
Kruschke, J. K. (1989). Distributed bottlenecks
for improved generalization in back-propagation
networks. International Journal of Neural
Networks Research & Applications, 1, 187-193.

Distributed bottlenecks for
improved generalization in
back-propagation networks

John K. Kruschke
Department of Psychology, University of California,
Berkeley, CA 94720, USA

Abstract:The primary goal of any adaptive system that
learns by example is to generalize from the training

•

examples to novel inputs. Empirically, back-propagation
networks can sometimes generalize better when they
contain a hidden layer that has significantly fewer units
than previous layers. The functional properties of such
hidden layer bottlenecks are described, and a method for
dynamically producing them, concurrent with
back-propagation learning, is explicated. The method does
not remove hidden units; rather, it forms clusters of
covariant units in a low-dimensional space. The result is a
functional bottleneck distributed across many units. The
method is a gradient descent procedure, using local
computations on simple lateral, Hebbian connections
between hidden units.

••

1. Bottlenecks improve generalization

The primary goal of any scheme for learning by example is to
generalize from the training examples to novel inputs. In par­
ticular, the back-propagation learning algorithm [1] for feed­
forward neural networks has enjoyed great popularity for its
simplicity and for its landmark successes at generalization
(e.g. NETtalk, see [2,3]). It has been observed that generaliza­
tion in back-propagation networks can sometimes be im­
proved when a hidden layer bottleneck is imposed; i.e., a layer
with relatively fewer units than previous layers (see [4-12]).
There may be many ways besides bottlenecks to constrain the
possible types of mappings from input to output, in order to
improve generalization. The point of this paper is not to argue
that bottlenecks are always the best constraint. Rather, the
premise is that bottlenecks are beneficial in at least some
cases. This paper analyzes their functional properties, and
proposes a new method for creating functional bottlenecks
distributed across a large hidden layer.

•

2. Local bottlenecks.

Insofar as bottlenecks are desirable to improve generaliza­
tion, one might simply initialize the network with a small
hidden layer. But such an approach is undesirable for three
reasons. First, for most applications, one simply does not
know, in advance, the minimal number of hidden units
necessary to reach criteria! error. If one initializes the network
with too few units, it will not achieve sufficiently small
asymptotic error. Second, even if one does know the minimal
number of hidden units needed and initializes the network
with that number, it is more likely that gradient-descent learn­
ing will encounter local minima or plateaux on the error sur­
face (e.g. the XOR problem with two hidden units). Third,
bottlenecks increase noise and damage ·sensitivity. The fewer
units there are, the greater is the demand for high accuracy and
precision in each unit and in the input patterns .

The first two problems can be addressed by initializing the
network with many hidden units, and progressively excising
units as learning proceeds. One method using that approach
was introduced by Kruschke [13], and improved in Kruschke
and Rodriguez-Movellan [14]. In that method, hidden units
compete for the right to participate in the hidden layer repre­
sentation. The more similar or redundant two hidden units are,
the more strongly they compete. Computations are local,
using simple lateral, Hebbian connections. The result is a
hidden layer in which only a few, relatively uncorrelated units
remain. By linking the competition rate to the rate at which
error decreases, it was also found that new hidden units could
be recruited from the pool of unused units. If the error was not
decreasing (i.e. learning had stalled), competition was re­
laxed, allowing new units to participate. When error again
began to decrease, stronger competition would suppress all
but a few new, dissimilar units.

Other methods for excising hidden units have been inde­
pendently suggested by Chauvin [15], Hanson and Pratt [5],
Mozer and Smolensky [7], Rumelhart [9], and Sietsma and
Dow [10]. Only one of those methods (Sietsma and Dow), is
explicitly designed to excise redundant units, but it gives no
method for deciding when a set of units contains sufficient
redundancy for removing some units, nor a method for decid­
ing which of the redundant units to remove.

All of those methods are motivated by the goal of minimal
hardware. They all create a bottleneck by de-activating units,
i.e. pieces of hardware. The resulting bottleneck is localized
in the few remaining units. But as more information must be
passed through fewer units, each unit must make finer dis­
criminations and carry infmmation complementary to other
units. Thus, these localized hardware bottlenecks do not ad­
dress the third problem mentioned above, the increase in
noise and damage sensitivity.

3. Distributed bottlenecks

An alternative motivation is to reproduce the functional

properties of a bottleneck without reproducing its hardware
properties [13]. To do that, we must decide just what func­
tional properties are important. Explanations as to why bottle­
necks improve generalization usually reflect one of three
functional properties: complexity reduction, dimensionality
reduction, or reduction in the number of possible mappings
from input to output.

The first functional property, regarding complexity, is nicely
expressed by Wieland and Leighton [11]. They suggest that
'viewing learning as curve fitting then allows us to see that
generalization ... is simply the effect of a good non-linear in­
terpolation of the data' (p.III-389). They argue that better
generalization comes from smoother network mappings, and
that smoother network mappings come from. fewer units.
Therefore, better generalization results from fewer units, to
the same extent that better interpolation results from
smoother data-fitting curves. Hanson and Pratt [5] corrobor­
ate: 'as a result of too many hidden units the underlying fea­
ture relations deteimining the output surface and category
separation are arbitrary, more complex than necessary, and
may result in anomalous generalizations' (italics added).

The second functional property, regarding dimensionality
reduction, has been mentioned by many researchers (see [6,
12, 16-19]). Each unit of a hidden layer is, potentially, an
independent dimension of variation on which to represent the
(transformed) input. With fewer units in a bottleneck, some
dimensions of variation in the previous layer are lost; only
those dimensions most important for reducing error are re­
tained in the bottleneck layer.

The third functional property, regarding the number of
possible mappings from input to output, is described by
Wittner et al [4]. They remind us that the training data usually
leave the network underconstrained, and that there are usually
a huge number of possible generalizations from a given train­
ing set. The more hidden units we supply to the network, the

•

Layers
(N. units)

Weight matrix W
rank R

Layers- 1
(Ns-1 units)

'

--

more possible generalizations there are. In order to train a ·
large network to yield a particular generalization, we must
either supply it with a huge training set, or reduce the number
of hidden units. (Related ideas are expressed by Pavel et a!
[8], and by Psaltis and Neifeld [20].)

These properties can be better understood by considering
two layers of a feed-forward network (see Figure 1). Suppose
that layers had Ns units, layers- I has Ns- 1 units, and that the
Ns x Ns-! weight matrix connecting them, W, has rank R.
(Here we make the usual assumptions that activation flows
forward from layer s-1 to layers, that the activation of a unit is
a non- linear, sigmoidal function of its net input, and that the
net input of a unit is the dot product of its weight vector with
the activation vector of the previous layer.) Let V be an R X

Ns-1 matrix with rows that fm m a basis for the row space ofW.
Then there exists aN 5 x R matrix U such that W = UV. This is
equivalent to supplying a 'virtual basis layer' of R linear units
between layer s and layer s-1, such that the weight matrix
from layer s-1 to the basis layer is V, and the weight matrix
from the basis layer to layers is U. Activation vectors in layer
s all lie on an R-dimensional manifold in Ns -dimensional
space. The manifold is generally not a hyperplane, because of
the non-linear activation functions.

DEFINITIONS: We say layer s fonns a bottleneck if R
<Ns-J. We say layers fmms a local bottleneck if N5= R < Ns-J.
We say layers forms a distributed bottleneck if Ns >R < Ns-1-
Note that we could haveNs >Ns-J, yet still have a bottleneck.

The important point is that generalization is affected by both
small Ns and small R, in different ways. When R < Ns-!, the
(N s-1)-dimensional activation vectors of s-1 are projected into
an R- dimensional subspace. We then have complete generali­
zation over the complementary Ns-! - R dimensions, because
no variation in the complementary dimensions can lead to any
variation in the R-dimensional representation. In terms of
curve fitting, the curve is perfectly smooth (flat) in those com-

Weight matrix U

Virtual layer of
R linear units

Weight matrix V

Figure 1. The weight matrix W connecting two layers can be decomposed into two matrices of rank R. Generalization is
affected in different ways by small N 5 and small R. See text for details.

•
lj

plementary directions. The number of units, Ns. in layer s
deteunines the maximal complexity of regions that can be
distinguished in the remaining R dimensions. In tenns of
curve fitting, a smaller Ns means fewer possible 'bumps' in
the mapping from the R dimensions. Moreover, the maximal
number of possible mappings from layer s-1 to layers is re­
duced when R is small, because the weights in the mapping
matrix W are constrained.

So, to improve generalization by creating a functional
bottleneck, we want to do two things: (1) decrease the func­
tional dimensionality R of the weight matrix W; and (2) de­
crease the functional number of units in layer s. These goals

'

do not necessarily imply excising units, as done by the meth-
ods for creating local bottlenecks described earlier. Rather,
the goals imply that we should (1) dynamically compress the
weight vectors (rows ofW) into a low dimensional space and
(2) cluster the vectors within that low dimensional space.

There are potentially many ways of achieving those goals. I
have worked under two constraints on the choice of method:
it should be describable as gradient descent on some objective
function, and it should be locally computable in a network.

4. Shepard's method.·

A method for compressing the dimensionality of a set of vec­
tors, and simultaneously clustering them, was described by
Shepard [21]. He motivated his algorithm by arguing that
' ... the way to flatten a configuration into a space of smaller
dimensionality is to increase the variance of the distances
by further stretching those distances that are already large
and by further shrinking those distances that are already

, s s s T l small (p. 131). Let w := [w.
1

., .•. ,w .N] be the co umn
I I I

vector of fan-in weights connecting theN units of layer s-1
to the i1h unit of layers. (While the typographical difference

••

between wi. and W:jiS slight, it is important. The first denoteS

a vector of fan-in weights; the second denotes the /h compo­
nent of that vector.) Denote the distance between vectors by

d 5.~ w 5
- w-' II- The mean distance is denoted d5

• Then for each
I) I j

vector w 5
, we shift it by an amount

I

B
""" - (w;- Wj)

.6.w; oc L)dij -d) d·. · .
. 1)

J
(1)

(Here and throughout the remainder of this paper, the super­
script denoting the layer will be suppressed whenever
possible. Layers is assumed unless otherwise marked.) Thus
if dij > d, then Wi tends to be shifted away from Wj, and if
dij < d, then w i tends to be shifted toward Wj. After each shift,
the vectors are re-centered so that their centroid is zero, and
they are re-scaled so that their mean separation, d, is a pre­
defined constant. Without re-scaling, the vectors will 'ex­
plode', i.e. become infinitely long.

A slight variant of equation (l) was applied directly, in con­
junction with back-propagation learning, by Kruschke [13].
While the results were encouraging, the method was unsatis­
factory for two reasons: It was not explicitly gradient descent,
so its stability was questionable, and it was not locally com­
putable (although some parts of it were), so its network im­
plementation was doubtful. Those two problems are resolved
presently.

While Shepard never explicitly described his algorithm as
gradient descent on the variance of the distances, he might
have had in mind something like the following. Let

1 B,B 2

D = -- """ (d · · - (1\ - 4 .L... IJ u)
• •

(2)
',)

where

and

(Herellxll =
Then

L x~ denotes the Euclidean norm of x.)
n

fJD B

W[j Jj
(3)

(See the Appendix for notes on the derivation.) Equations
(1) and (3) are, of course, the same. Maximal variance tech­
niques are further discussed in Cunningham & Shepard [22].

Even though we haye been able to re-express Shepard's
method as a gradient descent procedure, it remains unclear
how to compute it in a network. The algorithm demands com­
puting the global mean distance, d, and some way of multi­
plying corresponding du and Wfn - Wjn. We seek something
like Shepard's method that not only is nicely expressed as
gradient descent, but also is locally computable in a network.

To achieve that goal it is helpful to abstract the essential
properties of the method, so that they might be realized other
ways. The key property of the algorithm is that it increases the
variance of the separations of the vectors. The vectors are then
re-centered and re-scaled so that they do not explode. We
should retain those essentials, but we are then free to define
the separation of vectors any way that is sensible, and free to
keep the vectors from exploding in any reasonable way.

5. A new method

Define the 'distance' between two weight vectors w5 and w5

as follows:

dii = L netipnetjp
p

I }

(4)

Neural Networks, Vol. 1, No.3, July 1989 -----------------------------189

•

where net 5 pis the net input to unit ion pattern p, and the sum
rp

is taken over all training patterns in an epoch. It is convenient
to express the net input as the inner product of the unit's fan-in
weight vector with the activation vector of the layer below,

5 5 5 1 s-1 s-i s-i]T · h 1 net. =(w.,a--),wherea =[a ,aN 1st ecoumn
rp r p p ip p

vector of activations of the units oflayer s-1 for patternp. The
newly defined dij, essentially the covariance of the net inputs,
does not satisfy all the distance axioms. It is symmetric, but it
is not positive definite and does not satisfy the triangle in­
equality. However, it does describe the similarity of the units.

We defineD as in equation (2), where the sum is taken over
all units in the bottleneck layer. Then (see the Appendix for
notes on derivation)

That is a bit of an improvement over equation (3), but we still
must compute the global mean con variance d. However, if we
can force d to be zero, then the expression is significantly
simplified. (It makes no sense to force the average distance
between vectors to be zero, for then all the weight vectors
would have zero length. But with the new definition of dij as
covariance in equation (4), some 'distances' are negative, so
forcing d to be zero is quite acceptable.)

As a step toward the goal of forcing the global mean distance
to zero, note that if

1 B

w = B 2::: W; = 0,

'

then d = 0, as follows:
B,B

-d 1 ~ "-'(•-1)(s-1) =: B 2 L....t L wk,ap w1,ap
k ,I p

= I':(w, a~-1)2

p

= 0.

So now the goal is to make w = 0, and that is easy. Simply do
very fast gradient descent on

(6)

The change in the weight W!J due to gradient descent on M is
proportional to the negative of the average fan-out weight
from unit J in layer s-1:

1 B

oc- B LWkJ·
k

(7)

The average fan-out weight is locally computable, since
each unit has direct access to all its fan-out weights. By equa­
tion (7), each weight tends toward a value that makes the
average fan-out weight closer to zero. If we do very rapid
gradient descent, using a proportionality constant of 1, we get
to zero in one update (since trajectories are linear in this case).

With d = 0, equation (5) becomes the following simple ex­
pression for weight change due to dimensional compression:

(8)
•

J

Now that requires only simple lateral connections between
units with the value d!j as .. their connection strength (see
Figure 2). The value of d!j' is obtained by simple Hebbian
learning during an epoch, as in equation (4). The lateral con­
nections do not participate in the forward propagation of acti­
vation, nor in the backward propagation of error.

Like the back-propagation learning rule, the weight change
rule in equation (8) confonns to the 'principle of minimal
disturbance' [23]. Weight vectors are changed only parallel to
the current activation vector. If two units have positive covari­
ance, then their weight vectors tend to move in the same direc-

tion (both parallel or anti parallel to as -i). If two units have
p

negative covariance, then their weight vectors tend to move
in opposite directions (one parallel, the other antiparallel,
to as-!).

p
We have only one more step. So far, the value of D can be

made infinitely negative by increasing the magnitudes of the
weights infinitely. We can prevent that by including standard
weight decay. But we have already included a component of
weight decay, the tenn M, in equations (6) and (7). M makes
the mean weight vector tend toward zero. We must now also
put a cost on the remaining component of weight magnitude,
the variance of the weight vectors, V. The decomposition of
weight decay is made explicit in the following fomtula:

1 B 1 B
B L llw; 112 = B L llw; - wll2 + llwll2

• •
1 •

= V+M.

Gradient descent on Vis also locally computable:

8V
LlvWJJ OC -

8 WJJ

1 B

oc B I': Wk]- W!J.

k

(9)

(10)

Each weight is pushed toward the average fan-out weight,
which in this case is zero because we have done fast de­
scent on M. Note that by adding equations (7) and (1 0) we get
11wu o:: wu. the standard form of weight decay.

dlj
netjp

•

J / '

WJk

akp '\

Figure 2. Lateral Hebbian connections between
bottleneck units pen nit local computation of
LjdiJnetjp in equation 8. See text for details.

6. Multiple layers.

The function D is defined for the particular layer we have
designated as the bottleneck layer. In the previous section we
computed the gradient of D with respect to weights fanning
into the bottleneck layer (equation 8). But because the covari­
ances which constituteD are defined in teuns of activations of
lower layers, we can also compute the gradient of D with
respect to weights in lower layers.

Let nee = [net 5
, ••• ,net

8
5 {be the column vector of net

p lp p
input values in layers forpatternp. Let the activation of a unit

be given by as= f(net :5
). For purposes of the following deri-

lp lp

vation, let s denote any layer below the bottleneck layer.

Define 1} 5 = oD!onet 5
• By chain rule:

lp IP

aD
ow[

aD &net'+ 1

-----:- p
- 8nee+1 oa• p Ip

8a[p 8net[p
8net[p ow[.

Expanding each partial derivative yields:

8D
8wj /3•+1 /3•+1

- - 1p '· · · '- Np

f '(t') s-1 · ne Ip aP .

•
•
•

In particular, the first three teons indicate that

!3• _ ~f3•+1ws+1
Jp- L._.. np ni

n

f' (net[p).

That recursive formula for !) 5 is exactly the same fonnula
/p

used for back propagating the error gradient in back -propaga­
tion learning. Therefore all we must do to back propagate
oD!onet is inject!) into the error signal at the bottleneck layer,
and then standard backward error propagation automatically
carries it to lower layers. We detennined the value of!) at the
bottleneck layer in equation (8), I)Jp =I. J d!J neljp. The modi­
fied error signal at the bottleneck layer is simply I.p(D!p + I)Jp).
where O!p is the error computed by standard back propagation
for unit I on pattern p.

Thus the gradient of D can be back propagated through
lower layers using exactly the same machinery as back-pro­
pagation of error. No lateral connections are needed in any
layer other than the bottleneck layer, and the lower layer units
do not need to compute any values other than those used in
standard backward error propagation.

7. Summary and discussion.

Bottlenecks in hidden layers of back-propagation networks
have been found to improve the generalization capabilities of
the network, in at least some applications. It is desirable to
reproduce the functional properties of a bottleneck without
incurring the noise and damage sensitivity of localized hard­
ware bottlenecks. Two important functional properties of a
bottleneck are the dimensionality of its weight vectors and the
number of dissimilar units it has. To decrease the dimension­
ality of the weight vectors and cluster them within those
dimensions, we do gradient descent on three terms, D, V, and
M, with respect to connection weights. The D tenn is a
measure of dimensionality and clustering. It is the (negative
of the) variance of the separations of the vectors, with separ­
ation defined as covariance of net input values (equation 4).
The V and M tenns are orthogonal components of weight
decay. Fast descent on the M teon causes the mean weight
vector to be zero, and consequently greatly simplifies the ex­
pression for gradient descent on D. The V term causes the
variance of the weight vectors not to. grow too large, thereby
preventing the weight vectors from 'exploding' under the in­
fluence of the D tenn. All that is needed to make gradient
descent on D strictly local is the inclusion of lateral connec­
tions which have connection strengths given by simple Heb­
bian learning over an epoch. The lateral connections do not
participate in propagating activation or error.

The decomposition of standard weight decay into two ortho­
gonal components has not been previously noted (see, e.g.
Kruschke [24]. In the present application the mean compo­
nent, M, is decreased much more rapidly than the variance
component, V. However, it is possible that this decomposition
alone, without the dimensionality term D, could be useful for
generalization, if we do slow descent on the mean and more
rapid descent on the variance. The result would be a cluster of
weight vectors around the norr-zero mean weight vector. Most
likely, however, the training examples could not very easily
be learned by a single cluster of weight vectors.

Neural Networks, Vol. 1, No.3, July 1989 ------------------------------191

Gradient descent on D can also be computed for lower
layers. The gradient of Dis simply injected into the error gra­
dient at the bottleneck layer, arid is propagated back to lower
layers using exactly the same machinery as backward error
propagation. No lateral connections are needed in any layer
but the bottleneck layer, and no new values need to be com­
puted by lower layer units. Gradient descent on the V and M
terms is carried out only in the bottleneck layer.

It is important to note that the computations in the bottleneck
layer itself do not depend on back-propagation, and that it is
not necessary to propagate the gradient of D to lower layers.
Therefore, this algorithm for creating distributed bottlenecks
can be used in conjunction with any iterative learning algo­
rithm (e.g. Boltzmann machine learning), not just backward
error propagation. The procedure is the same in any case.
With every update of the bottleneck connection weights due
to learning, we also make an adjustment due to gradient de-

•

scent on D, M, and V
The process of concurrently performing dimensional com­

pression and clustering with learning allows the selection of
as many dimensions and clusters as needed. Of course, if the
descent rate on D is too fast relative to the learning rate, then .
too few dimensions and clusters will be formed to reach crite­
ria! error on the training patterns. That can be avoided by
dynamically adjusting the descent rate on D so that it is linked
to the actual progress oflearning (errorreduction). Linking of
descent rates to error reduction was successfully used by
Kruschke and Rodriguez-Movellan [14] to create localized
hardware bottlenecks. The linking operates as follows: if
error reduction is slow, then the rate of dimensional com­
pression and clustering is automatically reduced or even
reversed (made negative), so that a new trajectory through
weight space can be found, and error again begins to decrease.

When gradient descent on D is reversed, there is a pressure
on the units to uncluster themselves. Unclustering of units
was used by Sandon and Uhr [25] to escape local minima.
They tried several different heuristic formulae for uncluster­
ing, all of which helped esc·ape local minima to varying de­
grees. The method described here goes beyond their attempts
by doing explicit gradient descent on a measure of clustering
and dimensionality, D.

A clustering technique for back-propagation networks was
proposed by Psaltis and Neifeld [20], with the goal of improv­
ing generalization. Their technique required the user to spec­
ify in advance the number of clusters to be formed, unlike the
method proposed here, which dynamically fauns as few clus­
ters as possible during learning. Additionally, it is not at all
clear how their technique might be implemented by local
computations in the network, unlike the method proposed
here, which requires only simple lateral, Hebbian connections
in the bottleneck layer.

The main point of this paper is that if one desires to impose a
bottleneck in a network, then one sheuld consider creating a
distributed bottleneck rather than a localized bottleneck. One
method for creating distributed bottlenecks was described.
The important issue of deciding which applications would
benefit from bottlenecks is not addressed here, and is a topic
for future research.

Acknowledgments.

I thank Steve Palmer for encouragement and use of his labor­
atory computers. The author has been supported by a National
Science Foundation Graduate Fellowship, and by The Berke­
ley Fellowship for Graduate Study.

References

[1] D.E. Rumelhart, G.E. Hinton and R.J. Williams, 'Learn­
ing representations by back-propagating errors', Na­
ture, 323, 1986, pp. 533-536.

[2] C.R. Rosenberg, 'Revealing the structure of NETtalk's
internal representations', in Program of the Ninth An­
nual Conference of the Cognitive Science Society,
Seattle, WA, LEA, 1987, pp.537-554.

[3] T.J. Sejnowski and C.R. Rosenberg, 'Parallel networks
that learn to pronounce English text', Complex Systems.
1, 1987, pp. 145-168. J. Denker, D. Schwartz,

[4] B. Wittner, S. Solla, R. Howard, L. Jackel, and J. Hop­
field, 'Large automatic learning, rule extraction, and
generalization', Complex Systems, I, 1987, pp. 877-
922.

(5] S.J. Hanson and L.Y. Pratt, 'Comparing biases for mini­
mal network construction with back-propagation', in
Proceedings of the IEEE Conference on Neural Infor­
mation Processing Systems Natural and Synthetic, 28
Nov-1 Dec. 1988, Denver, CO, Morgan Kaufmann,
1989.

[6] G.E. Hinton, 'Learning translation invariant recognition
in a massively parallel networks', in G. Goos and J.
Hartmanis (series eds.), Lecture Notes in Computer
Science, vol. 258. Also in J.W deBakker, AJ. Nijman
and P.C. Treleaven (volume eds.), Parallel Architectures
and Languages Europe, Proceedings, Springer-Verlag,
1987.

[7] M.C. Mozer and P. Smolensky, 'Skeletonization: A tech­
nique for trimming the fat from a network via relevance
assessment', in Proceedings of the IEEE Conference on
Neural Information Processing Systems Natural and
Synthetic, 28 Nov.-1 Dec. 1988. Denver, CO, Morgan
Kaufmann, 1989.

[8] M. Pavel, M. Gluck and V. Henkle, 'Generalization by
humans and multi-layer adaptive networks' in Proceed­
ings of the IEEE Conference on Neural Information
Processing Systems Natural and Synthetic, Denver,
CO, 28 Nov.-1 Dec. 1988. San Mateo, CA: Morgan
Kaufmann, 1988.

[9] D.E. Rumelhart, Lecture, 22 June 1988, Connectionist
Models Summer School. Carnegie-Mellon University,
Pittsburgh, PA. Related notes can be found in Kruschke
[24].

[1 0] J. Sietsma and R.J.F. Dow, 'Neural net pruning Why
and how', in Proceedings of the IEEE International
Conference on Neural Networks, San Diego, CA, 24--27

192 ----------------------------Neural Networks, Vol. 1, No.3, July 1989

July 1988, IEEE Service Center, vol. I, pp. 325-333,
1988.

[11] A. Wieland and R. Leighton, 'Geometric analysis of
neural network capabilities', in: Proceedings of the
IEEE First International Conference on Neural Net­
works, San Diego, CA, 21-24 June 1987, IEEE Service
Center, v.III, pp. 385-392, 1987.

[12] H. Yang and C. C. Guest, 'Perfo1nnmance ofbackpropaga­
tion for rotation invariant pattern recognition', in Pro­
ceedings of the IEEE First International Conference on
Neural Networks, San Diego, CA, 21-24 June 1987,
IEEE Service Center, vol.IV, pp,'365-370, 1987.

[13] J .K. Kruschke, 'Creating local and distributed bottle­
necks in hidden layers of back-propagation networks',
in D. Touretzky, G. Hinton, and T. Sejnowski (eds.),
Proceedings of the /988 Connectionist Models Summer
School, Morgan Kaufmann, pp. 120-126, 1989.

[14] J.K. Kruschke and J. Rodriguez-Movellan, 'Benefits of
gain: Speeded learning and minimal hidden layers in
back-propagation networks', manuscript under review,
1988.

[15) Y. Chauvin. 'A back-propagation algorithm with opti­
mal use of hidden units 'in Proceedings of the IEEE Con­
ference on Neural Information Processing Systems­
Natural and Syilfhetic, 28 Nov.-1 Dec. 1988. Denver,
CO, Morgan Kaufmann, 1989.

[16] G.W. Cottrell. P. Munro, and D. Zipser, 'Learning inter­
nal representations from gray-scale images: An example
of extensional programming', in Program of the Ninth
Annual Conference of the Cognitive Science Society,
July 1987, Seattle. WA, LEA, 1987, pp.461--473.

[17] R.M. Kuczewski. M.H. Myers, W.J. Crawford, 'Explor­
ation of backward error propagation as a self-organiz­
ational structure', in Proceedings of the IEEE First In­
ternational Conference on Neural Networks, San Diego
CA. 21-24 June 1987. IEEE Service Center, vol. II,
1987' pp.89-95.

(18] S.Y. Kung and J.N. Hwang, 'An algebraic projection
analysis for optimal hidden units size and learning rates
in back-propagation learning', in Proceedings of the
IEEE International Conference on Neural Networks,
San Diego, CA, 24-27 July 1988, IEEE Service Center,
1988, vol. I, pp. 363-370.

[19] E. Saund, 'Abstraction and representation of continu­
ous variables in connectionist networks', in Proceed­
ings of AAAI-86, Morgan Kaufmann, 1986, pp.638-
644.

The author

John K. Kruschke

[20) D. Psaltis and M. Neifeld, 'The emergence of generali­
zation in networks with constrained representations. In:
Proceedings of the IEEE International Conference on
Neural Networks, San Diego, CA, 24-27 July 1988,
IEEE Service Center, 1988, vol.I, pp.371-38l.

[21) R.N. Shepard, 'The analysis of proximities: Multi­
dimensional scaling with an unknown distance function,
I & II', Psychometrika, 27, 1962, pp. 125-140, 219-
246.

[22] J.P. Cunningham and R.N. Shepard, 'Monotone map­
ping of similarities into a general metric space' ,Journal
of Mathematical Psychology, 11, 1974, pp. 335-363.

[23) B. Widrow and R. Winter, 'Neural nets for adaptive fil­
tering and adaptive pattern recognition', IEEE Com­
puter magazine, March 1988, pp. 25-39.

[24) J.K. Kruschke (ed.), 'Compilation of electronic mail
notes on weight decay', January 1989. Available via
FTP from connectionists-request@ cs.cmu.edu (1989).

[25] P.A. Sandon and L.M. Uhr, 'A local interaction heuristic
for adaptive networks', in Proceedings of the IEEE In­
ternational Conference on Neural Networks, San Diego,
CA, 24-27 July 1988, IEEE Service Center, 1988, vol. I,
pp.317-324.

Appendix.

The derivation of fJD/owJ is greatly simplified if it is first
noticed that

-fJd.. ad
I)-~-

0WJ OW[

1 B,B - fJd;i fJd 1 B,B -
= -- 2)d;j- d) + - L(d;j- d)

2 . . fJw 1 fJw 1 2 . .
S,J 11J

The first line is just the chain rule. In going from the first line
tot e second, we use the fact that fJd/fJWJ is independent of the
indi es i and}. The transition from the second to third lines
uses simply the definition of din tenns of dij. The derivation
is true regardless of the definition of dij in terms of weights.

John K. Kruschke received a BA in Mathematics from the University of California at Berkeley in 1983. He is presently completing
his PhD in Cognitive Psychology, also at Berkeley. He has received a National Science Foundation Graduate Fellowship and the
Berkeley Fellowship for Graduate Study. He was a student at the 1988 Connectionist Models Summer School held at Carnegie­
Mellon University, and is a member of the International Neural Network Society. Beginning in Autumn 1989, he is Assistant
Professor in the Department of Psychology, Indiana University, Bloomington, IN 4 7 405, USA.

Neural Networks, Vol. 1, No.3, July 1989 ------------------------------193

