Name
General Instructions instructions:

- Exam is closed book / closed notes other than the one-page of handwritten notes.
- Choose the best possible answer available in all cases.
- Blank scratch paper is allowed

Part I: Objective Questions
\qquad Part II: Open Response Questions

Final Score

Part I: Objective Questions

These questions have straight-forward answers. Make sure to put your answer in the line required as that is the part that will be graded for the answer given. Only the final answers, as indicated by the question, will be considered correct for each question. Each question is worth 4 points (total of 72 points)

Matching
\qquad 1. Unstable
\qquad 2. Marginally Stable
\qquad 3. Asymptotically stable
4. Exponentially stable
a. . $\|y(t)\|_{\text {bounded throughout }} 0<t<\infty$
b. $\|y(t)\|<C e^{\lambda t}$, positive C , negative λ
c. $\|y(t)\|$ unbounded somewhere $0<t<\infty$
d. $\|y(t)\| \rightarrow 0$ as $t \rightarrow \infty$
\qquad
5. Unstable
6. Marginally Stable
7. Asymptotically stable
a. All $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}<0$
b. All $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \leq 0$
c. One $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}>0$
\qquad 8. Exponentially stable

Match the following dynamical situations
\qquad 9. λ_{1}, λ_{2} Real and positive
\qquad 10. λ_{1}, λ_{2} Complex, $\operatorname{Re}\left(\lambda_{1}, \lambda_{2}\right)>0$
\qquad 11. λ_{1}, λ_{2} Real, $\lambda_{1}>0, \lambda_{2}<0$
\qquad 12. λ_{1}, λ_{2} Real and negative
13. λ_{1}, λ_{2} Complex, $\operatorname{Re}\left(\lambda_{1}, \lambda_{2}\right)<0$

For the following matrix

$$
\left(\begin{array}{cc}
0 & 1 \\
-1 & -1
\end{array}\right)
$$

\qquad 14. What are λ_{1}, λ_{2} ?
\qquad 15. What is the stability given this \mathbf{A} matrix?

For the following matrix

$$
\left(\begin{array}{cc}
0 & 1 \\
1 & -1
\end{array}\right)
$$

\qquad 16. What are λ_{1}, λ_{2} ?
\qquad 17. What is the stability given this \mathbf{A} matrix?
18. (True / False). The exponential of a square mxm matrix A can be expressed in a series of m matrix polynomial terms.

Part II: Open Response Question (28 points)

Consider the following linear circuit that is a linearized model for a transconductance amplifier component.

1: Write the state equations. You might benefit from renormalizing in time. Is this a MIMO or SISO system?

2: What is the eigenvalues and stability for $\mathrm{a}=1$ and $\mathrm{a}=3$?
3: for the $\mathrm{a}=3$ case, could one stabilize the system with a proportional control scheme (as below)?

