CHAPTER

11

SECOND-ORDER SECTION

We have done integration and differentiation with simple, single-time-
constant circuits that had 7s + 1 in the denominator of their transfer
functions. These systems gave an exponentially damped response to step
or impulse inputs. In Chapter 8, we showed how a second-order system
can give rise to a sinusoidal response. In this chapter, we will discuss a
simple circuit that can generate a sinusoidal response. We call this circuit
the second-order section; we can use it to generate any response that
can be represented by two poles in the complex plane, where the two poles
have both real and imaginary parts. With this circuit, we can adjust the
positions of the complex-conjugate poles anywhere in the plane,

The second-order circuit is shown in Figure 11.1; it contains two cas-
caded follower—integrator circuits and an extra amplifier. The capaci-
tance (' is the same for both stages (C] = (¢ = (), and the transcon-
ductance of the two feed-forward amplifiers, A1 and A2, are the same:
G1 = G = G (approximately—if @ is defined as the average of 1 and
G, small differences will have no first-order effect on the parameters of
the response). We obtain an oscillatory response by adding the feedback
amplifier A3. This amplifier has transconductance (z3, and its output
current is proportional to the difference between Va3 and V3, bui the sign
of the feedback is positive; for small signals, I3 is equal to G3(Vy — V3).

If we reduce the feedback to zero by shutting off the bias current
in A3, each follower-integrator circuit will have the transfer function given
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FIGURE 11.1 Circuit diagram of the
second-order section. The amplifier A3

tends to keep Vo ahead of Vi, once Vz has L 4 Co

gained the lead. For that reason, A3 has a
destabilizing effect on the circuit behavior.

i Equation 9.3 (p. 148). Two follower—integrator circuits in cascade give an
overall transfer function that is the product of the individual transfer functions,

so there are two poles at s = —1/7:

i [ 1 : 1
i ('TS-i—l) T o224 27841
We can understand the contribution of A3 to the response by following

through the dynamics of the system when a perturbation is applied to the input.
Suppose we begin with the input biased to some guiescent voltage level. In the
steady state, all three voltages will settle down, and Vs and V3 will both be equal
to V;. If we apply to V1 a small step function on top of this DC level, Va starts
increasing, because we are charging up the first capacitor C1. Eventually, Vo gets
a little ahead of V3, and then amplifier A3 makes V3 increase even faster. Once
V, is increasing, the action of A3 is to keep it increasing; the feedback around the
loop is positive. If we set the transconductance Gy of amplifier A3 high enough,
Vs will increase too fast, and the circuit will become unstable.

SMALL-SIGNAL ANALYSIS

A2 is a follower—integrator circuit, so, from Equation 9.3 (p- 148),

Vs Ve (11.1)

:'rs—|—1

where 7 = C/G5. The current I, coming out of amplifier A1 is proportional to

the difference between Vi and V3, its two mputs:

I = Gi{(V1 - Va) (11-2.).

We can describe I3, the ontput of A3, in the same way:

Iy = G3(Va— V3) | (11.3):
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We need an equation for V3 i
: 3 In terms of V. Combining i
the capacitor (Equations 11.2 and 11.3), we (;bta,in ming the two currents fto

v
dt

Using s = d/dt and collecting terms,
Va(sC' + Gy — Ga) = GhV1 — GV

Substituting V2 from E ; L
quation 11.1, and i : _
and a = G3/(Cy + Ga), simplifying using 7 = C/G, = C/G,

=Gi(Vh ~ Vo) + Ga(Vo — V3)

His) = 2 = !
Vi 72824 27s(1—a)+1 (11.4)

a Seicixftlo;l 11.4 is t}‘le trlansfer funetion for the circuit; as we expected, it is
transcom—ior ter expéesstlon ﬁn 75. The parameter o is the ratio of the feeéback
uctance (3 to the total forward transcondu '
. . ctance Gy + G, If oo i
;‘qﬁlag to 0, -Equagon 11.4 should give the response of two ﬁravtmorderzsecti:n;S
e denominator is (1s + 1)?, just as we expected. -

We also can see that, when aci
; s equal ; .
becomes 0, and we gt ’ qual to 1, the center term in the denominator

V3 1

Vi r¥s24 1
Under these conditions, the roots of the natural system response are thus

2
s’ = —1 or T8 = %7

Complex Roots

We can put the poles on the imaginary axis when o is equal to 1, or right

down on the real axis when « is equal to 0. Now our job is to determine

1. Where the poles are located when « is neither 0 nor 1

2. How the system responds under such conditions

‘We can write the transfer function

v |
V1 (’TS — 'TRl)(',"S — TRQ) (11.5)

r};heell";eogg‘ and ng are the roots %f the denominator in the s-plane. We can define

ion of any root as Red®, where R is the dist '

e ] : to the root fi h

origin and # is the angle from th:a iti s to the ot the

positive real axis to the root; that is j

polar form of a complex number. A i s oot
. . As we discussed in Chapter 8

of real polynomials must occur as complex-conjugate pair£ | comples roots

Re = Rel® o
1= R and Ry = Re’ (11.6)
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position when there was no feedback in the circuit. The roots start at —1 on
the real axis; as we increase (3, we push them to the right, decreasing the
magnitude of the damping constant o. Eventually, we push them across the
jw axis and the circuit begins to oscillate. We have shown that we have an
independent control on the location of the roots on the circle. The radius of the
circle is determined by G. By changing o to be equal to G3/(2G), we can locate
the roots anywhere on the circle. As we change the location of the roots, we
change the response of the circuit. That is why the second-order section is such
a useful device.

Second-order systems often are characterized in terms of a () parameter,
defined by @ = —1/(207), or by the transfer function cxpression

1
Hs\ )= ——— —
O It

FIGURE 11.2 Complex-plane repre-
sentation of smal-signal behavior of the
second-order section. The effect ofx =
G3/(Gy + Ga) is fo move the poles tov{ard_
the jw axis. For o greater than 1, the circuit
is unstable.

By comparing this expression with Equation 11.4 or Equation 11.8, we find that
1
©= 2(1 —a)

Note that ¢} starts from 0.5 with no feedback (o = 0), and grows without bound
as the feedback gain approaches the total forward gain (o = 1 or G3 = G1 + G3);
beyond this point, small signals grow exponentially—the circuit is unstable.

We will solve for K and @ in terms of o and T by c.oml.)a,ring the -denirlniﬁin‘fmt;);
of Equation 11.5 with that of Equation 11.4. Substituting Equation 11.6 10
Equation 11.5, we obtain |
2% 4+ 9rs(l—a) + 1= 7252 —72sR (e + e 1%) +7°R?
Using the identity 2cos# = 1% 4+ ¢3¢ we arrive at an important result:

T== and —cosf=1—«

R Transient Response

In Chapier 8, we saw that the natural response of a linear system always

i i ; e to the right from the
The roots are located on a circle of radius 1/7; they mov g __In Chapter

nesative real axis as we increase the transconductance of the feedback amplifier.
T};ge angle of the roots is determined by the ratio of feedback transcondlictance
to forward transconductance, and is independent of the a‘bso‘lute value of 7. .
We can normalize the plot, so the roots lie on the unit c1rcle,1bg ?crpresstil_i
i i i i 1/7, as shown in Figure 11.2. From thl
distances in the plane in units of , : From thi
iilnstiruction we have the following important relation between the major circuit
1

V(t) = 6% = eotedwt

where the value of g is given by the root or conjugate pair of roots of the denomi-
nator of the transfer function. The impulse response of the circuit, for positive ¢,
is of the same form as this natural response.

Depending on the value of @, the behavior of the second-order section may be
best described in either the time domain or the frequency domain. The impulse
response of the circuit when the roots are on the real axis is just an exponen-
tial; the response does not oscillate at all, and there is therefore no frequency
associated with it. It is simply a dying exponential. When the roots are on the
imaginary axis, the circuit is an oscillator—it just sits there and oscillates, on
and on and on. For o between 0 and 1, the impulse response is a damped sine
wave, as shown in Figure 11.3, because s has both a real and an imaginary
component. The ¢/“? is an oscillating response, composed of sines and cosines.
The e”* is the damping term, as long as & is negative.

The values of w and o can be determined directly from Figure 11.3. The
duration of one cycle is 460 microseconds. A cycle is 27 radians; w is thus equal
. to 1.37 x 10* radians per second, which is about 1 /7. The wave damps by a factor
of 1/¢ in 2.6 milliseconds. The damping constant ¢ is thus —3.85 x 10 per second.

variables: 7
(u}fr)2 + (O’T)Z =1 (11.7)

are 11.2 that cosé is the projection of either root onto

from Fi
e o The . o to the left of the origin. The real part o of both

the o axis. The poles are 1 —
roots is given by |
(11.8)

—oT=1-—

When o is 1, the real part is 0, and we are left with a pair of _roots on t.he fﬂ:jw'
axis. When O’IE is 0, the root pair is at the point —1 on the negative real Exxs, (Zr ic: :
grea,.ter than 0, the distance between that point and the real part of the roots

just a.
We now have a way
location of the roots: « is the

to visnalize the effect of the feedback ratio‘a on .the
horizontal distance from the roots to their original
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FIGURE 11.3 Measured impulse response of the second-order section fora =z 0.97.

The value of @ from Equation 11.8 is
a=1+or =097

The circuit becomes unstable when G is greater than 2G. We can think
sbout the onset of instability in the following way. There are two amplifiers (A1
and A2) with negative feedback, but there is only one amplifier {A3) with positive
feedback. Negative feedback damps the response, and positive feedback reduces
the damping. To make the circuit unstable, A3 must provide as much current as
do the two amplifiers, A1 and A2, that provide the damping. When the two effects
are equal, the circuit is just marginally damped. As we increase G4 above 2G, the
damping becomes negative, and the response becomes an exponentially growing
sine wave. Exponential growth is an explosive kind of thing, so the second-order
section rapidly leaves the small-signal regime, and becomes dominated by large-
signal effects, as we discuss later in this chapter.

Frequency Response

When the damping of the circuit is low, we find it natural to view the response
as a function of frequency. The frequency response of the second-order section of
Figure 11.1 is shown in Figure 11.4 for a number of values of @. The highest peak
corresponds to the setting used for the transient response shown in Figure 11.3.

We can evaluate the [requency response by substituting jw for s into FEqua-
tion 11.4:

Vs 1

Vi, T w4 j2wr(l— o) +1

We can simplify the algebra by computing D, the magnitude of the denom-
inator of the transfer function, in terms of a normalized frequency [ = w7 and
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0.1 N ¢ kHz
Frequency

:T;?UREfﬂ.:_h Mgasured frquency response of the second-order section for several
ues of o. The highest curve is for e = (.94, slightly lower than the value used for the

translent behavior shown in Figure 11.3. The lowes i ‘
oo 1o vory oot g o . t curve is for o = @, and the second

2(1 — ) = 1/Q. Using the fact that the i
. magnitude of a complex numb
computed from the Pythagorean theorem, we have ’ pember can be

2
D% = (1_ 232 f _. 4 2 1
(1 f)+—Q2—f —f (2—@ +1 (11.9)
It is convenient to plot the log of th i i
s Rt ot et b0 oy e magnitude of the transfer function as

Y5

1
ogvl

= —% log(Dz)

Hence, We can reason 4abou‘u the response directly from the behavior of D2
When f is small, the f* term is much smaller than is the f? term, so -
]

- (12 (2 ga) ) (1- )

At low frequencies (f much less than 1), the response grows larger as f is i
creased, provided Q2 is greater than 1 /2 or Q is greater than 0.707. At SOIII;;
frequenCQy, the f* term is no longer negligible, and it starts ca,nceling.the effect
of the f* term. Above that frequency, f* increases much faster than F? does, so
the response decreases. Eventually, the f* term is much larger than the ot,h
terms are, so the response decreases as 1/f2, because -

Vs

1
ogv1

—%log(fﬂ =—2log f
The plot decreases with a slope of —2 when f is much greater than 1
So we know the asymptotes. Near zero frequency, the gain is 1 and the

relsponse is flat (independent of frequency); at very high frequencies, the slope on
& log scale approaches —2, because the response is proportional to 1/ f2; between
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the two extremes, there is a maximum. The f 2 term increases before the f4 term
does; as f? increases, so does the response. Eventually, the f term becomes large
enough to dominate the #2 term, and then the response begins to decrease.

The response will be a maximum where D? is a mipimum—that is, where
the derivative is zero:

dD® | 1\ _
E“4f‘”@‘@)”
1

Equation 11.10 tells us where the peak in the response curve is. Now we can take
that maximum frequency from Equation 11.10 and put it back into the transfer
function Equation 11.9 to find the value of the denominator at the peak:

. _ 1 (1
Diox = g (1 4@2) (11.11)

Equation 11.11 gives a maximum value of the transfer function

Vi Q
1

Vl max 1—m—g

So, as (Q becomes large, the height of the peak approaches ¢, and the peak
frequency approaches 1/7.

When Q2 is equal to 1/2, the peak gain is 1 at zero frequency and the
response is maximally flat (that is, the lowest-order frequency dependence is ).
For lower @ values, the gain drops off quadratically with frequency.

LARGE-SIGNAL BEHAVIOR

Thus far, we have been concerned with the second-order section as a linear
system. The linear approximation is valid for small amplitudes of oscillation. As
we might expect, the circuit has all the slew-rate limitations we saw for first-
order filters. When the second-order section becomes slew-rate limited, however,
its behavior is much more exciting than that of its first-order cousins. When
the circuit that generated the small-signal impulse response of Figure 11.3 is
subjected to a large impulse input, it breaks into a sustained limit-cycle os-
cillation, as shown in Figure 11.5. The amplitude of the oscillation is the full

range of the power supply. Thus, the circuit that is perfectly stable for small '

signals becomes wildly unstable for large signals. We need a little imagination to
visualize a system controlled by such a circuit, gripped by recurring seizures of
this violent electronic epilepsy. As with any pathology, we must understand the
etiology, and take precautions against any possible onset of the disease.

We can analyze this grotesque behavior by realizing that the input voltages
to all three amplifiers are many kT/(gr} units apart over almost all parts of the
waveform. Under these conditions, the currents out of the amplifiers are constant,
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FIGURE 11.5 tLimit-cycle oscillation of the second-order section for o & 0.97, the

same setting under which the smail-signal res i
’ ponse of Figure 11, i
output traverses the entire range from ground to Vpp. ° " wes obtaned. The

equal to T;‘)lgs or minus the value of t_he bias current in the differential-pair current
;;I(:u;;e. l'ﬁhls CX;reitzwas called I, in Chapter 5. We designate the bias currents
plitiers Al, A2, and A3 as Iy, I», and I, respectivel

, . The small-signal

transconductances of the amplifi are di . ortional -
plifiers are directly proportional to th
We should thus be able to relate th i i "o sl stena]
. e large-signal instabili i
properties of the second-order section. ; o the smallsignal
oot Recajé what the feedbac.k amplifier A3 is doing: It is sensing the difference
1 ween V a.nd V3 and feeding a current back into V; to increase dVs /dt. In the
f ew-ratz li?nt, Va does not have the benefit of positive feedback, and thus it is
tiggmg e ind V. As 19ng as V3 is less than Vy, both Al and A3 are feeding
elr maximum current into €. The steep ascent of V4 thus has the slope

W _ bl
4 -G where Wi Vag V)
Once V, passes through Vi, the current out of Al changes sign, and
¥
Wy L
o where Vi Vo» V)

For the entire first half of the oscillati i '
ation cycle, V5 :
output current from A2 is just Ip: y o o well ahead of Vs, and the

dVs I

E—a; where Vo < Vs

Stability Limit

w tT};? Ia;ge;s}ignfal gsbcillation is sustained if V; reaches the rail before Vs catches
0 ¥3. As the feedback current I3 is decreased, th i i i

‘ ; , there is a point at which ¥

and V3 reach the rail at virtually the same time. The oscillation waveform undeff
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FIGURE 11.6 Minimum limit-cycle oscillation of the second_—order se_ctlon f(?ra rlﬁd 0.81.
Lower seilings of e lead to a damped response for all amplitudes of input signals.

those conditions is shown in Figure 11.6. If I3 is decreased below thﬁ Zah-lﬁ
shown in the figure, oscillation ceases. We can solve for t.he value .of Igft aijzo
just sustain a large-signal limit cycle by equating the time required for 15
i i do so.
ch Vpp with that required for V3 to '
o The? lt)ime to required for the output voltage to ramp from zero to Vpp is the
total voltage excursion divided by the rate at which the voltage increases:

b C>Vop
0= T
Similarly, the time ¢, for V5 to reach V1 is
b = 01V1
‘" L+ h
and the time &, for V, to ramp from Vj to Vpp is
b C1(Vop — Vi)
R A

Marginal oscillation occurs when

For the example shown in Figure 11.6, V) is approximately Vpp /2, En}i thg
result is independent of the value of Vpp. We asswme th@t I = I _f an(.) ;
that C; = Oy, and we divide all terms by I to obtain a dimensionless form

- b

Equation 11.12:

! + ! =2 (11.13)
20+1 2a-1

where, as before, « is equal to I3/(21).

&

ti+tn =10 (11.12)
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Equation 11.13 can be simplified to
40® —20—-1=9 (11.14)
The solution of Equation 11,14 is

1+ 5
T

The astute observer will immediately recognize that this number is one-half of
the golden ratio of classical Greek antiquity.

What a quaint result! We cannot allow current in the feedback amplifier to
exceed 0.809 times the sum of the currents in the forward amplifiers if we wish
the circuit to be stable for all possible inputs. In the realm of small signals,
we could increase that ratio to nearly 1. But small-signal linear behavior is not
limiting us here. We are strictly at the mercy of the nonlinearities.

= 0.809

Small-Signal Behavior at Stability Limit

We have found the maximum value of o at which it is safe to operate the
second-order section. If we adjust the current in amplifier A3 such that large-
signal oscillations are just marginally stable, we can examine how the section
will operate in its small-signal regime. The small-signal response to a step input
with & = 0.809 is shown in Figure 11.7. From Equation 11.8 we can determine
that or = 0.191 is the damping constant expected under these conditions,

The natural period of the oscillation is 27 /w. From Equation 11.7, we find
that wr is equal to 0.9816 for the present conditions. In one cycle of oscillation,
we expect the waveform to have been damped by

Vit=0) e (1L15)

Vit =2n/w) ~

o ——t—— ms
05

0 0.1 0.2 0.3 0.4

Time
FIGURE 1.7 Smali-signal response of the second-order section measured for o ==
0.81. This setting gave the minimum large-signal Imit-cycle shown in Figure 11.8.

é



190 PART Il DYNAMIC FUNCTIONS

For operation at the large-signal stability limit, Equation 11.15 predicts a factor
of 3.4 decay in the waveform per cycle of oscillation. The measured damping
of the waveform of Figure 11.7 is a factor of between four and five per cycle.
This discrepancy between prediction and measurement may be due to the sub-
stantial mismatch between real transistors—a problem that has been completely
neglected in the preceding analysis.

Recovery from Large Transients

When the feedback current is set below the stability limit, the circuit will
recover from large transient inputs. The waveforms for Va and V3 observed during
such a recovery are shown in Figure 11.8. They are similar to those observed in
the marginal-stability case (Figure 11.6). We can analyze the dynamics of the
recovery using the construction shown in Figure 11.9. The slopes of all waveforms
have been normalized to that for Va. While V; is below the input volfage V1, it
rises with a slope of 2ac+ 1. After Va exceeds V4, its slope is 2a—1. The analysis
is similar to that used to obtain the stability limit, except the excursion of Vy
above V5 is smaller than the initial deviation V; below V. Because we have
normalized all slopes to the slope of Vs, the total time will be Vi + Vp:

Vi + Vi
20+1 2a—-1
The decrement by which the amplitude decreases during each half-period is

AV =V — Vi.. We can express that decrement in terms of the total peak-to-peak
amplitude V; + V3. Solving Equation 11.16, we obtain

=V + Vi (11.16)

t+th =

Vi—Vh 9
b et - 20— 1 11.17
Vi+ Vn ( )

—1 L—o——H—a——q—ﬁ——n— — o+ MS

& 0.2 0.4 0.6 08 1.0
Time

FIGURE 11.8 Recovery of the second-order section from a large-signal input. The
response was measured for o < 0.8.
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FIGURE 1.9 Idealized waveform of large-
signal response for a < 0.809. The ampli-
tude of the oscillation decreases at each
half-cycle because Vs intersects V; slightly
earlier on each excursion.

. Set.ting this expression equal to 0 gives the value of o for marginal stability
{ quation 11.‘14); 1a.rger values of o lead to growing solutions, smaller values
ead to decaying solutions. Recognizing that the time for the halfperiod Af is

I hs th .
[J + [/ WE 5ee t iat € eX[)] €88100 ()i |]q11at1011 11 1i 18 t}l p
e dec? case i am, l?.tll.de

AV__4 9
Ar e — 20— 1 (11.18)

Equation‘ll.ES is the large-signal equivalent of a differential equation: It relates
the a,mpht.ud.e at one time to that at a later time. Because the amlg)lifiers are
slew:‘r?.te limited, the value of the signal does not affect the rate, as it would in
the hnea,r"’ regime. For this reason, the decay is linear instead ,of exponential;
the large-signal behavior is simpler than the corresponding small-signal behavior’
The approximately linear decay can be seen in Figore 11.8, .

SUMMARY

- We have derived the properties of second-order systems by way of a spe-
cific example. Second-order behavior can arise out of any complex system wIi)th
feedback. We encountered a precursor to the matter in Chapter 10, when we ob-
ser.ved damped oscillations in the response of the followerfdifferen:tia.tor circuit

It is common knowledge in the engineering community that feedback—controi
Systerr}s 1_13ua,11y oscillate; getting these systems to be stable is the hardest part
of Qemgnmg them. This difficulty is the origin of the old electrical-en, ineelsin

saying, “If you want an oscillator, design an amplifier.” ® ¢
- Neural systems are notorious for generating large-signal limit-cycle behavior

either as part of their normal behavior pattern (as in a heartbeat) or as a pa,thol-,
ogy (as in an epileptic seizure). The deep mystery of large-scale neural systems

.18 how they manage to stay stable at alll A hint can be gleaned from a comment
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by Gordon Shepherd «T'here is the impression from these experiments of a broad
curtain of inhibition drawn across the olfactory bulb, through which excitation
pierces, carrying specific information about the stimulating molecules.” [Shep-
herd, 1979, p. 173] A similar comment could be made about any of the sensory
systems, as well as about many other parts of the brain.

Inhibition as applied in biological systems is concerned with the magnitude
of activity, not with the sign. A dark edge moving across the visual field excites
as much response as a light edge would. The auditory system has a hard time
distinguishing a negative pressure pulse from a positive one. It could be that the
nonlinear nature of inhibitory feedback is the key to building a complex analog-
processing system with a great deal of gain and time delay, and to keeping the
entire mess stable. We will know that we understand these matters only when
we can build such a system—and can keep it stable.
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