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Abstract:The primary goal of any adaptive system that 
learns by example is to generalize from the training 

• 

examples to novel inputs. Empirically, back-propagation 
networks can sometimes generalize better when they 
contain a hidden layer that has significantly fewer units 
than previous layers. The functional properties of such 
hidden layer bottlenecks are described, and a method for 
dynamically producing them, concurrent with 
back-propagation learning, is explicated. The method does 
not remove hidden units; rather, it forms clusters of 
covariant units in a low-dimensional space. The result is a 
functional bottleneck distributed across many units. The 
method is a gradient descent procedure, using local 
computations on simple lateral, Hebbian connections 
between hidden units. 

•• 

1. Bottlenecks improve generalization 

The primary goal of any scheme for learning by example is to 
generalize from the training examples to novel inputs. In par
ticular, the back-propagation learning algorithm [ 1] for feed
forward neural networks has enjoyed great popularity for its 
simplicity and for its landmark successes at generalization 
(e.g. NETtalk, see [2,3]). It has been observed that generaliza
tion in back-propagation networks can sometimes be im
proved when a hidden layer bottleneck is imposed; i.e., a layer 
with relatively fewer units than previous layers (see [ 4-12]). 
There may be many ways besides bottlenecks to constrain the 
possible types of mappings from input to output, in order to 
improve generalization. The point of this paper is not to argue 
that bottlenecks are always the best constraint. Rather, the 
premise is that bottlenecks are beneficial in at least some 
cases. This paper analyzes their functional properties, and 
proposes a new method for creating functional bottlenecks 
distributed across a large hidden layer. 
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2. Local bottlenecks. 

Insofar as bottlenecks are desirable to improve generaliza
tion, one might simply initialize the network with a small 
hidden layer. But such an approach is undesirable for three 
reasons. First, for most applications, one simply does not 
know, in advance, the minimal number of hidden units 
necessary to reach criteria! error. If one initializes the network 
with too few units, it will not achieve sufficiently small 
asymptotic error. Second, even if one does know the minimal 
number of hidden units needed and initializes the network 
with that number, it is more likely that gradient-descent learn
ing will encounter local minima or plateaux on the error sur
face (e.g. the XOR problem with two hidden units). Third, 
bottlenecks increase noise and damage ·sensitivity. The fewer 
units there are, the greater is the demand for high accuracy and 
precision in each unit and in the input patterns . 

The first two problems can be addressed by initializing the 
network with many hidden units, and progressively excising 
units as learning proceeds. One method using that approach 
was introduced by Kruschke [ 13], and improved in Kruschke 
and Rodriguez-Movellan [14]. In that method, hidden units 
compete for the right to participate in the hidden layer repre
sentation. The more similar or redundant two hidden units are, 
the more strongly they compete. Computations are local, 
using simple lateral, Hebbian connections. The result is a 
hidden layer in which only a few, relatively uncorrelated units 
remain. By linking the competition rate to the rate at which 
error decreases, it was also found that new hidden units could 
be recruited from the pool of unused units. If the error was not 
decreasing (i.e. learning had stalled), competition was re
laxed, allowing new units to participate. When error again 
began to decrease, stronger competition would suppress all 
but a few new, dissimilar units. 

Other methods for excising hidden units have been inde
pendently suggested by Chauvin [15], Hanson and Pratt [5], 
Mozer and Smolensky [7], Rumelhart [9], and Sietsma and 
Dow [10]. Only one of those methods (Sietsma and Dow), is 
explicitly designed to excise redundant units, but it gives no 
method for deciding when a set of units contains sufficient 
redundancy for removing some units, nor a method for decid
ing which of the redundant units to remove. 

All of those methods are motivated by the goal of minimal 
hardware. They all create a bottleneck by de-activating units, 
i.e. pieces of hardware. The resulting bottleneck is localized 
in the few remaining units. But as more information must be 
passed through fewer units, each unit must make finer dis
criminations and carry infmmation complementary to other 
units. Thus, these localized hardware bottlenecks do not ad
dress the third problem mentioned above, the increase in 
noise and damage sensitivity. 

3. Distributed bottlenecks 

An alternative motivation is to reproduce the functional 



properties of a bottleneck without reproducing its hardware 
properties [13]. To do that, we must decide just what func
tional properties are important. Explanations as to why bottle
necks improve generalization usually reflect one of three 
functional properties: complexity reduction, dimensionality 
reduction, or reduction in the number of possible mappings 
from input to output. 

The first functional property, regarding complexity, is nicely 
expressed by Wieland and Leighton [11]. They suggest that 
'viewing learning as curve fitting then allows us to see that 
generalization ... is simply the effect of a good non-linear in
terpolation of the data' (p.III-389). They argue that better 
generalization comes from smoother network mappings, and 
that smoother network mappings come from. fewer units. 
Therefore, better generalization results from fewer units, to 
the same extent that better interpolation results from 
smoother data-fitting curves. Hanson and Pratt [5] corrobor
ate: 'as a result of too many hidden units the underlying fea
ture relations deteimining the output surface and category 
separation are arbitrary, more complex than necessary, and 
may result in anomalous generalizations' (italics added). 

The second functional property, regarding dimensionality 
reduction, has been mentioned by many researchers (see [6, 
12, 16-19]). Each unit of a hidden layer is, potentially, an 
independent dimension of variation on which to represent the 
(transformed) input. With fewer units in a bottleneck, some 
dimensions of variation in the previous layer are lost; only 
those dimensions most important for reducing error are re
tained in the bottleneck layer. 

The third functional property, regarding the number of 
possible mappings from input to output, is described by 
Wittner et al [ 4]. They remind us that the training data usually 
leave the network underconstrained, and that there are usually 
a huge number of possible generalizations from a given train
ing set. The more hidden units we supply to the network, the 
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more possible generalizations there are. In order to train a · 
large network to yield a particular generalization, we must 
either supply it with a huge training set, or reduce the number 
of hidden units. (Related ideas are expressed by Pavel et a! 
[8], and by Psaltis and Neifeld [20].) 

These properties can be better understood by considering 
two layers of a feed-forward network (see Figure 1). Suppose 
that layers had Ns units, layers- I has Ns- 1 units, and that the 
Ns x Ns-! weight matrix connecting them, W, has rank R. 
(Here we make the usual assumptions that activation flows 
forward from layer s-1 to layers, that the activation of a unit is 
a non- linear, sigmoidal function of its net input, and that the 
net input of a unit is the dot product of its weight vector with 
the activation vector of the previous layer.) Let V be an R X 

Ns-1 matrix with rows that fm m a basis for the row space ofW. 
Then there exists aN 5 x R matrix U such that W = UV. This is 
equivalent to supplying a 'virtual basis layer' of R linear units 
between layer s and layer s-1, such that the weight matrix 
from layer s-1 to the basis layer is V, and the weight matrix 
from the basis layer to layers is U. Activation vectors in layer 
s all lie on an R-dimensional manifold in Ns -dimensional 
space. The manifold is generally not a hyperplane, because of 
the non-linear activation functions. 

DEFINITIONS: We say layer s fonns a bottleneck if R 
<Ns-J. We say layers fmms a local bottleneck if N5= R < Ns-J. 
We say layers forms a distributed bottleneck if Ns >R < Ns-1-
Note that we could haveNs >Ns-J, yet still have a bottleneck. 

The important point is that generalization is affected by both 
small Ns and small R, in different ways. When R < Ns-!, the 
(N s-1 )-dimensional activation vectors of s-1 are projected into 
an R- dimensional subspace. We then have complete generali
zation over the complementary Ns-! - R dimensions, because 
no variation in the complementary dimensions can lead to any 
variation in the R-dimensional representation. In terms of 
curve fitting, the curve is perfectly smooth (flat) in those com-

Weight matrix U 

Virtual layer of 
R linear units 

Weight matrix V 

Figure 1. The weight matrix W connecting two layers can be decomposed into two matrices of rank R. Generalization is 
affected in different ways by small N 5 and small R. See text for details. 
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plementary directions. The number of units, Ns. in layer s 
deteunines the maximal complexity of regions that can be 
distinguished in the remaining R dimensions. In tenns of 
curve fitting, a smaller Ns means fewer possible 'bumps' in 
the mapping from the R dimensions. Moreover, the maximal 
number of possible mappings from layer s-1 to layers is re
duced when R is small, because the weights in the mapping 
matrix W are constrained. 

So, to improve generalization by creating a functional 
bottleneck, we want to do two things: (1) decrease the func
tional dimensionality R of the weight matrix W; and (2) de
crease the functional number of units in layer s. These goals 
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do not necessarily imply excising units, as done by the meth-
ods for creating local bottlenecks described earlier. Rather, 
the goals imply that we should (1) dynamically compress the 
weight vectors (rows ofW) into a low dimensional space and 
(2) cluster the vectors within that low dimensional space. 

There are potentially many ways of achieving those goals. I 
have worked under two constraints on the choice of method: 
it should be describable as gradient descent on some objective 
function, and it should be locally computable in a network. 

4. Shepard's method.· 

A method for compressing the dimensionality of a set of vec
tors, and simultaneously clustering them, was described by 
Shepard [21]. He motivated his algorithm by arguing that 
' ... the way to flatten a configuration into a space of smaller 
dimensionality is to increase the variance of the distances 
by further stretching those distances that are already large 
and by further shrinking those distances that are already 

, s s s T l small (p. 131). Let w := [w.
1 

., .•. ,w .N ] be the co umn 
I I I 

vector of fan-in weights connecting theN units of layer s-1 
to the i1h unit of layers. (While the typographical difference 
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between wi. and W:jiS slight, it is important. The first denoteS 

a vector of fan-in weights; the second denotes the /h compo
nent of that vector.) Denote the distance between vectors by 

d 5.~ w 5 
- w-' II- The mean distance is denoted d5

• Then for each 
I) I j 

vector w 5
, we shift it by an amount 

I 

B 
""" - (w;- Wj) 

.6.w; oc L)dij -d) d·. · . 
. 1) 

J 
(1) 

(Here and throughout the remainder of this paper, the super
script denoting the layer will be suppressed whenever 
possible. Layers is assumed unless otherwise marked.) Thus 
if dij > d, then Wi tends to be shifted away from Wj, and if 
dij < d, then w i tends to be shifted toward Wj. After each shift, 
the vectors are re-centered so that their centroid is zero, and 
they are re-scaled so that their mean separation, d, is a pre
defined constant. Without re-scaling, the vectors will 'ex
plode', i.e. become infinitely long. 

A slight variant of equation (l) was applied directly, in con
junction with back-propagation learning, by Kruschke [13]. 
While the results were encouraging, the method was unsatis
factory for two reasons: It was not explicitly gradient descent, 
so its stability was questionable, and it was not locally com
putable (although some parts of it were), so its network im
plementation was doubtful. Those two problems are resolved 
presently. 

While Shepard never explicitly described his algorithm as 
gradient descent on the variance of the distances, he might 
have had in mind something like the following. Let 

1 B,B 2 

D = -- """ (d · · - (1\ - 4 .L... IJ u) 
• • 

(2) 
',) 

where 

and 

(Herellxll = 
Then 

L x~ denotes the Euclidean norm of x.) 
n 

fJD B 

W[ j Jj 
(3) 

(See the Appendix for notes on the derivation.) Equations 
(1) and (3) are, of course, the same. Maximal variance tech
niques are further discussed in Cunningham & Shepard [22]. 

Even though we haye been able to re-express Shepard's 
method as a gradient descent procedure, it remains unclear 
how to compute it in a network. The algorithm demands com
puting the global mean distance, d, and some way of multi
plying corresponding du and Wfn - Wjn. We seek something 
like Shepard's method that not only is nicely expressed as 
gradient descent, but also is locally computable in a network. 

To achieve that goal it is helpful to abstract the essential 
properties of the method, so that they might be realized other 
ways. The key property of the algorithm is that it increases the 
variance of the separations of the vectors. The vectors are then 
re-centered and re-scaled so that they do not explode. We 
should retain those essentials, but we are then free to define 
the separation of vectors any way that is sensible, and free to 
keep the vectors from exploding in any reasonable way. 

5. A new method 

Define the 'distance' between two weight vectors w5 and w5 

as follows: 

dii = L netipnetjp 
p 

I } 

(4) 
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where net 5 pis the net input to unit ion pattern p, and the sum 
rp 

is taken over all training patterns in an epoch. It is convenient 
to express the net input as the inner product of the unit's fan-in 
weight vector with the activation vector of the layer below, 

5 5 5 1 s-1 s-i s-i]T · h 1 net. =(w.,a-- ),wherea =[a .... ,aN 1st ecoumn 
rp r p p ip p 

vector of activations of the units oflayer s-1 for patternp. The 
newly defined dij, essentially the covariance of the net inputs, 
does not satisfy all the distance axioms. It is symmetric, but it 
is not positive definite and does not satisfy the triangle in
equality. However, it does describe the similarity of the units. 

We defineD as in equation (2), where the sum is taken over 
all units in the bottleneck layer. Then (see the Appendix for 
notes on derivation) 

That is a bit of an improvement over equation (3), but we still 
must compute the global mean con variance d. However, if we 
can force d to be zero, then the expression is significantly 
simplified. (It makes no sense to force the average distance 
between vectors to be zero, for then all the weight vectors 
would have zero length. But with the new definition of dij as 
covariance in equation (4), some 'distances' are negative, so 
forcing d to be zero is quite acceptable.) 

As a step toward the goal of forcing the global mean distance 
to zero, note that if 

1 B 

w = B 2::: W; = 0, 

' 

then d = 0, as follows: 
B,B 

-d 1 ~ "-'( •-1)( s-1) =: B 2 L....t L wk,ap w1,ap 
k ,I p 

= I':(w, a~-1 )2 

p 

= 0. 

So now the goal is to make w = 0, and that is easy. Simply do 
very fast gradient descent on 

(6) 

The change in the weight W!J due to gradient descent on M is 
proportional to the negative of the average fan-out weight 
from unit J in layer s-1: 

1 B 

oc- B LWkJ· 
k 

(7) 

The average fan-out weight is locally computable, since 
each unit has direct access to all its fan-out weights. By equa
tion (7), each weight tends toward a value that makes the 
average fan-out weight closer to zero. If we do very rapid 
gradient descent, using a proportionality constant of 1, we get 
to zero in one update (since trajectories are linear in this case). 

With d = 0, equation (5) becomes the following simple ex
pression for weight change due to dimensional compression: 

(8) 
• 

J 

Now that requires only simple lateral connections between 
units with the value d!j as .. their connection strength (see 
Figure 2). The value of d!j' is obtained by simple Hebbian 
learning during an epoch, as in equation (4). The lateral con
nections do not participate in the forward propagation of acti
vation, nor in the backward propagation of error. 

Like the back-propagation learning rule, the weight change 
rule in equation (8) confonns to the 'principle of minimal 
disturbance' [23]. Weight vectors are changed only parallel to 
the current activation vector. If two units have positive covari
ance, then their weight vectors tend to move in the same direc-

tion (both parallel or anti parallel to as -i ). If two units have 
p 

negative covariance, then their weight vectors tend to move 
in opposite directions (one parallel, the other antiparallel, 
to as-! ). 

p 
We have only one more step. So far, the value of D can be 

made infinitely negative by increasing the magnitudes of the 
weights infinitely. We can prevent that by including standard 
weight decay. But we have already included a component of 
weight decay, the tenn M, in equations (6) and (7). M makes 
the mean weight vector tend toward zero. We must now also 
put a cost on the remaining component of weight magnitude, 
the variance of the weight vectors, V. The decomposition of 
weight decay is made explicit in the following fomtula: 

1 B 1 B 
B L llw; 112 = B L llw; - wll2 + llwll2 

• • 
1 • 

= V+M. 

Gradient descent on Vis also locally computable: 

8V 
LlvWJJ OC -

8 WJJ 

1 B 

oc B I': Wk]- W!J. 

k 

(9) 

(10) 

Each weight is pushed toward the average fan-out weight, 
which in this case is zero because we have done fast de
scent on M. Note that by adding equations (7) and ( 1 0) we get 
11wu o:: wu. the standard form of weight decay. 
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Figure 2. Lateral Hebbian connections between 
bottleneck units pen nit local computation of 
LjdiJnetjp in equation 8. See text for details. 

6. Multiple layers. 

The function D is defined for the particular layer we have 
designated as the bottleneck layer. In the previous section we 
computed the gradient of D with respect to weights fanning 
into the bottleneck layer (equation 8). But because the covari
ances which constituteD are defined in teuns of activations of 
lower layers, we can also compute the gradient of D with 
respect to weights in lower layers. 

Let nee = [net 5 
, ••• ,net 

8
5 {be the column vector of net 

p lp p 
input values in layers forpatternp. Let the activation of a unit 

be given by as= f(net :5 
). For purposes of the following deri-

lp lp 

vation, let s denote any layer below the bottleneck layer. 

Define 1} 5 = oD!onet 5 
• By chain rule: 

lp IP 

aD 
ow[ 

aD &net'+ 1 

-----:- p 
- 8nee+1 oa• p Ip 

8a[p 8net[p 
8net[p ow[ . 

Expanding each partial derivative yields: 

8D 
8wj /3•+1 /3•+1 

- - 1p '· · · '- Np 

f '( t' ) s-1 · ne Ip aP . 

• 
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In particular, the first three teons indicate that 

!3• _ ~f3•+1ws+1 
Jp- L._.. np ni 

n 

f' (net[p). 

That recursive formula for !) 5 is exactly the same fonnula 
/p 

used for back propagating the error gradient in back -propaga
tion learning. Therefore all we must do to back propagate 
oD!onet is inject!) into the error signal at the bottleneck layer, 
and then standard backward error propagation automatically 
carries it to lower layers. We detennined the value of!) at the 
bottleneck layer in equation (8), I)Jp =I. J d!J neljp. The modi
fied error signal at the bottleneck layer is simply I.p(D!p + I)Jp). 
where O!p is the error computed by standard back propagation 
for unit I on pattern p. 

Thus the gradient of D can be back propagated through 
lower layers using exactly the same machinery as back-pro
pagation of error. No lateral connections are needed in any 
layer other than the bottleneck layer, and the lower layer units 
do not need to compute any values other than those used in 
standard backward error propagation. 

7. Summary and discussion. 

Bottlenecks in hidden layers of back-propagation networks 
have been found to improve the generalization capabilities of 
the network, in at least some applications. It is desirable to 
reproduce the functional properties of a bottleneck without 
incurring the noise and damage sensitivity of localized hard
ware bottlenecks. Two important functional properties of a 
bottleneck are the dimensionality of its weight vectors and the 
number of dissimilar units it has. To decrease the dimension
ality of the weight vectors and cluster them within those 
dimensions, we do gradient descent on three terms, D, V, and 
M, with respect to connection weights. The D tenn is a 
measure of dimensionality and clustering. It is the (negative 
of the) variance of the separations of the vectors, with separ
ation defined as covariance of net input values (equation 4). 
The V and M tenns are orthogonal components of weight 
decay. Fast descent on the M teon causes the mean weight 
vector to be zero, and consequently greatly simplifies the ex
pression for gradient descent on D. The V term causes the 
variance of the weight vectors not to. grow too large, thereby 
preventing the weight vectors from 'exploding' under the in
fluence of the D tenn. All that is needed to make gradient 
descent on D strictly local is the inclusion of lateral connec
tions which have connection strengths given by simple Heb
bian learning over an epoch. The lateral connections do not 
participate in propagating activation or error. 

The decomposition of standard weight decay into two ortho
gonal components has not been previously noted (see, e.g. 
Kruschke [24]. In the present application the mean compo
nent, M, is decreased much more rapidly than the variance 
component, V. However, it is possible that this decomposition 
alone, without the dimensionality term D, could be useful for 
generalization, if we do slow descent on the mean and more 
rapid descent on the variance. The result would be a cluster of 
weight vectors around the norr-zero mean weight vector. Most 
likely, however, the training examples could not very easily 
be learned by a single cluster of weight vectors. 
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Gradient descent on D can also be computed for lower 
layers. The gradient of Dis simply injected into the error gra
dient at the bottleneck layer, arid is propagated back to lower 
layers using exactly the same machinery as backward error 
propagation. No lateral connections are needed in any layer 
but the bottleneck layer, and no new values need to be com
puted by lower layer units. Gradient descent on the V and M 
terms is carried out only in the bottleneck layer. 

It is important to note that the computations in the bottleneck 
layer itself do not depend on back-propagation, and that it is 
not necessary to propagate the gradient of D to lower layers. 
Therefore, this algorithm for creating distributed bottlenecks 
can be used in conjunction with any iterative learning algo
rithm (e.g. Boltzmann machine learning), not just backward 
error propagation. The procedure is the same in any case. 
With every update of the bottleneck connection weights due 
to learning, we also make an adjustment due to gradient de-

• 

scent on D, M, and V 
The process of concurrently performing dimensional com

pression and clustering with learning allows the selection of 
as many dimensions and clusters as needed. Of course, if the 
descent rate on D is too fast relative to the learning rate, then . 
too few dimensions and clusters will be formed to reach crite
ria! error on the training patterns. That can be avoided by 
dynamically adjusting the descent rate on D so that it is linked 
to the actual progress oflearning (errorreduction). Linking of 
descent rates to error reduction was successfully used by 
Kruschke and Rodriguez-Movellan [ 14] to create localized 
hardware bottlenecks. The linking operates as follows: if 
error reduction is slow, then the rate of dimensional com
pression and clustering is automatically reduced or even 
reversed (made negative), so that a new trajectory through 
weight space can be found, and error again begins to decrease. 

When gradient descent on D is reversed, there is a pressure 
on the units to uncluster themselves. Unclustering of units 
was used by Sandon and Uhr [25] to escape local minima. 
They tried several different heuristic formulae for uncluster
ing, all of which helped esc·ape local minima to varying de
grees. The method described here goes beyond their attempts 
by doing explicit gradient descent on a measure of clustering 
and dimensionality, D. 

A clustering technique for back-propagation networks was 
proposed by Psaltis and Neifeld [20], with the goal of improv
ing generalization. Their technique required the user to spec
ify in advance the number of clusters to be formed, unlike the 
method proposed here, which dynamically fauns as few clus
ters as possible during learning. Additionally, it is not at all 
clear how their technique might be implemented by local 
computations in the network, unlike the method proposed 
here, which requires only simple lateral, Hebbian connections 
in the bottleneck layer. 

The main point of this paper is that if one desires to impose a 
bottleneck in a network, then one sheuld consider creating a 
distributed bottleneck rather than a localized bottleneck. One 
method for creating distributed bottlenecks was described. 
The important issue of deciding which applications would 
benefit from bottlenecks is not addressed here, and is a topic 
for future research. 

Acknowledgments. 

I thank Steve Palmer for encouragement and use of his labor
atory computers. The author has been supported by a National 
Science Foundation Graduate Fellowship, and by The Berke
ley Fellowship for Graduate Study. 

References 

[ 1] D.E. Rumelhart, G.E. Hinton and R.J. Williams, 'Learn
ing representations by back-propagating errors', Na
ture, 323, 1986, pp. 533-536. 

[2] C.R. Rosenberg, 'Revealing the structure of NETtalk's 
internal representations', in Program of the Ninth An
nual Conference of the Cognitive Science Society, 
Seattle, WA, LEA, 1987, pp.537-554. 

[3] T.J. Sejnowski and C.R. Rosenberg, 'Parallel networks 
that learn to pronounce English text', Complex Systems. 
1, 1987, pp. 145-168. J. Denker, D. Schwartz, 

[4] B. Wittner, S. Solla, R. Howard, L. Jackel, and J. Hop
field, 'Large automatic learning, rule extraction, and 
generalization', Complex Systems, I, 1987, pp. 877-
922. 

(5] S.J. Hanson and L.Y. Pratt, 'Comparing biases for mini
mal network construction with back-propagation', in 
Proceedings of the IEEE Conference on Neural Infor
mation Processing Systems Natural and Synthetic, 28 
Nov-1 Dec. 1988, Denver, CO, Morgan Kaufmann, 
1989. 

[6] G.E. Hinton, 'Learning translation invariant recognition 
in a massively parallel networks', in G. Goos and J. 
Hartmanis (series eds.), Lecture Notes in Computer 
Science, vol. 258. Also in J.W deBakker, AJ. Nijman 
and P.C. Treleaven (volume eds.), Parallel Architectures 
and Languages Europe, Proceedings, Springer-Verlag, 
1987. 

[7] M.C. Mozer and P. Smolensky, 'Skeletonization: A tech
nique for trimming the fat from a network via relevance 
assessment', in Proceedings of the IEEE Conference on 
Neural Information Processing Systems Natural and 
Synthetic, 28 Nov.-1 Dec. 1988. Denver, CO, Morgan 
Kaufmann, 1989. 

[8] M. Pavel, M. Gluck and V. Henkle, 'Generalization by 
humans and multi-layer adaptive networks' in Proceed
ings of the IEEE Conference on Neural Information 
Processing Systems Natural and Synthetic, Denver, 
CO, 28 Nov.-1 Dec. 1988. San Mateo, CA: Morgan 
Kaufmann, 1988. 

[9] D.E. Rumelhart, Lecture, 22 June 1988, Connectionist 
Models Summer School. Carnegie-Mellon University, 
Pittsburgh, PA. Related notes can be found in Kruschke 
[24 ]. 

[ 1 0] J. Sietsma and R.J.F. Dow, 'Neural net pruning Why 
and how', in Proceedings of the IEEE International 
Conference on Neural Networks, San Diego, CA, 24--27 

192 ----------------------------Neural Networks, Vol. 1, No.3, July 1989 



July 1988, IEEE Service Center, vol. I, pp. 325-333, 
1988. 

[ 11] A. Wieland and R. Leighton, 'Geometric analysis of 
neural network capabilities', in: Proceedings of the 
IEEE First International Conference on Neural Net
works, San Diego, CA, 21-24 June 1987, IEEE Service 
Center, v.III, pp. 385-392, 1987. 

[ 12] H. Yang and C. C. Guest, 'Perfo1nnmance ofbackpropaga
tion for rotation invariant pattern recognition', in Pro
ceedings of the IEEE First International Conference on 
Neural Networks, San Diego, CA, 21-24 June 1987, 
IEEE Service Center, vol.IV, pp,'365-370, 1987. 

[ 13] J .K. Kruschke, 'Creating local and distributed bottle
necks in hidden layers of back-propagation networks', 
in D. Touretzky, G. Hinton, and T. Sejnowski (eds.), 
Proceedings of the /988 Connectionist Models Summer 
School, Morgan Kaufmann, pp. 120-126, 1989. 

[ 14] J.K. Kruschke and J. Rodriguez-Movellan, 'Benefits of 
gain: Speeded learning and minimal hidden layers in 
back-propagation networks', manuscript under review, 
1988. 

[15) Y. Chauvin. 'A back-propagation algorithm with opti
mal use of hidden units 'in Proceedings of the IEEE Con
ference on Neural Information Processing Systems
Natural and Syilfhetic, 28 Nov.-1 Dec. 1988. Denver, 
CO, Morgan Kaufmann, 1989. 

[16] G.W. Cottrell. P. Munro, and D. Zipser, 'Learning inter
nal representations from gray-scale images: An example 
of extensional programming', in Program of the Ninth 
Annual Conference of the Cognitive Science Society, 
July 1987, Seattle. WA, LEA, 1987, pp.461--473. 

[ 17] R.M. Kuczewski. M.H. Myers, W.J. Crawford, 'Explor
ation of backward error propagation as a self-organiz
ational structure', in Proceedings of the IEEE First In
ternational Conference on Neural Networks, San Diego 
CA. 21-24 June 1987. IEEE Service Center, vol. II, 
1987' pp.89-95. 

(18] S.Y. Kung and J.N. Hwang, 'An algebraic projection 
analysis for optimal hidden units size and learning rates 
in back-propagation learning', in Proceedings of the 
IEEE International Conference on Neural Networks, 
San Diego, CA, 24-27 July 1988, IEEE Service Center, 
1988, vol. I, pp. 363-370. 

[ 19] E. Saund, 'Abstraction and representation of continu
ous variables in connectionist networks', in Proceed
ings of AAAI-86, Morgan Kaufmann, 1986, pp.638-
644. 

The author 

John K. Kruschke 

[20) D. Psaltis and M. Neifeld, 'The emergence of generali
zation in networks with constrained representations. In: 
Proceedings of the IEEE International Conference on 
Neural Networks, San Diego, CA, 24-27 July 1988, 
IEEE Service Center, 1988, vol.I, pp.371-38l. 

[21) R.N. Shepard, 'The analysis of proximities: Multi
dimensional scaling with an unknown distance function, 
I & II', Psychometrika, 27, 1962, pp. 125-140, 219-
246. 

[22] J.P. Cunningham and R.N. Shepard, 'Monotone map
ping of similarities into a general metric space' ,Journal 
of Mathematical Psychology, 11, 1974, pp. 335-363. 

[23) B. Widrow and R. Winter, 'Neural nets for adaptive fil
tering and adaptive pattern recognition', IEEE Com
puter magazine, March 1988, pp. 25-39. 

[24) J.K. Kruschke (ed.), 'Compilation of electronic mail 
notes on weight decay', January 1989. Available via 
FTP from connectionists-request@ cs.cmu.edu ( 1989). 

[25] P.A. Sandon and L.M. Uhr, 'A local interaction heuristic 
for adaptive networks', in Proceedings of the IEEE In
ternational Conference on Neural Networks, San Diego, 
CA, 24-27 July 1988, IEEE Service Center, 1988, vol. I, 
pp.317-324. 

Appendix. 

The derivation of fJD/owJ is greatly simplified if it is first 
noticed that 

-fJd.. ad 
I)-~-

0WJ OW[ 

1 B,B - fJd;i fJd 1 B,B -
= -- 2)d;j- d) + - L(d;j- d) 

2 . . fJw 1 fJw 1 2 . . 
S,J 11J 

The first line is just the chain rule. In going from the first line 
tot e second, we use the fact that fJd/fJWJ is independent of the 
indi es i and}. The transition from the second to third lines 
uses simply the definition of din tenns of dij. The derivation 
is true regardless of the definition of dij in terms of weights. 
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