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Maximum cut is an important example of a class of combinatorial optimization problems. It has many 
important applications including the design of VLSI circuits and design of communication networks. The 
goal of this NP-complete problem is to partition the node set of an undirected graph into two parts in order 
to maximize the cardinality of the set of edges cut by the partition. In this paper, we propose a parallel 
algorithm using gradient ascent learning algorithm of the Hopfield neural networks for efficiently solving such 
optimization problems. The proposed learning algorithm is tested on a 2-variable quadratic polynomial and 
applied to the MAX CUT problem. Extensive simulations are performed and its effectiveness is confirmed.
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1. Introduction

The maximum cut problem (MAX CUT) [1] is a rep
resentative problem of combinatorial optimal problems. 
In this problem, we have a weighted, undirected garph 
G=(V, E) and we look for a partition of vertices of 
graph G into two disjoint sets (S, S) , such that the to
tal weight of the edges that go from one to the other is 
as large as possible. Besides its theoretical importance, 
the maximum cut problem has applications in the de
sign of VLSI circuits, the design of communication net
works, circuit layout design and statistical physics [2], 
[3]. This problem is one of the Karp's original NP

-complete problems [1], and has long been known to be 
NP-complete even if the problem is unweighted [4]. For 
planar graphs this problem has been shown to be poly
nomial solvable [5]. However, in general the weighted 
graph may not be planar. Because of its theoretical and 
practical importance and because efficient algorithms 
for NP-complete combinatorial optimization problems 
are unlikely to exist, many polynomial time approxima
tion algorithms have been proposed to solve it.

In 1976, Sahni and Gonzales [6] presented a ap
proximation algorithm for the MAX CUT problem. 
Their algorithm iterates through the vertices and de
cides whether or not to assign vertex i to S based on 
which placement maximizes the weight of the cut of 
vertices 1 to i. This algorithm is essentially equiva
lent to the randomized algorithm that flips an unbi
ased coin for each vertex to decide which vertices are 
assigned to the set S. Since 1976, a number of re
searchers have presented approximation algorithms for 
the MAX CUT problem. Hsu [7] developed a greedy 
algorithm to approximate the solution to the maximum 
cut problem on general graphs with arbitrarily weighted 
edges. Using semidefinite programming [8], Goemans 
and Williamson [9] presented randomized approxima

tion algorithm for the maximum cut problem. Their al
gorithm has a very good worst case performance but it 
can handle efficiently only graphs of small size (vertices_??_

100), while it becomes very slow for larger instances 
(vertices_??_200). Besides, because of its complex design 
it cannot easily be implemented on dedicated circuits. 
For this reasons, Bertoni et al. [10] presented a sim
ple algorithm, called LORENA, which is inspired by 
Goemans and Williamson's idea. In [10] Bertoni et al 
showed that LORENA behaves better than Goemans 
and Williamson's algorithm.

For solving such combinatorial optimal problems, 
Hopfield neural networks [11]-[12] also constitute an im
portant avenue. The Hopfield neural networks have pro
vided a parallel and powerful method of solving diffi
cult optimazition problems which can be described as 
a quadratic polynomial function without square. Us
ing the neural network, Alberti et al. [13] presented a 
neural algorithm for MAX CUT problem. It has gener
ally been found that the Hopfield networks do produce 
some useful results very fast, they suffer from significant 
drawbacks, such as local minimum problems. The rate 
to get the maximum cut is not as good as other local 
search based algorithm such as LORENA [10].

In this paper, we introduce a parallel learning algo
rithm for solving local minimum problems of a Hop

fi eld network. The parallel learning algorithm has two 
phases, the Hopfield network updating phase and the 
gradient ascent learning phase. The Hopfield network 
updating phase finds a local minimum of energy func
tion. The gradient ascent learning phase makes the net
work escape from the local minimum by modifying the 
weight and the thresholds of the network (or parame
ters of the quadratic polynomial). The proposed paral
lel learning algorithm is tested on a 2-variable quadratic 
polynomial and applied to solving the MAX CUT prob
lem. The proposed learning algorithm is also compared
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with LORENA Because the LORENA gives better solu

tion than other algorithms for solving MAX CUT prob

lem. The experimental results shows that the proposed 

algorithm produces better solutions than the LORENA. 

Focusing on the local minimum problem of optimization 

techniques, some other optimization techniques have 

been proposed. Simulated Annealing (SA) [14] is a 

widely used meta-heuristic. It could be described as 

a randomized scheme, which reduces the risk of getting 

trapped in local minima by allowing moves to inferior 

solution. Simulated annealing is a powerful method for 

solving local minima, but it always requires more iter

ations than exhaustive search to find a good solution 

[15]. Baba [16] proposed a hybrid algorithm to solving 
the minimum problem of the back-propagation network 

based on random optimization method. To evaluate the 

performance of the proposed method, simulated anneal
ing is also executed for comparison.

This paper is organized as follows. In Section 2, we 

describe the Hopfield network representation of MAX 

CUT problem. Section 3 describes gradient ascent 

learning phase. Section 4 describes procedure of the 

proposed learning algorithm for solving optimization 

problems. Section 5 presents simulation results on 2
- variable quadratic polynomial and MAX CUT prob

lems.

2. MAX CUT Problem and Its Hopfield Neu

ral Network Representation

Let G=(V, E) be an edge-weighted undirected 

graph, where V is the set of vertices and E is the set of 
edges. The edge from vertex i to vertex j is represented 

by eij •¸ E. dij=dji, defines weights on edges whose 

endpoints are vertex i and vertex j. The maximum cut 

problem is to find a partition of V into two nonempty, 

disjoin sets A and B, such that A•¾B=V and A•¿B=ƒ³ 

and ƒ°i•¸EA
,j•¸B dij is maximum. The maximum condi

tion can also be represented as (ƒ°ij•¸A dij+ƒ°ij•¸B dij) 

is minimum.

An objective function can be formulated for this op

timization problem whose minimum value corresponds 

to the optimal solution. In a reasonable formulation 

there are two components to the objective function: one 

which is to realize the maximum condition described 

above, and one which is to satisfy that every vertex is 

distributed into one and only one vertex set. Thus, this 

optimization problem can be mathematically stated as 

fi nding the minimum of the following objective function:

where ƒÒiK is 1 if vertex i# is partitioned into vertex set 

K, 0 otherwise.

In general, the N-vertex MAX CUT problem can be 

mapped onto the Hopfield neural network with 2•~N 

neurons where it consists of N clusters of two neurons.

 The output yij of neuron #ij represents whether or not 

i-vertex (i=1,•c,N) should be partitioned into ver

tex set j (j=1,2 which represents vertex set A and ver

tex set B). For example, the state of two neurons (yi1

=1
, yi2=0) indicates that the i-vertices is partitioned 

into set A. The following state (yi1=yi2=0) and 

(yi1=yi2=1) express no partition and double par

tition violation, respectively. These partition violation 

conditions can be expressed by follow:

The maximum cut condition can be expressed by

where dik is weight on edges whose endpoints are ver
tex i and vertex k, and is the symmetric matrix. When 
we follow the mapping procedure by Hopfield and Tank 
[9], the energy function for the MAX CUT problem is 
given by:

where A and B are constant coefficients.
In order to simplify the problem, we show a new Hop

fi eld neural network representation in which only N neu
rons are used for the N-vertex MAX CUT problem. 
Neuron (yi) expresses the i# vertices. Two neuron 
states (yi=1 and yi=0) express that the i# vertices 
is be partitioned into the set A and B, respectively. In 
this representation, the no partition and double parti
tion violation can be avoided. Thus, the N-vertex MAX 
CUT problem can be simplify to

The energy function for MAX CUT problem can be ex
pressed by

We rewrite this energy function into a standard energy 
function of the Hopfield network:

where, the weights and thresholds of the Hopfield net

work become

wij=-2A(1-ƒÂij)dij•c•c•c•c•c•c(7)
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In Eq. (7) and Eq. (8), the notation bid is 1 if i=j, 0 
otherwise.

The equations of motion is:

The follow sigmoid function is used as input/output 
function of neurons.

yi=1/(1+e(-xi/T))•c•c•c•c•c•c•c(10)

where T is a parameter called temperature parameter. 

It is proved by Hopfield [11) that such Hopfield net

work can be used as an approximate method for solving 

0-1 optimization problems because, the network con

verges to a minimum of energy function provided that 

the weights are symmetric (wij=wji) and there are no 

self-connections (wii=0).

The Hopfield network updating procedure can be 

viewed as seeking a minimum in a mountainous ter

rain. Thus, we can find the solution to the MAX CUT 

problem simply by observing the stable state that the 
Hopfield network reaches. But because of its inherent 

local minimum problem, the global minimum or good 

solution is usually difficult to be found.

3. Gradient Ascent Learning

In order to realize the global minimum convergence 

of the Hopfield neural network, we propose a learning 

method, which can help the network escape from a local 

minimum to the global minimum. In order to explain 

the learning method, we use a two-dimensional graph 

(Fig. 1) of energy function with a local minimum and 
a global minimum. The energy function value is re

fl ected in the height of the graph. Each position on 

the energy terrain corresponds to a possible state of the 

network. For example, if the network is initialized onto 

the mountainous terrain A, the updating procedure of 

the Hopfield network makes the state of network move 

towards a minimum position and reach a steady state 

B (Fig. 1(a)).

Because the weights and the thresholds of the Hop

fi eld network determine the energy terrain, we can 

change the weights and the thresholds to increase the 

energy at the point B so as to fill up the local min

imum valley and finally drive the point B out of the 

valley. Here, suppose that a vector v corresponds to 

the weights and the thresholds of the Hopfield network. 

Since for a parameter vector v the learning requires the 

parameter change to be in the positive gradient direc
tion, we take:

ƒ¢ v=ƒÅƒ¢e(v)¥•c•c•c•c•c•c•c•c•c(11)

Where ƒÅ is a positive constant and ƒ¢e is the gradient of 

energy function e with respect to the parameter vector

 v in the state B.
Applying this learning rule (Eq. (11)) to the MAX 

CUT problem, we can obtain the changes of the weights 
and the thresholds of MAX CUT problem from the par
tial differential of the energy function (Eq. (6)) to the 
weights and the thresholds at the state B:

Fig. 1. The conceptual graph of the relation be
tween energy and state transition in the learning 
process of the Hopfield network with two stable 
states.
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where, p and q are small positive constants and yi, yj 
correspond to the state of B.

Now we show that after we change the weights and 
the thresholds according to Eq. (12) and Eq. (13), point 
B will be on the slope of a valley. Suppose yBi repre
sent the state of point B, ypi represent the state of any 
point P of energy terrain, then the change of energy in 
point P by the learning rule (Eq. (12) and Eq. (13)) will 
be:

Because point B is a minimum of energy function and 
the output of neuron in point B is at or near 0 or 1 [11], 
from Eq. (14), we can know easily that the increase of 
energy is largest when point P is at the same point as 
point B, and the larger the difference of state between 
point P and point B, the smaller energy increases in 
point P. Thus, we can see that the valley will be filled 
up in a most effective way. In general, point B may 
become a point on the slope of the valley. Thus, the 
learning ( the second phase) makes the previous stable 
state B becomes a point on the slope of a valley (B'
). After updating of the Hopfield network with the new 
weights and the new thresholds in the Hopfield network 
updating phase again, point B' goes down the slope of 
the valley and reaches a new stable state C (Fig. 1(b)). 
Thus, the Hopfield network updating (Phase 1) and the 
gradient ascent learning (Phase 2) in turn may result 
in a movement out of a local minimum, and lead the 
network converge to a global minimum or a new local 
minimum (Fig. 1(c) and (d)).

4. Algorithm

The following procedure describes the proposed learn
ing algorithm for solving optimization problems. Note 
that there are two kinds of conditions for end of the 
learning. One has a very clear condition, for example,

 the N-queen problem in which the energy is zero if the 

solution is the optimal. Another one has not a clear 

condition, for example, the travelling salesman prob

lem and the MAX CUT problem in which the energy 

is not zero even when the solution is the optimal. For 

the latter case, we have to set a maximum numbers of 

the learning (learn_limit) in advance. Learning stops if 

the maximum number of learning is performed. If the 

learn_limit is supposed to be the maximum number of 

learning times for the system termination condition, we 

have,

1. Set learn_time=0 and set learn_limit and other 

parameters.

2. The initial value of yj for i=1,•c,N are random

ized in the range from 0.0 to 1.0.

3. The updating procedure is performed on the Hop

fi eld network with original weights and thresholds until 

the network converges a stable state (Phase 1).

4. Record the stable state.

5. Use Eq. (12) and Eq. (13) to compute the new 

weights and new thresholds (Phase 2).

For i=1,•c,N

a. Compute the ƒ¢wij, using Eq. (12) for j=1,•c,N 

and j•‚i.

b. Change the wig for j=1,•c,N and j•‚i. 

 wij=wig+ƒ¢wij

c. Compute the ƒ¢hi, using Eq. (13).

d. Change the hi.

hi=hi+ƒ¢hi

6. The updating procedure is taken on the Hopfield 

network with the new weights and thresholds until the 

network reaches a stable state.

7. Because the weights and the thresholds of the Hop

fi eld network determine the energy terrain, once the 

weights and the thresholds are changed, the energy ter

rain may be changed and the position of global mini

mum in energy terrain may also be changed. In order 

to avoid the shift of the state of the global minimum to 

a specific problem, the updating procedure on the Hop

fi eld network may be re-performed with original weights 

and thresholds until the network reaches a new stable 

state.

8. If the new stable state obtained from step 7 is 

better than the recorded stable state, then the recorded 

stable state is replaced by the new stable state obtained 

from step 7.

9. Increment the learn-time by 1. If learn-time 

learn-limit then terminate this procedure, otherwise 

using the stable state obtained from step 6 go to the 

step 5.

5. Simulation Results

5.1 Simulation Results on 2-Variable Quadratic 

Polynomial In order to test the efficiency of the 

proposed learning method, firstly we simulat the follow
ing minimum problem of a 2-variable quadratic polyno

mial function without square term in [0,1] topological 

space.

E=w12x1x2+w21x2x1+h1x1+h2x2•c(15)
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This optimization problem can be performed using a 
2-neuron Hopfield network. We set w12=w21=-2.0, 
h1=1.0 and h2=0.9. In simulations, the learning 
constants are p=0.001, q=0.01, and the temperature 
parameter T=0.24. Fig. 2 is a 3-dimensional contour 
line figure of the energy of the network. The two hori
zontal axes correspond to the states of the two neurons, 
the vertical axis is the energy of the network. It can 
be seen that the relation between the energy function 
and the states of the two neurons becomes a shape of 
a saddle. As shown in Figs. 2(a), the network has a lo
cal minimum at the corners of y1=0, y2=1 and a 
global minimum at the corner of y1=1, y2=0. Fig. 3 
shows the energy of the Hopfield network, and its state 
change during the learning intuitively. First, in an ini
tial state A at time s=0 (y1=0.95, y2=0.95), the en
ergy takes very large value -0.475287. From the initial 
state, the network goes down to lower the energy as 
shown in the figure, and converges to -0.930935 by the 
energy and y1=0.118270, y2=0.940722 by the state 
B. Next if the learning using the Eq. (11) is performed, 
the energy in state B(y1=0.118270, y2=0.940722)

Fig. 2. 3-dimensional energy contour map for a 
two-neuron Hopfield network: (a) before learning, 
(b) after learning.

will go up to E=-0.911195 and becomes a point B•Œ

 on the slope of the valley again. This is called the 

first learning (s=1). If the network updates using 

the new weights and the new thresholds in time do

main from B•Œ again, it will converge to E=-0.911226 

by the energy and y1=0.124065, y2=0.932768 by 

the state C. In this way, the updating phase and 

the learning phase are repeated on the Hopfield net

work. After the 4-th learning (s=4), the network 

goes up to the energy E=-0.8546609 and the state 
E•Œ (y1=0.142568, y2=0.902425). Thus, the local min

imum valley of the energy of the network disappeares, 

and the network updates to a state G (y1=0.996728, 

y2=0.007408) from the state E•Œ through F, thus result
ing in an escape from the local minimum valley. The en

ergy also decreased abruptly from E=-0.8546609(E•Œ) 

to E=-1.389895(G) after a small decrease from 

E=-0.8546609(E•Œ) to E=-0.868840(F). The de

tails of the energy change during the learning are shown 

in Fig. 4. Fig. 5 shows the changes of the weights and the 

thresholds during the whole learning process. Fig. 2(b) 

shows the 3-dimensional contour line figure of the en

ergy of the network after learning. By the above simu

Fig. 3. Simulated energy of Hopfield network and 
its state change during learning.

Fig. 4. Details of energy change with time during 
learning.
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lation results, the valley (the local minimum) of energy 
is extinguished, namely, is understood that the learn
ing method proposed in this paper is effective in mak
ing a Hopfield network escape from a valley (a local

Fig. 6. A 20-vertex 30-edge MAX CUT problem

minimum). Furthermore, according to Fig. 3 and 4, by 

updating phase after the 4-th learning, the energy de

creases from E•Œ to F gently first and falls in the mini

mum G from F abruptly. This is because the energy has 

an extraordinary loose hill as shown in Fig. 2(b). These 

simulation results are in agreement with our learning 

algorithm. Furthermore, the information such as the 

structure of the energy and the feature may be ac

quired from the energy change during the learning by 

this learning method.

5.2 Simulation Results on MAX CUT 

Problem Using the proposed learning algorithm, 

we simulat MAX CUT problem on IBM NetVista A40 

(PentiumIII 733MHz). The Hopfield network updating 

phase uses the weights and thresholds matrix defined in

Fig. 5. Changes of the weight (a) and the thresh
olds (b1 and b2) during learning. Fig. 7. Fig. 7 The matrix of weight on edge of Fig.6
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Fig. 8. The solution of Fig. 6 (a) before learning (b) after first learning (c)after 4th learning (d)final 
solution of Fig. 6 found by proposed algorithm

Fig. 9. The variation process of the energy during 
learning

Eq(7) and (8) and the gradient ascent learning phase 
uses the rules defined in Eqs(12) and (13). Simulations 
refer to parameter set at A=1.0. In the experiments 
learn_limit is set to 20. The initial values of neurons are 
randomized in the range of 0.0 to 1.0. The temperature 
parameter T in Eq. (10) was set to 0.25

The first problem that we test is a graph with 20 ver
tices and 30 edges which is shown in Fig. 6. The matrix

 of weights on edges is shown in Fig. 7. Fig 8 shows the re
sults of a simulation on the MAX CUT problem of Fig. 6, 
which illustrates a typical progressive intermediate par
tition of vertices during the Hopfield network updating 
phase (Phase 1) and the gradient ascent learning phase 
(Phase 2). Initially the Hopfield network converges to a 
time independent state (Fig. 8(a)). The value of CUT 
of this partition is 57. It is obviously not an maximum 
CUT. After the first, 4th and 5th learning, the value of 
CUT increases to 58, 62 and 64, and generates the par
tition of vertices (b), (c) and finally (d). In order to gain 
some insight into the optimization process, the energy 
can be studied by plotting the energy as time. Fig. 9 
shows the variation of the energy during the Hopfield 
network updating and the gradient ascent learning. It 
can be seen from the figure that the 2nd and 3rd learn
ings do not lead to a movement out of local minimum, 
and therefore no new partition of vertices is generated. 
The first, 4th and 5th learning do yield a movement out 
of local minimum, thus resulting in new partition of ver
tices (Fig. 8 (b), (c) and (d)). To see if our solution is 
a global optimal solution, we use exhaustive search to 
this graph on the full searching space, and found that 
our solution is a global optimal solution. In order to 
widely verify the proposed algorithm, we also test the
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Table 1. Comparison with LORENA.

Table 2. Comparison with the simulated annealing.

algorithm with a large number of randomly generated 
graphs [17] defined in terms of two parameters, n and 
p. The parameter n specifies the number of vertices 
in the graph; the parameter p, 0<p<1, specifies the 
probability that any given pair of vertices constitutes an 
edge. Integer numbers are given randomly on edges as 
weight. The range for weight was from -1 to 5. To eval
uate our results, we compare our results with the results 
of LORENA [10]. For each of instances, 100 simulation 
runs are performed. Information on the test graphs as 
well as all results are shown in Table 1. The results 
that we record for each graph are the average cut, aver

age computational time and best cut produced by the 

LORENA [10], and by the proposed algorithm. The av

erage learning epochs of 100 runs for every graphs are 

also shown in Table 1. From Table 1 we can see that the 

proposed parallel algorithm is superior to the LORENA 

[10] in terms of solution quality and computational time.
To evaluate the performance of the proposed method, 

simulated annealing is also executed on MAX CUT 

problems for comparison. We use the annealing algo
rithm given by Johnson et al [17]. Starting with a ran

domly generated assignment, it repeatedly picks a ran

dom variable, and computes the change (ƒ¢) of energy
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when the state of that variable is flipped. If ƒ¢>0, 

make the flip. Otherwise, flip the variable with proba

bility e-ƒ¢/T . We slowly decrease the temperature (T) 

from 3.0 to 0.00001. 100 simulation runs are performed 

for each graphs. To compare the proposed method with 

the simulated annealing, the average cut, average com

putational time and best cut produced by the proposed 

learning algorithm and simulated annealing are shown 

in Table 2. From this table, we can see that the pro

posed learning algorithm works better than the simu

lated annealing in terms of the solution quality and the 

computation time.

6. Conclusions

We have proposed a near-optimum parallel algorithm 

for solving optimization problems, and showed its effec

tiveness by simulation experiments. This parallel algo

rithm has two phases, the Hopfield network updating 

phase and the gradient ascent learning phase. In the 

fi rst phase we implemented the Hopfield network for 

optimizing the energy function in state domain. In the 

second phase we intentionally increased the energy of

 the Hopfield network by modifying parameters in weight 

domain in a gradient ascent direction, thus making the 

network escape from local minimum. The proposed 

learning algorithm was tested on 2-variable quadratic 

polynomial and applied to the MAX CUT problems. 

Extensive simulations were performed and its effective

ness was confirmed.
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