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1. INTRODUCTION
1.1. QUANTUM ADIABATIC OPTIMIZATION
Recently, there has been much interest in the possibility of using
adiabatic quantum optimization (AQO) to solve NP-complete
and NP-hard problems [1, 2] 1. This is due to the following
trick: suppose we have a quantum Hamiltonian HP whose ground
state encodes the solution to a problem of interest, and another
Hamiltonian H0, whose ground state is “easy” (both to find and
to prepare in an experimental setup). Then, if we prepare a quan-
tum system to be in the ground state of H0, and then adiabatically
change the Hamiltonian for a time T according to

H(t) =
(

1 − t

T

)
H0 + t

T
HP, (1)

then if T is large enough, and H0 and HP do not commute,
the quantum system will remain in the ground state for all
times, by the adiabatic theorem of quantum mechanics. At time
T, measuring the quantum state will return a solution of our
problem.

There has been debate about whether or not these algorithms
would actually be useful: i.e., whether an adiabatic quantum opti-
mizer would run any faster than classical algorithms [3–9], due to
the fact that if the problem has size N, one typically finds

T = O
[

exp
(
αNβ

)]
, (2)

in order for the system to remain in the ground state, for pos-
itive coefficients α and β, as N → ∞. This is a consequence of
the requirement that exponentially small energy gaps between
the ground state of H(t) and the first excited state, at some
intermediate time, not lead to Landau–Zener transitions into

1In this paper, when a generic statement is true for both NP-complete and
NP-hard problems, we will refer to these problems as NP problems. Formally
this can be misleading as P is contained in NP, but for ease of notation we will
simply write NP.

excited states [5] 2. While it is unlikely that NP-complete prob-
lems can be solved in polynomial time by AQO, the coeffi-
cients α, β may be smaller than known classical algorithms,
so there is still a possibility that an AQO algorithm may be
more efficient than classical algorithms, on some classes of
problems.

There has been substantial experimental progress toward
building a device capable of running such algorithms [11–13],
when the Hamiltonian HP may be written as the quantum ver-
sion of an Ising spin glass. A classical Ising model can be written
as a quadratic function of a set of N spins si = ±1:

H (s1, . . . , sN) = −
∑
i < j

Jijsisj −
N∑

i = 1

hisi. (3)

The quantum version of this Hamiltonian is simply

HP = H
(
σz

1, . . . , σ
z
N

)
(4)

where σz
i is a Pauli matrix (a 2 × 2 matrix, whose cousin (1 +

σz
i )/2 has eigenvectors |0, 1〉 with eigenvalues 0, 1) acting on the

ith qubit in a Hilbert space of N qubits {|+〉, |−〉}⊗N , and Jij and
hi are real numbers. We then choose H0 to consist of transverse
magnetic fields [11]:

H0 = −h0

N∑
i = 1

σx
i , (5)

so that the ground state of H0 is an equal superposition of all pos-
sible states in the eigenbasis of HP [equivalent to the eigenbasis
of the set of operators σz

i (i = 1, . . . , N)]. This means that one

2If one is only interested in approximate solutions (for example, finding a
state whose energy per site is optimal, in the thermodynamic (N → ∞) limit,
as opposed to finding the exact ground state), one expects T = O(Nγ) [5, 10].
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does not expect any level crossings 3. For more work discussing
the choice of H, see Whitfield et al. [14]. Also, note that this class
of Hamiltonians is not believed to be sufficient to build a universal
adiabatic quantum computer [15]—at all times, H(t) belongs to a
special class of Hamiltonians called stoquastic Hamiltonians [16].

1.2. ISING SPIN GLASSES
Ising spin glasses4 are known to be NP-hard problems for classical
computers [17], so it is natural to suspect intimate connections
with all other NP problems. For the purposes of this paper, an NP-
complete problem is always a decision problem with a yes or no
answer (does the ground state of H have energy ≤0?), whereas an
NP-hard problem is an optimization problem (what is the ground
state energy of H?). The class of NP-complete problems includes
a variety of notoriously hard problems, and has thus attracted
much interest over the last 40 years [18, 19]. Mathematically,
because the decision form of the Ising model is NP-complete,
there exists a polynomial time mapping to any other NP-complete
problem.

Analogies between the statistical physics of Ising spin glasses
and NP problems have been frequently studied in the past
[20–22], and have been used to construct simulated annealing
algorithms [23] which have been quite fruitful in approximate
algorithms for problems on classical computers. These connec-
tions have suggested a physical understanding of the emergence of
hardness in these problems via a complex energy landscape with
many local minima [24]. Conversely, computational hardness of
solving glassy problems has implications for the difficulty of the
solutions to important scientific problems ranging from polymer
folding [25, 26] to memory [27] to collective decision making
in economics and social sciences [28, 29]. Problems of practical
scientific interest have already been encoded and solved (in sim-
ple instances) on experimental devices using Ising Hamiltonians
[30–35].

Finally, we note that Ising glasses often go by the name
QUBO (quadratic unconstrained binary optimization), in the
more mathematical literature [36, 37]. Useful tricks have been
developed to fix the values of some spins immediately [38] and
to decompose large QUBO problems into smaller ones [39].

1.3. THE GOAL OF THIS PAPER
Mathematically, the fact that a problem is NP-complete means we
can find a mapping to the decision form of the Ising model with a
polynomial number of steps. This mapping can be re-interpreted
as a pseudo-Boolean optimization problem [37]. As the construc-
tions of these pseudo-Boolean optimization problems (or “p-spin
glasses”) often lead to three-body or higher interactions in H (e.g.,

3This is due to the fact that the eigenbases of H0 and HP are very different, and
one has to tune (in our case) two parameters of a 2 × 2 Hermitian matrix to
find a matrix with degenerate eigenvalues (the identity matrix). We only have
one, t, and thus do not expect any degeneracies [5].
4In this paper, we will casually refer to the Ising models we are constructing
as “glasses”, as they can be on general graphs and have both positive and neg-
ative couplings Jij. There are various mathematical definitions for a spin glass,
none of which seem to capture properly the physical essence of a glass on all
problems. We will be liberal with our use of the word glass, and refer to any
NP problem, formulated as an Ising model, as a glass.

terms of the form s1s2s3), we then conclude by using “gadgets”
to reduce the problem to an Ising spin glass, by introducing a
polynomial number of auxiliary spins which help to enforce the
three-body interaction by multiple two-body interactions (s1s2)
[40, 41]. As such, we can get from any NP-complete problem to
the Hamiltonian of an Ising spin glass, whose decision problem
(does the ground state have energy ≤0?) solves the NP-complete
problem of interest. Classical gadgets are useful for many prob-
lems in physics as the physical energy (Hamiltonian) contains
three-body interactions, but they are also useful for writing down
many algorithms in other fields (e.g., integer factorization [42]).

However, for generic problems, this is a very inefficient pro-
cedure, as the power of the polynomial can grow quite rapidly.
As such, the typical NP-complete problem (of size N) studied in
the context of Ising glasses is very straightforward to write as a
glass with N spins (such as number partitioning, or satisfiabil-
ity). The primary purpose of this paper is to present constructions
of Ising Hamiltonians for problems where finding a choice of
Hamiltonian is a bit subtle; for pedagogical purposes, we will
also provide a review of some of the simple maps from parti-
tioning and satisfiability to an Ising spin glass. In particular, we
will describe how “all of the famous NP problems” 5 Karp [18],
Garey and Johnson [19] can be written down as Ising models with
a polynomial number of spins which scales no faster than N3.
For most of this paper, we will find it no more difficult to solve
the NP-hard optimization problem vs. the NP-complete decision
problem, and as such we will usually focus on the optimization
problems. The techniques employed in this paper, which are rare
elsewhere in the quantum computation literature, are primar-
ily of a few flavors, which roughly correspond to the tackling
the following issues: minimax optimization problems, problems
with inequalities as constraints (for example, n ≥ 1, as opposed
to n = 1), and problems which ask global questions about graphs.
The methods we use to phrase these problems as Ising glasses
generalize very naturally.

1.4. WHAT PROBLEMS ARE EASY (TO EMBED) ON EXPERIMENTAL
AQO DEVICES?

We hope that the reader may be inspired, after reading this paper,
to think about solving some of these classical computing prob-
lems, or others like them, on experimental devices implementing
AQO. Toward this end, the reader should look for three things in
the implementations in this paper. The first is the number of spins
required to encode the problem. In some instances, the “logical
spins/bits” (the spins which are required to encode a solution of
the problem) are the only spins required; but in general, we may
require auxiliary “ancilla spins/bits”, which are required to enforce
constraints in the problem. Sometimes, the number of ancilla bits
required can be quite large, and can be the dominant fraction of
the spins in the Hamiltonian. Another thing to watch out for is
the possibility that large separations of energy scales are required:
e.g., the ratio of couplings J12/J23 in some Ising glass is propor-
tional to N, the size of the problem being studied. A final thing
to note is whether or not the graph must be highly connected:
does the typical degree of vertices on the Ising embedding graph

5No offense to anyone whose problems have been left out.
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(not the graph associated with the NP problem) scale linearly
with N?

It is probably evident why we do not want too many ancilla
bits—this simply means we can only encode smaller problems
on the same size piece of hardware. It is a bit more subtle to
understand why complete graphs, or separations of energy scales,
are problematic. It is probable that the successful experimental
implementations of AQO with the most qubits are on devices
generated by DWave Systems [11–13] 6. As such, we now dis-
cuss the ease with which these Hamiltonians can be encoded
onto such a device. These devices may only encode problems
via a “chimera” graph. The primary problem with Hamiltonians
on a complete graph is that it is inefficient [43, 44] to embed
complete graphs onto the chimera graph. A primary difficulty
is demonstrated by the following simple case: a node v in the
complete graph must be mapped two a pair of nodes u and w
on the chimera graph, with the coupling Juw large compared
to other scales in the problem, to ensure that su = sw (so these
nodes effectively act as one spin). A second problem is that
some of the Hamiltonians require separations of energy scales.
However, in practice, these devices may only encode couplings
constants of 1, . . . , 16, due to experimental uncertainties [11–
13]. This means that it is unlikely that, for very connected graphs,
one may successfully encode any H with a separation of energy
scales. A final challenge is that sometimes couplings or qubits are
broken—at this early stage in the hardware development, opti-
mal algorithms have embeddings which are insensitive to this
possibility [45].

2. PARTITIONING PROBLEMS
The first class of problems we will study are partitioning prob-
lems, which (as the name suggests) are problems about dividing
a set into two subsets. These maps are celebrated in the spin glass
community [24], as they helped physicists realize the possibil-
ity of using spin glass technology to understand computational
hardness in random ensembles of computing problems. For com-
pleteness, we review these mappings here, and present a new one
based on similar ideas (the clique problem).

2.1. NUMBER PARTITIONING
Number partitioning asks the following: given a set of N pos-
itive numbers S = {n1, . . . , nN}, is there a partition of this set
of numbers into two disjoint subsets R and S − R, such that
the sum of the elements in both sets is the same? For exam-
ple, can one divide a set of assets with values n1, . . . , nN , fairly
between two people? This problem is known to be NP-complete
[18]. This can be phrased trivially as an Ising model as fol-
lows. Let ni (i = 1, . . . , N = |S|) describe the numbers in set S,
and let

H = A

(
N∑

i = 1

nisi

)2

(6)

6These devices use quantum annealing, which is the finite temperature gen-
eralization of AQO. For this paper, this is not an important issue, although it
can certainly be relevant to experiments.

be an energy function, where si = ±1 is an Ising spin variable.
Here A > 0 is some positive constant. Typically, such constants
are scaled to 1 in the literature, but for simplicity we will
retain them, since in many formulations a separation of energy
scales will prove useful, and retaining each scale can make it
easier to follow conceptually. Classical studies of this problem
are slightly easier if the square above is replaced with absolute
value [24].

It is clear that if there is a solution to the Ising model with
H = 0, then there is a configuration of spins where the sum of
the ni for the +1 spins is the same for the sum of the ni for the −1
spins. Thus, if the ground state energy is H = 0, there is a solution
to the number partitioning problem.

This Ising glass has degeneracies—i.e., there are always at least
two different solutions to the problem. This can be seen by not-
ing that if s∗i denotes a solution to the problem, then −s∗i is also a
solution. Physically, this corresponds to the fact that we do not
care which set is labeled as ±. In the spin glass literature, the
change si → −si, which does not change the form of H, is often
(rather loosely) called a gauge transformation. The existence of a
gauge transformation which leaves the couplings unchanged (as
there are no linear terms) implies that all energy levels of H are
degenerate. It is possible that there are 2m ground states (with
m > 1). This means that there are m physically distinct solu-
tions to the computational problem. We only need to find one of
them to be happy with our adiabatic quantum algorithm. We can
remove this double degeneracy by fixing s1 = 1. This also allows
us to remove one spin: now only s2, . . . , sN are included on the
graph, and s1 serves as an effective magnetic field. So in general,
we require N − 1 spins, which live on a complete graph, to encode
this problem.

If the ground state has H > 0, we know that there are no solu-
tions to the partitioning problem, but the ground state we do find
is (one of) the best possible solutions, in the sense that it min-
imizes the mismatch. Minimizing this mismatch is an NP-hard
problem, and we see that we do not require any more fancy foot-
work to solve the optimization problem—the same Hamiltonian
does the trick.

2.2. GRAPH PARTITIONING
Graph partitioning is the original [20] example of a map between
the physics of Ising spin glasses and NP-complete problems. Let
us consider an undirected graph G = (V, E). with an even num-
ber N = |V | of vertices. We ask: what is a partition of the set V
into two subsets of equal size N/2 such that the number of edges
connecting the two subsets is minimized? This problem has many
applications: finding these partitions can allow us to run some
graph algorithms in parallel on the two partitions, and then make
some modifications due to the few connecting edges at the end
[39]. Graph partitioning is known to be an NP-hard problem;
the corresponding decision problem (are there less than k edges
connecting the two sets?) is NP-complete [18]. We will place an
Ising spin sv = ±1 on each vertex v ∈ V on the graph, and we
will let +1 and −1 denote the vertex being in either the + set or
the − set. We solve this with an energy functional consisting of
two components:

H = HA + HB (7)
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where

HA = A

(
N∑

n = 1

si

)2

(8)

is an energy which provides a penalty if the number of elements
in the + set is not equal to the number in the − set, and

HB = B
∑

(uv) ∈ E

1 − susv

2
(9)

is a term which provides an energy penalty B for each time that
an edge connects vertices from different subsets. If B > 0, then
we wish to minimize the number of edges between the two sub-
sets; if B < 0, we will choose to maximize this number. Should
we choose B < 0, we must ensure that B is small enough so that
it is never favorable to violate the constraint of HA in order to
minimize energy. To determine a rather simple lower bound on
A, we ask the question: what is the minimum value of �HB—the
change in the energy contributed by the B-term—if we violate the
A constraint once. It is easy to see that the penalty for violating
the A-constraint is �HA ≥ 4A. The best gain we can get by flip-
ping a spin is to gain an energy of B min(�, N/2), where � is the
maximal degree of G7. We conclude

A

B
≥ min(2�, N)

8
. (10)

N spins on a complete graph are required to encode this problem.
This Hamiltonian is invariant under the same gauge transfor-

mation si → −si. We conclude that we can always remove one
spin by fixing a single vertex to be in the + set.

We have written H in a slightly different form than the original
[20], which employed a constraint on the space of solutions to the
problem, that

N∑
i = 1

si = 0. (11)

We will want none of our formulations to do this (i.e., we wish
to solve the unconstrained optimization problem), as the exper-
imental hardware that is being built for quantum optimization
can only solve unconstrained problems. Instead, we encode con-
straint equations by making penalty Hamiltonians which raise the
energy of a state which violates them.

2.3. CLIQUES
A clique of size K in an undirected graph G = (V, E) is a subset
W ⊆ V of the vertices, of size |W | = K, such that the subgraph
(W, EW ) (where EW is the edge set E restricted to edges between
nodes in W) is a complete graph—i.e., all possible K(K − 1)/2

7The reason we can use N/2 in this formula instead of N has to do with the
fact that we are “perturbing” a solution where HA = 0. Due to the fact that the
HA constraint is very penalizing if it is violated by having many spins in the
same partition, it is easy to see that cases where an energy gain of (N − 1)B
can be obtained by flipping a spin are very energetically penalized, and not
relevant to the discussion.

edges in the graph are present, because every vertex in the clique
has an edge to every other vertex in the clique. Cliques in social
networks can be useful as they are “communities of friends”;
finding anomalously large cliques is also a key sign that there
is structure in a graph which may appear to otherwise be ran-
dom [46]. The NP-complete decision problem of whether or not
a clique of size K exists [18] can be written as an Ising-like model,
as follows. We place a spin variable sv = ±1 on each vertex v ∈ V
of the graph. In general, in this paper, for a spin variable sα, we
will define the binary bit variable

xα ≡ sα + 1

2
. (12)

It will typically be more convenient to phrase the energies in terms
of this variable xα, as it will be for this problem. Note that any
energy functional which was quadratic in sv will remain quadratic
in xv, and vice versa, so we are free to use either variable. We then
choose

H = A

(
K −

∑
v

xv

)2

+ B

⎡
⎣K(K − 1)

2
−

∑
(uv) ∈ E

xuxv

⎤
⎦ (13)

where A, B > 0 are positive constants. We want the ground state
of this Hamiltonian is H = 0 if and only if a clique of size K exists.
It is easy to see that H = 0 if there is a clique of size K. However,
we wish to now show that H �= 0 for any other solution. It is
easy to see that if there are n xvs which are 1, that the minimum
possible value of H is

Hmin(n) = A(n − K)2 + B
K(K − 1) − n(n − 1)

2

= (n − K)

[
A(n − K) − B

n + K − 1

2

]
. (14)

The most “dangerous” possible value of n = 1 + K. We can eas-
ily see that so long as A > KB, Hmin(K + 1) > 0. We finally note
that, given a ground state solution, it is of course easy to read off
from the xv which K nodes form a clique. N spins on a complete
graph are required to solve this problem.

A quantum algorithm for this NP-complete problem can be
made slightly more efficient so long as the initial state can be
carefully prepared [47].

The NP-hard version of the clique problem asks us to find
(one of) the largest cliques in a graph. We can modify the above
Hamiltonian to account for this, by adding an extra variable yi

(i = 2, . . . , �), which is 1 if the largest clique has size i, and 0
otherwise. Let H = HA + HB + HC where

HA = A

(
1 −

N∑
i = 2

yi

)2

+ A

(
n∑

i = 2

nyn −
∑

v

xv

)2

(15)

and

HB = B

⎡
⎣1

2

(
N∑

i = 2

nyn

)(
−1 +

N∑
i = 2

nyn

)
−

∑
(uv) ∈ E

xuxv

⎤
⎦ . (16)
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We want cliques to satisfy HA = HB = 0, and to be the only
ground states. The Hamiltonian above satisfies this if A/B is large
enough so the constraints of HA = 0 are always satisfied—we can
see this by noting that the first term of HA forces us to pick only
one value of yi = n, and the second term fixes us to choose n ver-
tices. Then HB = 0 ensures that we have a clique. Similarly to the
discussion above, we see that the absence of negative energy states
requires A > NB. If the maximal degree of the graph is �, this can
be simplified to A > �B. Now that we know that all ground states
are cliques8, we have to find the state with the smallest value of yn.
This can be obtained by choosing

H = −C
∑

v

xv, (17)

where C > 0 is some constant. If C is small enough, then the
ground state energy is H = −CK, where K is the size of the largest
clique in the graph. To determine an upper bound on C, so that
we solve the cliques problem (as opposed to some other problem),
we need to make sure that it is never favorable to color an extra
vertex, at the expense of mildly violating the HA constraint. The
penalty for coloring one extra vertex, given yi = n, is at minimum
A − nB − C. We conclude that we must choose

C < A − nB. (18)

So, for example, we could take A = (� + 2)B, and B = C.

2.4. REDUCING N TO LOGN SPINS IN SOME CONSTRAINTS
There is a trick which can be used to dramatically reduce the
number of extra yi spins which must be added, in the NP-hard
version of the clique problem above [48]. In general, this trick is
usable throughout this paper, as we will see similar constructions
of auxiliary y bits appearing repeatedly.

We know that we want to encode a variable which can take
the values 2, . . . , N (or �, if we know the maximal degree of the
graph—the argument is identical either way). For simplicity, sup-
pose we wish to encode the values 1, . . . , N (this is a negligible
difference, in the large N limit). Define an integer M so that

2M ≤ N < 2M + 1. (19)

Alternatively, M = log N�—in this paper, the base 2 is implied in
the logarithm. In this case, we only need M + 1 binary variables:
y0, . . . , yM , instead of N binary variables, y1, . . . , yN , to encode a
variable which can take N values. It is easy to check that replacing

N∑
n = 1

nyn →
M − 1∑
n = 0

2nyn + (
N + 1 − 2M) yM (20)

solves the same clique problem, without loss of generality. (This
is true in general for all of our NP problems.) If N �= 2M+1 − 1,
the ground state may be degenerate, as the summation of ys to a
given integer is not always unique. When actually encoding these

8The ground state has H = 0 so long as the edge set is non-empty: any
connected pair of edges is a clique of size 2.

problems for computational purposes, of course, this trick should
be used, but for pedagogy and simplicity we will not write it out
explicitly for the remainder of the paper.

Using this trick, we note that solving the NP-hard version of
the cliques problem requires N + 1 + log �� spins.

3. BINARY INTEGER LINEAR PROGRAMMING
Let x1, . . . , xN be N binary variables, which we arrange into a
vector x. The binary integer linear programming (ILP) problem
asks: what is the largest value of c · x, for some vector c, given a
constraint

Sx = b (21)

with S an m × N matrix and b a vector with m components.
This is NP-hard [18], with a corresponding NP-complete decision
problem. Many problems can be posed as ILP: e.g., a supplier who
wants to maximize profit, given regulatory constraints [48].

The Ising Hamiltonian corresponding to this problem can be
constructed as follows. Let H = HA + HB where

HA = A
m∑

j = 1

[
bj −

N∑
i = 1

Sjixi

]2

(22)

and A > 0 is a constant. The ground states of HA = 0 enforce (if
such a ground state exists, of course!) the constraint that Sx = b.
Then we set

HB = −B
N∑

i = 1

cixi. (23)

with B � A another positive constant.
To find constraints on the required ratio A/B, we proceed sim-

ilarly to before. For simplicity, let us assume that the constraint
Equation (21) can be satisfied for some choice of x. For such a
choice, the largest possible value of −�HB is, in principle, BC,
where

C =
N∑

i = 1

max(ci, 0). (24)

The smallest possible value of �HA is related to the properties
of the matrix S, and would occur if we only violate a single
constraint, and violate that constraint by the smallest possible
amount, given by

S ≡ min
σi ∈ {0,1}, j

(
max

[
1,

1

2

∑
i

(−1)σi Sji

])
. (25)

This bound could be made better if we know more specific
properties of S and/or b. We conclude

A

B
≥ C

S . (26)

If the coefficients ci and Sij are O(1) integers, we have C ≤
N max(ci), and S ≥ 1, so we conclude A/B � N.
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4. COVERING AND PACKING PROBLEMS
In this section, we discuss another simple class of mappings
from NP problems to Ising models: “covering” and “packing”
problems. These problems can often be thought of as asking:
how can I pick elements out of a set (such as vertices out of
a graph’s vertex set) so that they “cover” the graph in some
simple way (e.g., removing them makes the edge set empty).
In this class of problems, there are constraints which must be
exactly satisfied. Many of the problems described below are
often discussed in the literature, but again we review them here
for completeness. We conclude the section with the minimal
maximal matching problem, which is a slightly more involved
problem that has not been discussed in the AQO literature
before.

These are, by far, the most popular class of problems discussed
in the AQO literature. As we mentioned in the introduction, this
is because this is the only class of NP problems (discussed in this
paper) for which it is easy to embed the problem via a graph which
is not complete (or close to complete).

4.1. EXACT COVER
The exact cover problem goes as follows: consider a set U =
{1, . . . , n}, and subsets Vi ⊆ U (i = 1, . . . , N) such that

U =
⋃

i

Vi. (27)

The question is: is there a subset of the set of sets {Vi}, called R,
such that the elements of R are disjoint sets, and the union of
the elements of R is U? This problem was described in Choi [49]
but for simplicity, we repeat it here. This decision problem is NP-
complete [18]. The Hamiltonian we use is

HA = A
n∑

α= 1

⎛
⎝1 −

∑
i:α∈ Vi

xi

⎞
⎠

2

. (28)

In the above Hamiltonian α denotes the elements of U , while
i denotes the subsets Vi. HA = 0 precisely when every element
is included exactly one time, which implies that the unions are
disjoint. The existence of a ground state of energy H = 0 corre-
sponds to the existence of a solution to the exact cover problem.
If this ground state is degenerate, there are multiple solutions. N
spins are required.

It is also straightforward to extend this, and find the small-
est exact cover (this makes the problem NP-hard). This is done
by simply adding a second energy scale: H = HA + HB, with HA

given above, and

HB = B
∑

i

xi. (29)

The ground state of this model will be mB, where m is the small-
est number of subsets required. To find the ratio A/B required
to encode the correct problem, we note that the worst case sce-
nario is that there are a very small number of subsets with a single

common element, whose union is U . To ensure this does not
happen, one can set A > nB9.

4.2. SET PACKING
Let us consider the same setup as the previous problem, but now
ask a different question: what is the largest number of subsets Vi

which are all disjoint? This is called the set packing problem; this
optimization problem is NP-hard [18]. To do this, we use H =
HA + HB:

HA = A
∑

i,j:Vi ∩ Vj �= ∅
xixj, (30)

which is minimized only when all subsets are disjoint. Then, we
use

HB = −B
∑

i

xi (31)

which simply counts the number of sets we included. Choosing
B < A ensures that it is never favorable to violate the constraint
HA (since there will always be a penalty of at least A per extra set
included) [4].

Note that an isomorphic formulation of this problem, in
the context of graph theory is as follows: let us consider the
sets to be encoded in an undirected graph G = (V, E), where
each set Vi maps to a vertex i ∈ V . An edge ij ∈ E exists when
Vi ∩ Vj is non-empty. It is straightforward to see that if we
replace

HA = A
∑
ij ∈ E

xixj (32)

that the question of what is the maximal number of vertices
which may be “colored” (xi = 1) such that no two colored vertices
are connected by an edge, is exactly equivalent to the set pack-
ing problem described above. This version is called the maximal
independent set (MIS) problem.

4.3. VERTEX COVER
Given an undirected graph G = (V, E), what is the smallest num-
ber of vertices that can be “colored” such that every edge is
incident to a colored vertex? This is NP-hard; the decision form
is NP-complete [18]. Let xv be a binary variable on each ver-
tex, which is 1 if it is colored, and 0 if it is not colored. Our
Hamiltonian will be H = HA + HB. The constraint that every
edge has at least colored vertex is encoded in HA:

HA = A
∑

uv ∈ E

(1 − xu)(1 − xv). (33)

Then, we want to minimize the number of colored vertices
with HB:

HB = B
∑

v

xv (34)

9The example where V = {{1, 2}, {3}, . . . , {n}, {2, . . . , n}} shows that to lead-
ing order in n, this bound is optimal.
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Lucas Ising formulations of many NP problems

Choose B < A, as if we uncolor any vertex that ruins the solution,
at least one edge will no longer connect to a colored vertex. The
number of spins required is |V |, the size of the vertex set.

4.4. SATISFIABILITY
Satisfiability is one of the most famous NP-complete problems
[18]. Every satisfiability problem can be written as a so-called
3SAT problem in conjunctive normal form (and this algorithm
takes only polynomial steps/time) and so we will focus for sim-
plicity on this case. In this case, we ask whether

� = C1 ∧ C2 · · · ∧ Cm (35)

can take on the value of true—i.e., every Ci for 1 ≤ i ≤ m is true,
where the form of each Ci is:

Ci = yi1 ∨ yi2 ∨ yi3 (36)

Here yi1 , yi2 , and yi3 are selected from another set of Boolean
variables: x1, . . . , xN , x1, . . . , xN . This is a very brief description
of satisfiability; physicists who are unfamiliar with this problem
should read appropriate chapters of Mézard and Montanari [24].

There is a well-known reduction of 3SAT to MIS [49] which we
reproduce here, for completeness. Consider solving the set pack-
ing problem on a graph G with 3m nodes, which we construct
as follows. For each clause Ci, we add 3 nodes to the graph, and
connect each node to the other 3. After this step, if there is a y1

and y2 such that y1 = y2, then we also add an edge between these
two nodes. Solving MIS on this graph, and asking whether the
solution has exactly m nodes, is equivalent to solving the 3SAT
problem. This can be seen as follows: if a solution to the 3SAT
problem exists, only one element of each clause needs to be true—
if more are true, that is also acceptable, but we must have that one
is true, so let us choose to color the vertex corresponding to the
variable which is true. However, we may also not choose to have
both x1 be true and x1 be true, so we are required to connect all
such points with an edge. Since the graph is made up of m con-
nected triangles, the only way to color m vertices if each vertex is
in a distinct triangle, so there must be an element of each clause
Ci which is true.

Note that we can solve an NP-hard version of this problem (if
we have to violate some clauses, what is the fewest number?), by
solving the optimization version of the MIS problem.

4.5. MINIMAL MAXIMAL MATCHING
The minimal maximal (minimax) matching problem on a graph
is defined as follows: let G = (V, E) denote an undirected graph,
and let C ⊆ E be a proposed “coloring”. The constraints on C are
as follows: for each edge in C, let us color the two vertices it con-
nects: i.e., let D = ⋃

e∈C ∂e. We will then demand that: no two
edges in C share a vertex (if e1, e2 ∈ C, ∂e1 ∩ ∂e2 = ∅) and that
if u, v ∈ D, that (uv) /∈ E. This is NP-hard; the decision prob-
lem is NP-complete [19]. This is minimal in that we cannot add
any more edges to C (coloring any appropriate vertices) with-
out violating the first constraint, and maximal in the sense that
the trivial empty set solution is not allowed—we must include all
edges between uncolored vertices.

Note that, from this point on in this paper, we have not found
any of the Ising formulations of this paper in the literature.

We will use the spins on the graph to model whether or not
an edge is colored. Let us use the binary variable xe to denote
whether or not an edge is colored; thus, the number of spins is
|E| = O(�N), the size of the edge set; as before, � represents the
maximal degree. To encode this problem, we use a series of three
Hamiltonians:

H = HA + HB + HC. (37)

The first and largest term, HA, will impose the constraint that no
vertex has two colored edges. This can be done by setting

HA = A
∑

v

∑
{e1,e2}⊂∂v

xe1 xe2 . (38)

Here A > 0 is a positive energy, and ∂v corresponds to the subset
of E of edges which connect to v. Thus the ground states consist
of HA = 0; if HA > 0, it is because there is a vertex where two of
its edges are colored.

We also can define, for states with HA = 0, the variable

yv ≡
{

1 v has a colored edge
0 v has no colored edges

=
∑

e ∈ ∂v

xe. (39)

We stress that this definition is only valid for states with HA = 0,
since in these states each vertex has either 0 or 1 colored edges.
We then define the energy HB, such that solutions to the minimax
coloring problem also have HB = 0. Since we have already con-
strained the number of colored edges per vertex, we choose HB

to raise the energy of all solutions where there exists a possible
edge which can be colored, yet still not violate the coloring con-
dition, out of the ground state. To do this, we can sum over all
edges in the graph, and check whether or not the edge connects
two vertices, neither of which are colored:

HB = B
∑

e = (uv)

(1 − yu)(1 − yv). (40)

Note that since, 1 − yv can be negative, we must choose B > 0
to be small enough. To bound B, we note that the only prob-
lem (a negative term in HB) comes when yu = 0, yv > 1, and
(uv) ∈ E. Suppose that m of v’s neighbors have yu = 0. Then, the
contributions to HA and HB associated to node v are given by

Hv = A
yv(yv − 1)

2
− B(yu − 1)m. (41)

Note that m + yu ≤ k, if k is the degree of node v. Putting all of
this together, we conclude that if � is the maximal degree in the
graph, because the worst case scenario is yv = 2, m = � − 2, if
we pick

A > (� − 2)B, (42)

then it is never favorable to have any yv > 1. This will ensure that
a ground state of HA + HB will have HA = HB = 0: i.e., states
which do not violate the minimax constraints.
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Now, given the states where HA = HB = 0, we now want the
ground state of HA + HB + HC to be the state where the fewest
number of edges are colored. To do this, we simply let

HC = C
∑

e

xe (43)

count the number of colored edges. Here C is an energy scale cho-
sen to be small enough such that it is never energetically favorable
to violate the constraints imposed by either the HA or HB terms:
one requires C < B, since there is an energy penalty of B asso-
ciated to each edge which could be colored, but isn’t. The term
with the smallest HC has the smallest number of edges, and is
clearly the solution to the minimax problem. Each ground state
of this spin model is equivalent to a solution of the minimax
problem.

5. PROBLEMS WITH INEQUALITIES
We now turn to NP problems whose formulations as Ising models
are more subtle, due to the fact that constraints involve inequali-
ties as opposed to equalities. These constraints can be re-written
as constraints only involving equalities by an expansion of the
number of spins.

As with partitioning problems, we will find that these
Hamiltonians require embedding highly connected graphs onto
a quantum device. This may limit their usability on current
hardware.

5.1. SET COVER
Consider a set U = {1, . . . , n}, with sets Vi ⊆ U (i = 1, . . . , N)
such that

U =
N⋃

i = 1

Vα. (44)

The set covering problem is to find the smallest possible num-
ber of Vis, such that the union of them is equal to U .
This is a generalization of the exact covering problem, where
we do not care if some α ∈ U shows up in multiple sets
Vi; finding the smallest number of sets which “cover” U is
NP-hard [18].

Let us denote xi to be a binary variable which is 1 if set i is
included, and 0 if set i is not included. Let us then denote xα,m to
be a binary variable which is 1 if the number of Vis which include
element α is m ≥ 1, and 0 otherwise. Set H = HA + HB. Our first
energy imposes the constraints that exactly one xα,m must be 1,
since each element of U must be included a fixed number of times,
and that the number of times that we claimed α was included is
in fact equal to the number of Vi we have included, with α as an
element:

HA = A
n∑

α = 1

(
1 −

N∑
m = 1

xα,m

)2

+ A
n∑

α= 1

⎛
⎝ N∑

m = 1

mxα,m −
∑

i:α∈ Vi

xi

⎞
⎠

2

. (45)

Finally, we minimize over the number of Vαs included:

HB = B
N∑

i = 1

xi, (46)

with 0 < B < A required to never violate the constraints of HA

(the worst case is that one set must be included to obtain one
element of U ; the change in H if we include this last element is
B − A, which must be negative).

Let M ≤ N be the maximal number of sets which contain any
given element of U ; then N xis are required, and n1 + log M�
spins are required (using the trick described earlier) for the xα,m

spins; the total number is therefore N + n1 + log M� spins.

5.2. KNAPSACK WITH INTEGER WEIGHTS
The knapsack problem is the following problem: we have a list
of N objects, labeled by indices α, with the weight of each object
given by wα, and its value given by cα, and we have a knapsack
which can only carry weight W . If xα is a binary variable denoting
whether (1) or not (0) object α is contained in the knapsack, the
total weight in the knapsack is

W =
N∑

α= 1

wαxα (47)

and the total cost is

C =
N∑

α= 1

cαxα. (48)

The NP-hard [18] knapsack problem asks us to maximize C
subject to the constraint that W ≤ W . It has a huge variety of
applications, particularly in economics and finance [50].

Let yn for 1 ≤ n ≤ W denote a binary variable which is 1 if the
final weight of the knapsack is n, and 0 otherwise. Our solution
consists of letting H = HA + HB, with

HA = A

(
1 −

W∑
n = 1

yn

)2

+ A

(
W∑

n = 1

nyn −
∑
α

wαxα

)2

(49)

which enforces that the weight can only take on one value and
that the weight of the objects in the knapsack equals the value we
claimed it did, and finally

HB = −B
∑
α

cαxα. (50)

As we require that it is not possible to find a solution where HA

is weakly violated at the expense of HB becoming more negative,
we require 0 < B max(cα) < A (adding one item to the knapsack,
which makes it too heavy, is not allowed). The number of spins
required is (using the log trick) N + 1 + log W�.

6. COLORING PROBLEMS
We now turn to coloring problems. Naively, coloring problems
are often best phrased as Potts models [51], where the spins can
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take on more than two values, but these classical Potts models
can be converted to classical Ising models with an expansion of
the number of spins. This simple trick forms the basis for our
solutions to this class of problems.

6.1. GRAPH COLORING
Given an undirected graph G = (V, E), and a set of n colors, is
it possible to color each vertex in the graph with a specific color,
such that no edge connects two vertices of the same color? This is
one of the more famous NP-complete [18] problems, as one can
think of it as the generalization of the problem of how many colors
are needed to color a map, such that no two countries which share
a border have the same color. Of course, in this special case10, one
can prove that there is always a coloring for n ≥ 4 [52, 53]. This
problem is called the graph coloring problem.

Our solution consists of the following: we denote xv,i to be a
binary variable which is 1 if vertex v is colored with color i, and 0
otherwise. The energy is

H = A
∑

v

(
1 −

n∑
i = 1

xv,i

)2

+ A
∑

(uv) ∈ E

n∑
i = 1

xu,ixv,i. (51)

The first term enforces the constraint that each vertex has exactly
one color, and provides an energy penalty each time this is vio-
lated, and the second term gives an energy penalty each time an
edge connects two vertices of the same color. If there is a ground
state of this model with H = 0, then there is a solution to the col-
oring problem on this graph with n colors. We can also read off
the color of each node (in one such coloring scheme) by looking
at which xs are 1. Note that the number of spins can be slightly
reduced, since there is a permutation symmetry among colorings,
by choosing a specific node in the graph to have the color 1, and
one of its neighbors to have the color 2, for example. The total
number of spins required is thus nN.

6.2. CLIQUE COVER
The clique cover problem, for an undirected graph G = (V, E),
is the following: given n colors, we assign a distinct color to each
vertex of the graph. Let W1, . . . , Wn be the subsets of V corre-
sponding to each color, and EW1 , . . . , EWn the edge set restricted
to edges between vertices in the Wi sets. The clique cover prob-
lem asks whether or not (Wi, EWi) is a complete graph for each
Wi (i.e., does each set of colored vertices form a clique?). This
problem is known to be NP-complete [18].

Our solution is very similar to the graph coloring problem.
Again, we employ the same binary variables as for graph coloring,
and use a Hamiltonian very similar to the cliques problem:

H = A
∑

v

(
1 −

n∑
i = 1

xv,i

)2

+ B
n∑

i = 1

[
1

2

(
−1 +

∑
v

xv,i

)

∑
v

xv,i −
∑

(uv) ∈ E

xu,ixv,i

⎤
⎦ . (52)

10The graphs are planar—the vertices can be realized by points on R
2, and the

edges as line segments between them, such that no two line segments intersect
(except at a vertex).

The first term enforces the constraint that each vertex has exactly
one color by giving an energy penalty each time this constraint is
violated. In the second term, since the sum over v of xv,i counts
the number of nodes with color i, the first sum counts highest
possible number of edges that could exist with color i. The second
term then checks if, in fact, this number of edges does in fact exist.
Thus H = 0 if and only if the clique cover problem is solved by
the given coloring. If a ground state exists with H = 0, there is
a solution to the clique covering problem. The discussion on the
required ratio A/B to encode the correct solution is analogous to
the discussion for the cliques problem. The total number of spins
required is nN.

6.3. JOB SEQUENCING WITH INTEGER LENGTHS
The job sequencing problem is as follows: we are given a list of
N jobs for m computer clusters. Each job i has length Li. How
can each job be assigned to a computer in the cluster such that, if
the set of jobs on cluster α is Vα, then the length of that cluster,
defined as

Mα ≡
∑

i ∈ Vα

Li, (53)

are chosen such that max(Mα) is minimized? Essentially, this
means that if we run all of the jobs simultaneously, all jobs will
have finished running in the shortest amount of time. This is NP-
hard [18], and there is a decision version [is max(Mα) ≤ M0?]
which is NP-complete. We assume that Li ∈ N.

To do this, we will begin by demanding that without loss of
generality, M1 ≥ Mα for any α. Introduce the variables xi,α which
are 1 if job i is added to computer α, and 0 otherwise, and the
variables yn,α for α �= 1 and n ≥ 0, which is 1 if the difference
M1 − Mα = n. Then the Hamiltonian

HA = A
N∑

i = 1

(
1 −

∑
α

xi,α

)2

+ A
m∑

α= 1

( M∑
n = 1

nyn,α +
∑

i

Li(xi,α − xi,1)

)2

(54)

encodes that each job can be given to exactly one computer, and
that no computer can have a longer total length than computer
1. The number M must be chosen by the user, and is related
to the number of auxiliary spins required to adequately impose
the length constraints that M1 ≥ Mα: in the worst case, it is
given by N max(Li). To find the minimal maximal length M1, we
just use

HB = B
∑

i

Lixi,1. (55)

Similarly to finding bounds on A/B for the knapsack problem,
for this Hamiltonian to encode the solution to the problem,
we require (in the worst case) 0 < B max(Li) < A. Using the
log trick, the number of spins required here is mN + (m − 1)

1 + logM�.
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7. HAMILTONIAN CYCLES
In this section, we describe the solution to the (undirected
or directed) Hamiltonian cycles problem, and subsequently the
traveling salesman problem, which for the Ising spin glass formu-
lation, is a trivial extension.

7.1. HAMILTONIAN CYCLES AND PATHS
Let G = (V, E), and N = |V |. The graph can either be directed
or undirected; our method of solution will not change. The
Hamiltonian path problem is as follows: starting at some node
in the graph, can one travel along an edge, visiting other nodes in
the graph, such that one can reach every single node in the graph
without ever returning to the same node twice? The Hamiltonian
cycles problem asks that, in addition, the traveler can return to
the starting point from the last node he visits. Hamiltonian cycles
is a generalization of the famous Königsberg bridge problem [24],
and is NP-complete [18].

Without loss of generality, let us label the vertices 1, . . . , N,
and take the edge set (uv) to be directed—i.e., the order uv mat-
ters. It is trivial to extend to undirected graphs, by just considering
a directed graph with (vu) added to the edge set whenever (uv) is
added to the edge set. Our solution will use N2 bits xv,i, where
v represents the vertex and i represents its order in a prospec-
tive cycle. Our energy will have three components. The first two
things we require are that every vertex can only appear once
in a cycle, and that there must be a jth node in the cycle for
each j. Finally, for the nodes in our prospective ordering, if xu,j

and xv,j + 1 are both 1, then there should be an energy penalty if
(uv) /∈ E. Note that N + 1 should be read as 1, in the expressions
below, if we are solving the cycles problem. These are encoded in
the Hamiltonian:

H = A
n∑

v = 1

⎛
⎝1 −

N∑
j = 1

xv,j

⎞
⎠

2

+ A
n∑

j = 1

(
1 −

N∑
v = 1

xv,j

)2

+ A
∑

(uv) /∈ E

N∑
j = 1

xu,jxv,j+1. (56)

A > 0 is a constant. It is clear that a ground state of this system has
H = 0 only if we have an ordering of vertices where each vertex is
only included once, and adjacent vertices in the cycle have edges
on the graph—i.e., we have a Hamiltonian cycle.

To solve the Hamiltonian path problem instead, restrict the last
sum over j above from 1 to N − 1; we do not care about whether
or not the first and last nodes are also connected. N2 spins are
required to solve this problem.

It is straightforward to slightly reduce the size of the state space
for the Hamiltonian cycles problem as follows: it is clear that node
1 must always be included in a Hamiltonian cycle, and without
loss of generality we can set x1,i = δ1,i: this just means that the
overall ordering of the cycle is chosen so that node 1 comes first.
This reduces the number of spins to (N − 1)2.

7.2. TRAVELING SALESMAN
The traveling salesman problem for a graph G = (V, E), where
each edge uv in the graph has a weight Wuv associated to it, is

to find the Hamiltonian cycle such that the sum of the weights
of each edge in the cycle is minimized. Typically, the traveling
salesman problem assumes a complete graph, but we have the
technology developed to solve it on a more arbitrary graph. The
decision problem (does a path of total weight ≤ W exist?) is
NP-complete [18].

To solve this problem, we use H = HA + HB, with HA the
Hamiltonian given for the directed (or undirected) Hamiltonian
cycles problem. We then simply add

HB = B
∑

(uv) ∈ E

Wuv

N∑
j = 1

xu,jxv,j+1. (57)

with B small enough that it is never favorable to violate the con-
straints of HA; one such constraint is 0 < B max(Wuv) < A (we
assume in complete generality Wuv ≥ 0 for each (uv) ∈ E). 11 If
the traveling salesman does not have to return to his starting posi-
tion, we can restrict the sum over j from 1 to N − 1, as before. As
with Hamiltonian cycles, (N − 1)2 spins are required, as we may
fix node 1 to appear first in the cycle.

8. TREE PROBLEMS
The most subtle NP problems to solve with Ising models are prob-
lems which require finding connected tree subgraphs of larger
graphs. 12 Because determining whether a subgraph is a tree
requires global information about the connectivity of a graph,
we will rely on similar tricks to what we used to write down
Hamiltonian cycles as an Ising model.

8.1. MINIMAL SPANNING TREE WITH A MAXIMAL DEGREE
CONSTRAINT

The minimal spanning tree problem is the following: given an
undirected graph G = (V, E), where each edge (uv) ∈ E is asso-
ciated with a cost cuv, what is the tree T ⊆ G, which contains all
vertices, such that the cost of T, defined as

c(T) ≡
∑

(uv) ∈ ET

cuv, (58)

is minimized (if such a tree exists)? Without loss of generality, we
take cuv > 0 in this subsection (a positive constant can always be
added to each cuv ensure that the smallest value of cuv is strictly
positive, without changing the trees T which solve the problem).
We will also add a degree constraint, that each degree in T be ≤
�. This makes the problem NP-hard, with a corresponding NP-
complete decision problem [18].

To solve this problem, we place a binary variable ye on
each edge to determine whether or not that edge is included
in T:

11One can also encode graph structure by assuming a complete graph (this
allows one to neglect the third term in HA), but choosing the weights of the
“non-existent” edges to obey Wuv /∈ E ≥ N max(Wuv ∈ E). As Wuv is not defined
if (uv) /∈ E, these are in fact two identical interpretations.
12A tree is a graph with no cycles. A cycle is set of vertices v1, . . . , vn with
(v1v2), . . . , (vn−1vn), (vnv1) ∈ E. It is easy to check that if (V, E) is a tree,
|E| = |V | − 1.
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ye ≡
{

1 e ∈ ET

0 otherwise
. (59)

We also place a large number of binary variables xv,i on each
vertex, and xuv,i, xvu,i on edge (uv) (these are distinct spins):
the number i = 0, 1, . . . , N/2 will be used to keep track of the
depth a node in the tree, and if xuv = 1, it means that u is closer
to the root than v, and if xvu = 1 it means that v is closer to
the root. Finally, we use another variable zv,i (i = 1, . . . �) to
count the number of degrees of each node. We now use energy
H = HA + HB, where the terms in HA are used to impose the con-
straints that: there is exactly one root to the tree, each vertex has
a depth, each bond has a depth, and its two vertices must be at
different heights, the tree is connected (i.e., exactly one edge to a
non-root vertex comes from a vertex at lower depth), each node
can have at most � edges, and each edge at depth i points between
a node at depth i − 1 and i, respectively:

HA = A

(
1 −

∑
v

xv,0

)2

+ A
∑

v

(
1 −

∑
i

xv,i

)2

+ A
∑

uv ∈ E

(
yuv −

∑
i

(xuv,i + xvu,i)

)2

+ A
∑

v

N/2∑
i = 1

⎛
⎝xv,i −

∑
u:(uv) ∈ E

xuv,i

⎞
⎠

2

+ A
∑

v

⎛
⎝ �∑

j = 1

jzv,j −
∑

u:(uv) ∈ E

∑
i

(xuv,i + xvu,i)

⎞
⎠

2

+ A
∑

(uv),(vu) ∈ E

N/2∑
i = 1

xuv,i(2 − xu,i−1 − xv,i) (60)

The ground states with HA = 0 are trees which include every ver-
tex. In the last term in the sum, remember that xuv,i and xvu,i are
both spins that are included for each edge; the notation in the
summation is meant to remind us of this. We then add

HB = B
∑

uv,vu ∈ E

N/2∑
i = 1

cuvxuv,i. (61)

In order to solve the correct problem, we need to make sure that
we never remove any xuv,i from HB in order to have a more nega-
tive total H. As each constraint in HA contributes an energy ≥ A if
it is violated, we conclude that setting 0 < B max(cuv) < A is suf-
ficient. The minimum of E will find the minimal spanning tree,
subject to the degree constraint.

The number of spins required is |V |(|V | + 1� + 2)/2 +
|E|(|V | + 1) + |V |1 + log ��. The maximal possible number of
edges on any graph is |E| = O(|V |2), so this Ising formulation
may require a cubic number of spins in the size of the vertex set.

8.2. STEINER TREES
The NP-hard [18] Steiner tree problem is somewhat similar to
the problem above: given our costs cuv, we want to find a mini-
mal spanning tree for a subset U ⊂ V of the vertices (i.e., a tree
such that the sum of cuvs along all included edges is minimal).
We no longer impose degree constraints; the problem turns out
to be “hard” already, as we now allow for the possibility of not
including nodes which are not in U .

To solve this by finding the ground state of an Ising model,
we use the same Hamiltonian as for the minimal spanning
tree, except we add binary variables yv for v /∈ U which deter-
mine whether or not a node v is included in the tree. We use
the Hamiltonian H = HA + HB, where HA enforces constraints
similarly to in the previous case:

HA = A

(
1 −

∑
v

xv,0

)2

+ A
∑
v ∈ U

(
1 −

∑
i

xv,i

)2

+ A
∑
v /∈ U

(
yv −

∑
i

xv,i

)2

+ A
∑

v

N/2∑
i = 1

⎛
⎝xv,i −

∑
(uv) ∈ E

xuv,i

⎞
⎠

2

+ A
∑

uv,vu ∈ E

N/2∑
i = 1

xuv,i(2 − xu,i − 1 − xv,i)

+ A
∑

uv ∈ E

(
yuv −

∑
i

(xuv,i + xvu,i)

)2

(62)

We then use HB from the previous model to determine the mini-
mum weight tree; the same constraints on A/B apply. The number
of spins is |V |(|V | + 1� + 4 + 2|E|)/2 + |E|.
8.3. DIRECTED FEEDBACK VERTEX SET
A feedback vertex set for a directed graph G = (V, E) is a subset
F ⊂ V such that the subgraph (V − F, ∂(V − F)) is acyclic (has
no cycles). We will refer to F as the feedback set. Solving a decision
problem for whether or not a feedback set exists for |F| ≤ k is NP-
complete [18]. We solve the optimization problem of finding the
smallest size of the feedback set first for a directed graph—the
extension to an undirected graph will be a bit more involved.

Before solving this problem, it will help to prove two lemmas.
The first lemma is quite simple: there exists a node in a directed
acyclic graph which is not the end point of any edges. Suppose
that for each vertex, there was an edge that ends on that vertex.
Then pick an arbitrary vertex, pick any edge ending on that ver-
tex, and follow that edge in reverse to the starting vertex. Repeat
this process more than N times, and a simple counting argument
implies that we must have visited the same node more than once,
at least once. Thus, we have traversed a cycle in reverse, which
contradicts our assumption.

The second lemma is as follows: a directed graph G = (V, E)

is acyclic if and only if there is a height function h : V → N such
that if uv ∈ E, h(u) < h(v): i.e., every edge points from a node at
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lower height to one at higher height. That height function exis-
tence implies acyclic is easiest to prove using the contrapositive:
suppose that a graph is cyclic. Then on a cycle of edges, we have

0 <
∑

[h(ui + 1) − h(ui)] = h(u1) − h(un) + h(un)

− h(un−1) + · · · − h(u1) = 0 (63)

is a contradiction. To prove that an acyclic graph has a height
function, we construct one recursively. Using our first lemma, we
know that there exists a vertex u with only outgoing edges, so let
us call h(u) = 1. For any other vertex, we will call the height of
that vertex h(v) = 1 + h′(v), where h′(v) is found by repeating
this process on the graph with node u removed (which must also
be acyclic). It is clear this process will terminate and assign exactly
one node height i for each integer 1 ≤ i ≤ |V |.

We can now exploit this lemma to write down an Ising spin
formulation of this problem. We place a binary variable yv on each
vertex, which is 0 if v is part of the feedback set, and 1 otherwise.
We then place a binary variable xv,i on each vertex, which is 1 if
vertex v is at height i. So far the heights i are arbitrary, and the
requirement that a height function be valid will be imposed by
the energy. The energy functional we use is H = HA + HB where

HA = A
∑

v

(
yv −

∑
i

xv,i

)2

+ A
∑

uv ∈ E

∑
i ≥ j

xu,ixv,j. (64)

The first term ensures that if a vertex is not part of the feedback
set, it has a well-defined height; the second term ensures that an
edge only connects a node with lower height to a node at higher
height. We then find the smallest possible feedback set by adding

HB = B
∑

v

(1 − yv). (65)

In order to solve the correct problem, we cannot add too few
nodes to the feedback set. If we set yv = 1 for a node which should
be part of the feedback set, we find an energy penalty of A from
HA, and a gain of B from HB. We conclude that B < A is sufficient
to ensure we solve the correct problem. We see that |V |(|V | + 1)

spins are required.

8.4. UNDIRECTED FEEDBACK VERTEX SET
The extension to undirected graphs requires a bit more care. In
this case, we have to be careful because there is no a priori dis-
tinction on whether the height of one end of an edge is smaller
or larger than the other—this makes the problem much more
involved, at first sight. Furthermore, it is not true that a directed
acyclic graph is acyclic if the orientation of edges is ignored.
However, for an undirected graph, we also know that a feed-
back vertex set must reduce the graph to trees, although there
is no longer a requirement that these trees are connected (this is
called a forest). With this in mind, we find that the problem is
actually extremely similar to minimal spanning tree, but without
degree constraints or connectivity constraints. The new subtlety,
however, is that we cannot remove edges.

To solve this problem, we do the following: introduce a binary
variable xv,i, which is 1 if v is a vertex in any tree (anywhere in
the forest) at depth i, and 0 otherwise. However, to account for
the fact that we may remove vertices, we will allow for yv = 1 if v
is part of the feedback vertex set, and 0 otherwise. We do a simi-
lar thing for edges: we consider xuv,i, xvu,i to be defined as before
when i > 0. We also define the variables yuv, yvu, which we take to
be 1 when the ending node of the “directed” edge is in the feed-
back vertex set. Now, we can write down a very similar energy to
the minimal spanning tree:

HA = A
∑

v

(
1 − yv −

∑
i

xv,i

)2

+ A
∑

uv ∈ E

(
1 −

∑
i

(xuv,i + xvu,i + yuv + yvu)

)2

+ A
∑

uv ∈ E

(yuv − yv)
2 + A

∑
v

∑
i > 0

⎛
⎝xv,i −

∑
u:uv ∈,E

xuv,i

⎞
⎠

2

+ A
∑

uv,vu ∈ E

∑
i > 0

xuv,i(2 − xu,i − 1 − xv,i) (66)

The changes are as follows: we no longer constrain only 1 node to
be the root, or constrain the degree of a vertex—however, we have
to add a new term to ensure that edges are only ignored in the tree
constraint if they point to a node in the feedback set. We then add

HB = B
∑

v

yv (67)

with B < A required so that the A constraints are never violated.
This counts the number of nodes in the feedback set, so thus H
is minimized when HB is smallest—i.e., we have to remove the
fewest number of nodes. The number of spins required is (|E| +
|V |)�(|V | + 3)/2�13.

The recent paper [54] has a more efficient implementation of
a mapping, for use in understanding random ensembles of this
problem by the replica method. Unfortunately, this technique is
not efficient for AQO; the Hamiltonian contains N-body terms.

8.5. FEEDBACK EDGE SET
For a directed graph, the feedback edge set problem is to find
the smallest set of edges F ⊂ E such that (V, E − F) is a directed
acyclic graph. It is known to be NP-hard [18]14. Our solution will
be somewhat similar to the directed feedback vertex set. We place
a binary variable yuv on each edge, which is 1 if uv /∈ F, and define
xuv,i to be 1 if both yuv = 1 and the height of node u is i. We also
add a binary variable xv,i, as for the feedback vertex set. Our con-
straint energy must then enforce that: each vertex and included
edge has a well-defined height, and that each edge points from a

13This follows from the fact that the sum over is is �(|V | + 1)/2�; then we
account for the ys.
14It is in P if the graph is undirected however.

Frontiers in Physics | Interdisciplinary Physics February 2014 | Volume 2 | Article 5 | 12

http://www.frontiersin.org/Interdisciplinary_Physics
http://www.frontiersin.org/Interdisciplinary_Physics
http://www.frontiersin.org/Interdisciplinary_Physics/archive


Lucas Ising formulations of many NP problems

lower height to a higher height:

HA = A
∑

v

(
1 −

∑
i

xv,i

)2

+ A
∑

uv ∈ E

(
yuv −

∑
i

xuv,i

)2

+ A
∑
uv

∑
i

xuv,i

⎛
⎝2 − xu,i −

∑
j > i

xv,j

⎞
⎠ . (68)

We then use

HB = B
∑

uv ∈ E

(1 − yuv) (69)

to count the number of edges in F—it is minimized when this
number is smallest. As before, one needs B < A to encode the
correct problem. The number of spins required is |E| + |V |
(|V | + |E|).

9. GRAPH ISOMORPHISMS
Graphs G1 and G2, with N vertices each, are isomorphic if there
is a labeling of vertices 1, . . . , N in each graph such that the
adjacency matrices for the graphs is identical. More carefully:
any graph G = (V, E), with vertices labeled as 1, . . . , N, has an
N × N adjacency matrix A with

Aij =
{

1 (ij) ∈ E,

0 (ij) /∈ E.
, (70)

which contains all information about the edge set E. Let A1,2

be the adjacency matrices of graphs G1,2. If there is a permu-
tation matrix P such that A2 = PTA1P, then we say G1,2 are
isomorphic.

The question of whether two graphs G1 = (V1, E1) and G2 =
(V2, E2) are isomorphic is believed to be hard, but its classi-
fication into a complexity class is still a mystery [55]. Since
it is (in practice) a hard problem, let us nonetheless describe
an Ising formulation for it. An isomorphism is only possible
if |V1| = |V2| ≡ N, so we will restrict ourselves to this case,
and without loss of generality, we label the vertices of G1 with
1, . . . , N.

We write this as an Ising model as follows. Let us describe a
proposed isomorphism through binary variables xv,i which is 1 if
vertex v in G2 gets mapped to vertex i in G1. The energy

HA = A
∑

v

(
1 −

∑
i

xv,i

)2

+ A
∑

i

(
1 −

∑
v

xv,i

)2

(71)

ensures that this map is bijective. We then use an energy

HB = B
∑

ij /∈ E1

∑
uv ∈ E2

xu,ixv,j + B
∑

ij ∈ E1

∑
uv /∈ E2

xu,ixv,j (72)

to penalize a bad mapping: i.e., an edge that is not in G1 is in G2,
or an edge that is in G1 is not in G2. As usual, assume A, B > 0.

If the ground state of this Hamiltonian has H = 0, there is an
isomorphism. N2 spins are required.

An approximate algorithm that uses quantum annealing to
distinguish between non-isomorphic graphs via the spectra
of graph-dependent Hamiltonians was presented in Hen and
Young [56].

10. CONCLUSION
The focus of research into AQO has essentially been on NP-
complete/hard problems, because the Ising model is NP-hard,
and because computer scientists have struggled to find efficient
ways of solving these problems. In this paper, we have pre-
sented strategies for mapping a wide variety of NP problems
to Ising spin glasses, exemplified by a demonstration of a glass
for each of Karp’s 21 NP-complete problems. It is an open
question the extent to which AQO will help provide efficient solu-
tions for these problems, whether these solutions are exact or
approximate.

However, physicists are interested in building a universal quan-
tum computer which is capable of solving much more than just
Ising models. As an example, a universal quantum computer
would also reduce the time for searching an unsorted list of
N items from O(N) to O(

√
N) [57]. This would be incredibly

useful for many practical applications, despite the fact that search-
ing is an easy linear time algorithm. Analogously, it may be the
case that there exists a family of “easy” problems which AQO
can solve in polynomial time, yet more efficiently than a classi-
cal polynomial time algorithm. This statement may even be true
with Ising-implementing AQO hardware, although if so it is not
obvious.

It is certainly the case that an AQO-implementing device can
be used to solve easy problems. Consider the simple problem of
finding the largest integer in a list n1, . . . , nN (this is the search-
ing algorithm that a universal quantum computer can perform
efficiently). Introducing binary variables xi for i = 1, . . . , N, the
Ising model

H = A

(
1 −

∑
i

xi

)2

− B
∑

i

nixi (73)

for A > B max(ni) solves this problem. In fact, this problem looks
somewhat like an instance of the random field Ising model on
a complete graph, and yet this has a very simple O(N) clas-
sical algorithm. It would surely take longer to program this
algorithm into a quantum device than to solve the problem
itself.

The above example demonstrates that sometimes the “hard-
ness” of a problem can be deceptive—one can phrase something
that is easy in a way which makes it seem hard. It is worth dis-
cussing more closely the hardness of NP problems, because it
turns out that sometimes, NP problems can be easier than they
first appear. To be NP-complete but not P (if P �= NP) one only
needs a small family of instances of the problem to be unsolv-
able in polynomial time by a deterministic algorithm. However,
typical instances may not be so hard. Many popular NP prob-
lems can almost surely be solved exactly in polynomial time on
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large random instances [58, 59] 15, and there exist randomized
algorithms for some NP problems which can get arbitrarily close
to a solution with arbitrarily low failure probability in polynomial
time [60, 61] (though multiplicative coefficients or polynomial
exponents must diverge as the failure probability and/or error on
determining the ground state tends to zero, if P �= NP). In addi-
tion, popular algorithms in P, like matrix decomposition, may
serve as the bottlenecks of practical computations, and should not
be thought of as “easy”. Typical instances approach the asymptotic
bounds on worst-case runtimes, in contrast to the case for some
NP problems; many recent developments focus on randomized
algorithms [62–64].

The Hamiltonians of this paper may be deceptively “hard”—
this can mean that they involve too many spins. Another pos-
sibility is that these Hamiltonians have small spectral gaps, and
that alternative choices have much larger spectral gaps—this is a
question we have not addressed at all in this paper. Studying how
to simplify quantum algorithms, and more importantly increase
energy gaps (and thus reduce T), even by constant factors, is a
much needed endeavor.
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