
ECE 6550 Exam 2 Fall 2022

Name	
General Instructions:	
• Exam is closed book / closed notes other than the one-page of handwritten	ı notes.
 Choose the best possible answer available in all cases. 	
Blank scratch paper is allowed	
Part I: Objective Questions	
Part II: Open Response Questions	
Final Score	

Part I: Objective Questions

These questions have straight-forward answers. Make sure to put your answer in the line required as that is the part that will be graded for the answer given. Only the final answers, as indicated by the question, will be considered correct for each question. Each question is worth 4 points (total of 72 points)

a. Q & R

b.
$$\mathbf{P}\mathbf{A} + \mathbf{A}^T\mathbf{P} - \mathbf{P}\mathbf{B}\mathbf{R}^{-1}\mathbf{B}^T\mathbf{P} + \mathbf{Q} = 0$$

c.
$$(\mathbf{B} \ \mathbf{B}\mathbf{A} \ \mathbf{B}\mathbf{A}^2 \ \dots \ \mathbf{B}\mathbf{A}^{m-1})$$

d.
$$\mathbf{P}_f \mathbf{C}^T \mathbf{Q}_v^{-1}$$

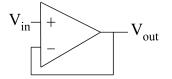
e.
$$(\mathbf{B} \quad \mathbf{A}\mathbf{B} \quad \mathbf{A}^2\mathbf{B} \quad \dots \quad \mathbf{A}^{m-1}\mathbf{B})$$

$$\left(egin{array}{c} \mathbf{C} \ \mathbf{C} \mathbf{A} \ \mathbf{C} \mathbf{A}^2 \ \mathbf{C} \mathbf{A}^{m-1} \end{array}
ight)$$

$$\mathbf{g}. \mathbf{R}^{-1} \mathbf{B}^T \mathbf{P}$$

$$egin{pmatrix} \mathbf{C} & \mathbf{AC} \ \mathbf{AC} \ \mathbf{A^2C} \ \mathbf{A}^{m-1}\mathbf{C} \end{pmatrix}$$

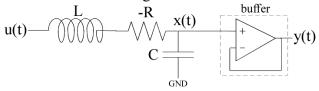
i.
$$\mathbf{Q}_n$$
 & \mathbf{Q}_d


7. (True / False) One can find a good margin for LQG controllers assuming the system is controllable and observable.

For the following A, B, and C, is the resulting system controllable and observable?

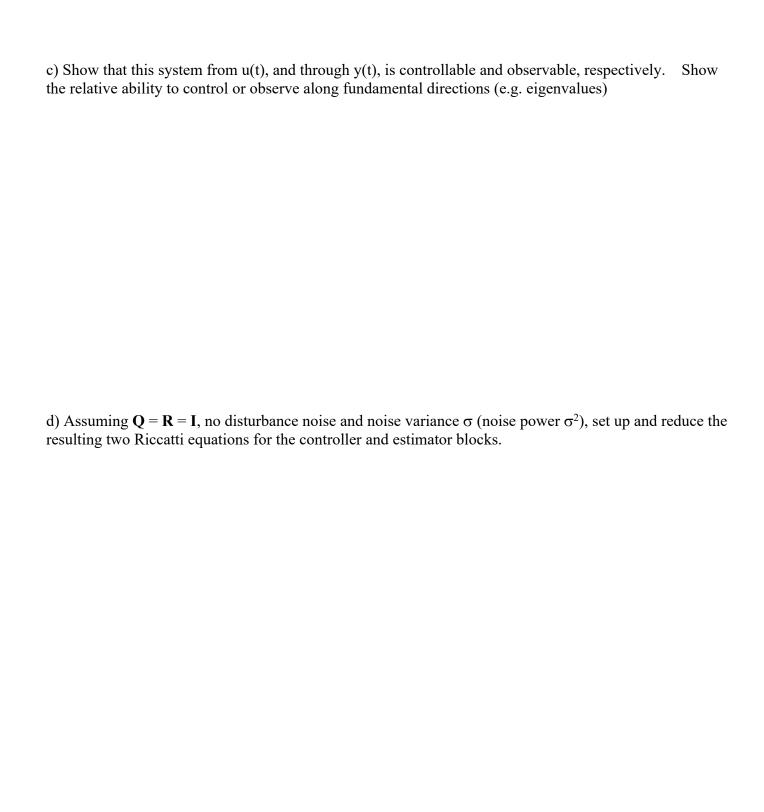
Assume we have an op-amp with the following transfer function

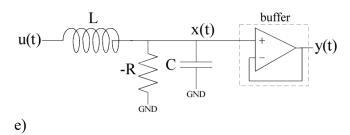
$$V^{+} - V_{\text{out}} - V_{\text{out$$


We build a feedback system

For this closed loop system, sketch $L(\omega)$, $S(\omega)$, $T(\omega)$ (3 questions: 16, 17, 18).

Part II: Open Response Question (28 points)


Consider the following linear circuit that arrives from a linearized model



Assume the buffer circuit is ideal with a gain of 1.

a) Create the normalized linearized state equation model for this circuit system. C=1nF. L=1mH. $R=1k\Omega$.

b) Show the stability of this system through the eigenvalues of the A matrix.

