.com/
products/silicon-devices/soc/index.htm

[104] (2012). SoC FPGAs: Integration to Reduce Power,
Cost, and Board Size. [Online]. Available:
http://www.altera.com/devices/processor/soc-
fpga/proc-soc-fpga.html

[105] Accessed: Nov. 14, 2019. [Online]. Available:
http://www.altera.com/
products/software/products/dsp/dsp-builder.html

[106] Scilab: Free and Open Source Software for
Numerical Computation, Scilab Enterprises, Orsay,
France, 2012.

[107] S. Granesan and R. Vemuri, “FAAR: A router for
field-programmable analog arrays,” in Proc. Int.
Conf. VLSI Design, Jan. 1999, pp. 556–563.

[108] S. Ganesan and R. Vemuri, “A methodology for
rapid prototyping of analog systems,” in Proc. Int.
Conf. Comput. Design, Oct. 1999, pp. 482–488.

[109] S. Ganesan and R. Vemuri, “Analog-digital
partitioning for field-programmable mixed signal
systems,” in Proc. ARVLSI, Mar. 2001,
pp. 172–185.

[110] S. Ganesan and R. Vemuri, “Behavioral
partitioning in the synthesis of mixed
analog-digital systems,” in Proc. IEEE DAC,
Jun. 2001, pp. 133–138.

[111] A. Doboli and R. Vemuri, “Exploration-based
high-level synthesis of linear analog systems
operating at low/medium frequencies,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 22, no. 11, pp. 1556–1568, Nov. 2003.

[112] G. R. Boyle, B. M. Cohn, D. O. Pederson, and
J. E. Solomon, “Macromodeling of integrated
circuit operational amplifiers,” IEEE J. Solid-State
Circuits, vol. SSC-9, no. 6, pp. 353–363,
Dec. 1974.

[113] G. Casinovi and A. Sangiovanni-Vincentelli,
“A macromodeling algorithm for analog circuits,”
IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 10, no. 2, pp. 150–160, Feb. 1991.

[114] J. Kim, M. Jeeradit, B. Lim, and M. A. Horowitz,
“Leveraging designer’s intent: A path toward
simpler analog CAD tools,” in Proc. IEEE CICC,
Sep. 2009, pp. 613–620.

[115] S. Liao and M. Horowitz, “A verilog
piecewise-linear analog behavior model for
mixed-signal validation,” IEEE Trans. Circuits Syst.
I, Reg. Papers, vol. 61, no. 8, pp. 2229–2235,
Aug. 2014.

[116] C. Elliott, V. Vijayakumar, W. Zink, and R. Hansen,
“National Instruments LabVIEW: A programming
environment for laboratory automation and
measurement,” J. Assoc. Lab. Autom., vol. 12,
no. 1, pp. 17–24, Feb. 2007.

[117] (1999). Barcelona Design. [Online]. Available:
http://www.barcelonadesign.com

[118] M. Collins, J. Hasler, and S. George,
“An open-source tool set enabling
analog-digital-software co-design,” J. Low Power
Electron. Appl., vol. 6, no. 1, pp. 13–15, Feb. 2016.

[119] C. R. Schlottmann, C. Petre, and P. E. Hasler,
“Simulink framework for design to and automated
conversion on large-scale FPAA devices,” IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., to be
published.

[120] A. Natarajan and J. Hasler, “Modeling, simulation
and implementation of circuit elements in an
open-source tool set on the FPAA,” Analog Integr.

Circuits Signal Process., vol. 91, no. 1,
pp. 119–130, 2017.

[121] T. Weis, M. Knoll, A. Ulbrich, G. Muhl, and
A. Brandle, “Rapid prototyping for pervasive
applications,” IEEE Pervasive Comput., vol. 6,
no. 2, pp. 76–84, Apr./Jun. 2007.

[122] M. Boshernitsan and M. Downes, “Visual
programming languages: A survey,” Dept. Elect.
Eng. Comput. Sci., Univ. California, Berkeley,
Berkeley, CA, USA, Tech. Rep. UCB/CSD-04-1368,
Dec. 2004.

[123] W. M. Johnston, J. R. P. Hanna, and R. J. Millar,
“Advances in dataflow programming languages,”
ACM Comput. Surv., vol. 36, no. 1, pp. 1–34,
Mar. 2004.

[124] W. W. Wadge and E. A. Ashcroft, Lucid, the
Dataflow Programming Language. New York, NY,
USA: Academic, 1985.

[125] E. Evenchick, “ICESTUDIO: An open source
graphical FPGA tool,” Hackaday, Feb. 23, 2016.

[126] S. Kim, S. Shah, and J. Hasler, “Calibration of
floating-gate SoC FPAA system,” IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 25, no. 9,
pp. 2649–2657, Sep. 2017.

[127] W. H. Wolf, “Hardware-software co-design of
embedded systems,” Proc. IEEE, vol. 82, no. 7,
pp. 967–989, Jul. 1994.

[128] Q. Zhao, M. Amagasaki, M. Iida, M. Kuga, and
T. Sueyoshi, “An automatic FPGA design and
implementation framework,” in Proc. IEEE DAC,
Sep. 2013, pp. 1–4.

[129] M. Weinhardt, A. Krieger, and T. Kinder,
“A framework for PC applications with portable
and scalable FPGA accelerators,” in Proc. IEEE
DAC, Dec. 2013, pp. 1–6.

[130] D. Rossi, C. Mucci, M. Pizzotti, L. Perugini,
R. Canegallo, and R. Guerrieri, “Multicore signal
processing platform with heterogeneous
configurable hardware accelerators,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 22, no. 9,
pp. 1990–2003, Sep. 2014.

[131] J. Hasler et al., “Transforming mixed-signal
circuits class through SoC FPAA IC, PCB, and
toolset,” in Proc. IEEE Eur. Workshop Microelectron.
Educ., Southampton, U.K., May 2016, pp. 1–6.

[132] S. Koziol et al., “Hardware and software
infrastructure for a family of floating-gate based
FPAAs,” in Proc. IEEE ISCAS, May/Jun. 2010,
pp. 2794–2797.

[133] B. Bolte, S. Shah, S. Kim, P. Hwang, and J. Hasler,
“Live demonstration: FPAA demonstration
controlled through android-based device,” in Proc.
IEEE ISCAS, May 2016, p. 1442.

[134] J. Hasler, S. Kim, S. Shah, I. Lal, M. Kagle, and
M. Collins, “Remote system setup using
large-scale field programmable analog arrays
(FPAA) to enabling wide accessibility of
configurable devices,” J. Low-Power Electron.
Appl., vol. 6, no. 3, p. 14, 2016.

[135] J. F. Kurose and K. W. Ross, Computer Networking:
A Top-Down Approach. Boston, MA, USA: Pearson
Education, 2010.

[136] K. Park and H. Kim, “Remote FPGA
reconfiguration using MicroBlaze or PowerPC
processors,” Xilinx, San Jose, CA, USA, Appl. Note
XAPP441 (v1.1), Sep. 2006.

[137] R. Kuramoto, “QuickBoot method for FPGA design
remote update,” Xilinx, San Jose, CA, USA, Appl.
Note XAPP1081 (v1.3), Mar. 2014.

[138] J. Vliegen, N. Mentcns, and I. Verbauwhede,
“A single-chip solution for the secure remote
configuration of FPGAs using bitstream

compression,” in Proc. IEEE ReConFig, Cancun,
Mexico, Dec. 2013, pp. 1–6.

[139] M. Surratt, H. H. Loomis, A. A. Ross, and
R. Duren, “Challenges of remote FPGA
configuration for space applications,” in Proc. IEEE
Aerosp. Conf., Big Sky, MT, USA, Mar. 2005,
pp. 1–9.

[140] T. J. Freeborn and B. Maundy, “Incorporating
FPAAs into laboratory exercises for analogue filter
design,” Int. J. Elect. Eng. Educ., vol. 50, no. 2,
pp. 188–200, 2013.

[141] E. Strasnick, M. Agrawala, and S. Follmer,
“Scanalog: Interactive design and debugging of
analog circuits with programmable hardware,” in
Proc. UIST, Québec City, QC, Canada, Oct. 2017,
pp. 321–330.

[142] A. Malcher and Z. Kidoń, “Some properties of
FPAA-based analog signal processing
applications,” in Proc. IFAC Workshop Program.
Devices Embedded Syst., 2009, pp. 184–189.

[143] (Jul. 2018). AnadigmDesigner2 EDA Software.
Accessed: Nov. 14, 2019. [Online]. Available:
http://www.anadigm.com/anadigmdesigner2.asp
and http://www.anadigm.com/fpaa.asp

[144] C. M. Twigg and P. E. Hasler, “Incorporating
large-scale FPAAs into analog design and test
courses,” IEEE Trans. Educ., vol. 51, no. 3,
pp. 319–324, Aug. 2008.

[145] P. Hasler, C. Scholttmann, and S. Koziol, “FPAA
chips and tools as the center of an design-based
analog systems education,” in Proc. IEEE MSE,
San Diego, CA, USA, Jun. 2011, pp. 47–51.

[146] M. Collins, J. Hasler, and S. George, “Analog
systems education: An integrated toolset and
FPAA SoC boards,” in Proc. IEEE MSE, May 2015,
pp. 32–35.

[147] J. Hasler, “Circuit implementations teaching a
junior level circuits course utilizing the SoC
FPAA,” in Proc. ISCAS, Florence, Italy, May 2018,
pp. 1–5.

[148] A. Maiti, A. D. Maxwell, A. A. Kist, and L. Orwin,
“Merging remote laboratories and enquiry-based
learning for STEM education,” Int. J. Online
Biomed. Eng., vol. 10, no. 6, pp. 50–57, 2014.

[149] V. J. Harward et al., “The iLab shared architecture:
A Web services infrastructure to build
communities of Internet accessible laboratories,”
Proc. IEEE, vol. 96, no. 6, pp. 931–950, Jun. 2008.

[150] D. Lowe, S. Murray, E. Lindsay, and D. Liu,
“Evolving remote laboratory architectures to
leverage emerging Internet technologies,” IEEE
Trans. Learn. Technol., vol. 2, no. 4, pp. 289–294,
Oct./Dec. 2009.

[151] N. Sousa, G. R. Alves, and M. G. Gericota,
“An integrated reusable remote laboratory to
complement electronics teaching,” IEEE Trans.
Learn. Technol., vol. 3, no. 3, pp. 265–271,
Jul./Sep. 2010.

[152] M. A. Bochicchio and A. Longo, “Hands-on remote
labs: Collaborative Web laboratories as a case
study for IT engineering classes,” IEEE Trans.
Learn. Technol., vol. 2, no. 4, pp. 320–330,
Oct./Dec. 2009.

[153] M. Cooper and J. M. M. Ferreira, “Remote
laboratories extending access to science and
engineering curricular,” IEEE Trans. Learn.
Technol., vol. 2, no. 4, pp. 342–353,
Oct./Dec. 2009.

[154] S. Ramakrishnan, “A system design approach to
neuromorphic classifiers,” Ph.D. dissertation,
Georgia Inst. Technol., Atlanta, GA, USA,
2013.

20 PROCEEDINGS OF THE IEEE

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 10,2020 at 21:10:37 UTC from IEEE Xplore.  Restrictions apply. 


