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9.1 - SWITCHED CAPACITOR CIRCUITS
RESISTOR EMULATION

Switched capacitor circuits are not new.
James Clerk Maxwell used switches and a capacitor to measure the equivalent resistance of a
galvanometer in the 1860’s.

Parallel Switched Capacitor Equivalent Resistor:

i (t) i  (t)2

v (t)1 v  (t)2

1 R

(b.)

Figure 9.1-1  (a.) Parallel switched capacitor equivalent resistor.
(b.) Continuous time resistor of value R.
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Figure 9.1-2 - Waveforms of a typical  two-phase, nonoverlapping clock scheme.
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EQUIVALENT RESISTANCE OF A SWITCHED CAPACITOR CIRCUIT
Assume that v1(t) and v2(t) are changing slowly with respect to the clock period.

The average current is,

i1(average) = 
1
T  ⌡

⌠
0

T

i1(t)dt  = 
1
T  ⌡⌠

0

T/2

i1(t)dt

Charge and current are related as,

i1(t) = 
dq1(t)

dt
Substituting this in the above gives,

i1(average) = 
1
T  ⌡⌠

0

T/2

dq1(t) = 
q1(T/2)-q1(0)

T  = 
CvC(T/2)-CvC(0)

T

However, vC(T/2) = v1(T/2) and vC(0) = v2(0).  Therefore,

i1(average) = 
C [v1(T/2)-v2(0)]

T  ≈ 
C [V1-V2]

T  
For the continuous time circuit:

  ⇒⇒⇒⇒  i1(average) = 
V1-V2

R      ∴    R ≈ 
T
C 

For v1(t) ≈ V1 and v2(t) ≈ V2, the signal frequency must be much less than fc.

i (t) i  (t)2

C
v (t)1 v  (t)2

1 1 2

v  (t)C

i (t) i  (t)2

v (t)1 v  (t)2

1 R
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EXAMPLE 9.1 - Design of a Parallel Switched Capacitor Resistor Emulation

If the clock frequency of parallel switched capacitor equivalent resistor is 100kHz, find the value
of the capacitor C that will emulate a 1MΩ resistor.

Solution

The period of a 100kHz clock waveform is 10µsec.  Therefore, using the previous relationship,
we get that

C = 
T
R   = 

10-5

106  = 10pF
We know from previous considerations that the area required for 10pF capacitor is much less than for a
1MΩ resistor when implemented in CMOS technology.
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POWER DISSIPATION IN THE RESISTANCE EMULATION
If the switched capacitor circuit is an equivalent resistance, how is the power dissipated?

i (t) i  (t)2

v (t)1 v  (t)2

1 R

(b.)

Figure 9.1-1  (a.) Parallel switched capacitor equivalent resistor.
(b.) Continuous time resistor of value R.

(a.)

i (t) i  (t)2

C
v (t)1 v  (t)2

1 1 2

v  (t)C

Continuous Time Resistor:

Power = 
(V1 - V2)2

R  

Discrete Time Resistor Emulation:

Assume the switches have an ON resistance of Ron.  The power dissipated per clock cycle is,

Power = i1(aver.)(V1-V2) where i1 (aver.) = 
(V1 -V2)

RonT  ⌡⌠
0

T

e -t/(RonC)dt 

∴   Power = 
(V1-V2)2

TRon
 ⌡⌠
0

T

e -t/(RonC)dt = 
(V1-V2)2

(T/C)  [ ]-e -T /(RonC) + 1  ≈ 
(V1-V2)2

(T/C)    if  T >> RonC

Thus, if R = T/C, then the power dissipation is identical in the continuous time and discrete time
realizations.
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OTHER SWITCHED CAPACITOR EQUIVALENT RESISTANCE CIRCUITS

Series

i  (t)2

v (t)1 v  (t)2

i (t)1 1 2

1S 2S
C

v  (t)C

Series-Parallel

i  (t)2

C
v (t)1 v  (t)2

i (t)1 1 2

1S 2S
1

C2

v   (t)C1 v   (t)C2 1

1S i  (t)2

v (t) v  (t)2

i (t)1

1 2

2SC

12
1S 2S

Bilinear

v  (t)C

Series-Parallel:
The current, i1(t), that flows during both the φ1 and φ2 clocks is:

i1(average) = 
1
T  ⌡

⌠
0

T

i1(t)dt = 
1
T  











⌡⌠
0

T/2

i1(t)dt + ⌡⌠
T/2

T

i1(t)dt  = 
q1(T/2)-q1(0)

T + 
q1(T)-q1(T/2)

T

Therefore, i1(average) can be written as,

i1(average) = 
C2 [vC2(T/2)-vC2(0)]

T +
C1 [vC1(T)-vC1(T/2)]

T  
The sequence of switches cause,vC2(0) = V2, vC2(T/2) = V1, vC1(T/2) = 0, and vC1(T) = V1 - V2.
Applying these results gives

i1(average) = 
C2[V1-V2]

T  + 
C1[V1-V2- 0]

T  = 
(C1+C2)(V1-V2)

T  

Equating the average current to the continuous time circuit gives:  R = 
T

C1 + C2
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EXAMPLE 9.1-2 - Design of a Series-Parallel Switched Capacitor Resistor Emulation

If C1 = C2 = C, find the value of C that will emulate a 1MΩ resistor if the clock frequency is
250kHz.

Solution

The period of the clock waveform is 4µsec.  Using above relationship we find that C is given as,

2C = 
T
R  = 

4x10-6

106  = 4pF 

Therefore, C1 = C2 = C = 2pF.
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SUMMARY OF THE FOUR SWITCHED CAPACITOR RESISTANCE CIRCUITS

Switched Capacitor
Resistor Emulation Circuit

Schematic Equivalent Resistance

Parallel Cv (t)1 v  (t)2

1 2

T
C

 

Series v (t)1 v  (t)2

1 2

C
T
C

 

Series-Parallel

C
v (t)1 v  (t)2

1 2

1 C2

T
C1˚+˚C2

 

Bilinear

1v (t) v  (t)2

1 2

C

2 1

T
4C
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ACCURACY OF SWITCHED CAPACITOR CIRCUITS
Consider the following continuous time, first-order, low pass circuit:

R1

C21v v2

The transfer function of this simple circuit is,

H(jω) = 
V2(jω)
V1(jω) = 

1
jωR1C2 + 1 = 

1
jωτ1 + 1 

where τ1 = R1C2 is the time constant of the circuit and determines the accuracy.

Continuous Time Accuracy

Let τ1 = τC.  The accuracy of τC can be expressed as,
dτC

τC
 = 

dR1

R1
 + 

dC2

C2
 ⇒  5% to 20% depending on the size of the components

Discrete Time Accuracy

Let τ1 = τD = 



T

C1
 C2  = 



1

fcC1
 C2.  The accuracy of τD can be expressed as,

dτD

τD
 = 

dC2

C2
 - 

dC1

C1
 - 

dfc

fc
     ⇒    0.1% to 1% depending on the size of components

The above is the primary reason for the success of switched capacitor circuits in CMOS technology.
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ANALYSIS METHODS FOR TWO-PHASE, NONOVERLAPPING CLOCKS
Sampled Data Voltage Waveforms for a Two-phase Clock:

0 1/2 1 3/2 2 5/2 3 7/2 4 9/2 5
t/T

v(t)
v*(t)

1 2 2 2 2 21 1 1 1

v (t)O

v (t)e

0 1/2 1 3/2 2 5/2 3 7/2 4 9/2 5
t/T

v(t)

1 1 1 1 1

0 1/2 1 3/2 2 5/2 3 7/2 4 9/2 5
t/T

v(t)

2 2 2 2 2

A sampled-data
voltage waveform
for a two-phase
clock. 

A sampled-data
voltage waveform
for the odd-phase
clock. 

A sampled-data
voltage waveform
for the even-phase
clock. 
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ANALYSIS METHODS FOR TWO-PHASE, NONOVERLAPPING CLOCKS - CONT’D

Time-domain Relationships:

The previous figure showed that,

v*(t) = vo(t) + ve(t) 

where the superscript o denotes the odd phase (φ1) and the superscript e denotes the even phase
(φ2).

For any given sample point, t = nT/2, the above may be expressed as

 v* 



nT

2
 

n=1,2,3,4,5,6,···
 = v o 



nT

2
  

n=1,3,5,···
 + v e 



nT

2
  

n=2,4,5,···
 

z-domain Relationships:

Consider the one-sided z-transform of a sequence, v(nT), defined as

V(z) = 
∞

Σ
n = 0

 v(nT)z- n = v(0) + v(T)z- 1 + v(2T)z- 2 +  ···

for all z for which the series V(z) converges.

Now, this equation can be expressed in the z-domain as

V*(z) = Vo(z) + Ve(z) .

The z-domain format for switched capacitor circuits will allow us to analyze transfer functions.
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TRANSFER FUNCTION VIEWPOINT OF SWITCHED CAPACITOR CIRCUITS

Input-output voltages of a general switched capacitor circuit in the z-domain.

Switched
Capacitor

Circuit

1 2

V (z) = V (z) + V (z)i
o e

i i V (z) = V (z) + V (z)o
o e

o o

z-domain transfer functions:

H ij  (z) = 
V

j
 o (z)

V
i
 i(z)

  

where i and j can be either e or o.  For example, Hoe(z) represents V
e
o (z)/ V

o
i  (z) .  Also, a 

transfer function, H(z) can be defined as

H(z) = 
Vo(z)
Vi(z)

 = 
V

e
o(z) + V

o
o(z)

V
e
i(z) + V

o
i (z)

  .
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APPROACH FOR ANALYZING SWITCHED CAPACITOR CIRCUITS

1.)  Analyze the circuit in the time-domain during a selected phase period.

2.)  The resulting equations are based on q = Cv.

3.)  Analyze the following phase period carrying over the initial conditions from the previous analysis.

4.)  Identify the time-domain equation that relates the desired voltage variables.

5.)  Convert this equation to the z-domain.

6.)  Solve for the desired z-domain transfer function.

7.)  Replace z by ejωT and examine the frequency response.
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EXAMPLE 9.1-3 - Analysis of a Switched Capacitor, First-order, Low pass Filter
Use the above approach to find the z-domain transfer function of the first-order, low pass

switched capacitor circuit shown below.  This circuit was developed by replacing the resistor, R1, of the
previous circuit with the parallel switched capacitor resistor circuit.  The timing of the clocks is also
shown.  This timing is arbitrary and is used to assist the analysis and does not change the result.

Switched capacitor, low pass filter.

2Cv 1 v  21

1 2

C

Clock phasing for this example.

t
Tn-1n-3

2 n-1
2 n+1

2n

1 12 2 2

n+1

Solution
φ     1  : (n-1)T< t < (n-0.5)T
Equivalent circuit:

C2C1v (n-1)T1
o v (n-   )T3

2
e
2 v (n-1)To

2

Equivalent circuit.

C1

C2

v (n-1)T1
o v (n-   )T3

2
e
2 v (n-1)To

2

Simplified equivalent circuit.

The voltage at the output (across C2) is  v
o
2(n-1)T = v

e
2 (n-3/2)T (1)
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EXAMPLE 9.1-3 - Continued

φ     2  : (n-0.5)T< t < nT
Equivalent circuit:

C1

C2
v (n-1/2)T1

e v (n-   )T1
2

e
2

v (n-1)To
2v (n-1)To

1

C1

The output of this circuit can be expressed as the superposition of two voltage sources, 

v
o
1 (n-1)T and v

o
2 (n-1)T given as

v
e
2 (n-1/2)T = 



C1

C1+C2
 v

o
1 (n-1)T + 



C2

C1+C2
 v

o
2 (n-1)T. (2)

If we advance Eq. (1) by one full period, T, it can be rewritten as

v
o
2(n)T = v

e
2 (n-1/2)T. (3)

Substituting, Eq. (3) into Eq. (2) yields the desired result given as

v
o
2 (nT) = 



C1

C1+C2
 v

o
1 (n-1)T + 



C2

C1+C2
 v

o
2 (n-1)T. (4)
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EXAMPLE 9.1-3 - Continued
z-domain Analysis

The next step is to write the z-domain equivalent expression for Eq. (4).  This can be done term
by term using the sequence shifting property given as

v(n-n1)T  ↔  z-n1V(z) . (5)
The result is

V
o
2 (z) = 



C1

C1+C2
 z

-1
  V

o
1 (z) +  



C2

C1+C2
 z

-1
  V

o
2 (z). (6)

Finally, solving for V
o
2 (z)/V

o
1 (z) gives the desired z-domain transfer function for the switched

capacitor circuit of this example as

H
oo
 (z) = 

V
o
2 (z)

V
o
1 (z)

 = 
z-1





C1

C1+C2

1 - z-1




C2

C1+C2

 = 
z-1

1 + α - αz-1  , where α = 
C2

C1
 . (7)
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DISCRETE-FREQUENCY DOMAIN ANALYSIS
Relationship between the continuous and discrete frequency domains:

z = e jωT

Illustration:
j

= ∞

= 0

= -∞

Continuous
time frequency

response

Continuous Frequency Domain

Imaginary Axis

Real
Axis

+j1

-j1

+1-1

r = 1

Discrete
time frequency

response

= -∞

= ∞ = 0

Discrete Frequency Domain
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EXAMPLE 9.1-4 - Frequency Response of Example 9.1-3
Use the results of the previous example to find the magnitude and phase of the discrete time

frequency response for the switched capacitor circuit of Fig. 9.1-7a.

Solution

The first step is to replace z in Eq. (9) of Ex. 9.1-3 by e jωT.  The result is given  below as

Hoo
( )ejωΤ  = 

e-jωT

1+α-α e-jωT = 
1

(1+α)ejωT- α = 
1

(1+α)cos(ωT)- α + j(1+α)sin(ωT) (1)

where we have used Eulers formula to replace e jωT by cos(ωT)+jsin(ωT).  The magnitude of Eq. (1) is
found by taking the square root of the square of the real and imaginary components of the denominator
to give

| |Hoo  = 
1

(1+α)2cos2(ωT) - 2α(1+α)cos(ωT) + α2 + (1+α)2sin2(ωT)
 

= 
1

(1+α)2[cos2(ωT)+sin2(ωT)]+α2-2α(1+α)cos(ωT)
 

= 
1

1+2α+α2 -2α(1+α)cos(ωT)
 = 

1

1+2α(1+α)(1-cos(ωT))
  . (2)

The phase shift of Eq. (1) is expressed as

Arg[ ]Hoo  = - tan-1







(1+α)sin(ωT)

(1+α)cos(ωT)-α  = - tan-1









sin(ωT)

cos(ωT) - 
α

1+α
(3)
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THE OVERSAMPLING ASSUMPTION
The oversampling assumption is simply to assume that fsignal << fclock = fc.
This means that,

fsignal = f << 
1
T    ⇒    2πf = ω << 

2π
T    ⇒   ωT << 2π.

The importance of the oversampling assumption is that is permits the design of switched
capacitor circuits that approximates the continuous time circuit until the signal frequency begins to
approach the clock frequency.
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EXAMPLE 9.1-5 - Design of Switched Capacitor Circuit and Resulting Frequency Response
Design the first-order, low pass, switched capacitor circuit of Ex. 9.1-3 to have a -3dB frequency

at 1kHz.  Assume that the clock frequency is 20kHz  Plot the frequency response for the resulting
discrete time circuit and compare with a first-order, low pass, continuous time filter.

Solution

If we assume that ωT is less than unity, then cos(ωT) approaches 1 and sin(ωT) approaches ωT.
Substituting these approximations into the magnitude response of Eq. (2) of Ex. 9.1-4 results in

Hoo(ejωT) ≈ 
1

(1+α) -α + j(1+α)ωΤ  = 
1

1 + j(1+α)ωT . (1)

Comparing this equation to the simple, first-order, low pass continuous time circuit results in the
following relationship which permits the design of the circuit parameter α.

ωτ1 = (1+α)ωT (2)

Solving for α gives

α = 
τ1

T  - 1 = fcτ1 - 1 = 
fc

ω-3dB
 - 1 = 

ω c

2πω-3dB
 - 1 . (3)

Using the values given, we see that α = (20/6.28)-1 =2.1831.  Therefore, C2 = 2.1831C1.
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EXAMPLE 9.1-5 - Continued

Frequency Response of the First-order, Switched Capacitor, Low Pass Circuit:

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Magnitude

ω/ω
c

|H(jω)|

0.707

ω  = 1/τ
1

|Hoo(ejω T)|

Phase Shift (Degrees)

-100

-50

0

50

100

0 0.2 0.4 0.6 0.8 1
ω/ω

c

ω = 1/τ 1

Arg[H oo(ejωΤ)]

Arg[H(jω)]

Better results would be obtained if fc > 20kHz.
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9.2- SWITCHED CAPACITOR AMPLIFIERS
CONTINUOUS TIME AMPLIFIERS

+

-

vIN

OUTvR1 R2

+

-

vIN
R1 R2

OUTv

Noninverting Amplifier Inverting Amplifier
Gain and GB = ∞:

Vout

Vin
 = 

R1+R2

R1
 

Vout

Vin
 = - 

R2

R1
 

Gain ≠ ∞, GB = ∞:

Vout

Vin
 = 

Avd(0)

1 + 
Avd(0)R1

R1+R2

 = 



R1+R2

R1
 

Avd(0) R1

R1+R2

 1 + 
Avd(0)R1

R1+R2

 
Vout

Vin
 = 

-R2Avd(0)
R1+R2

1 + 
Avd(0)R1

R1+R2

 = - 



R2

R1
 

R1Avd(0)
R1+R2

1 + 
Avd(0)R1

R1+R2

 

Gain ≠ ∞, GB ≠ ∞:

Vout(s)
Vin(s)

 = 



R1+R2

R1
 

GB·R1

R1+R2

s + 
GB·R1

R1+R2

= 



R1+R2

R1
 

ωH

s+ωH

Vout(s)
Vin(s)

 = 



- 

R2

R1
 

GB·R1

R1+R2

s + 
GB·R1

R1+R2

 = 



- 

R2

R1
 

ωH

s+ωH
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EXAMPLE 9.2-1- Accuracy Limitation of Voltage Amplifiers due to a Finite Voltage Gain
Assume that the noninverting and inverting voltage amplifiers have been designed for a voltage

gain of +10 and -10.  If Avd(0) is 1000, find the actual voltage gains for each amplifier.
Solution

For the noninverting amplifier, the ratio of R2/R1 is 9.

Avd(0)R1/(R1+R2) = 
1000
1+9 = 100.

∴  
Vout

Vin
 = 10 



100

101  = 9.901 rather than 10.

For the inverting amplifier, the ratio of R2/R1 is 10.
Avd(0)R1
R1+R2

 = 
1000
1+10 = 90.909

∴ 
Vout

Vin
 = -(10)



90.909

1+90.909  = - 9.891 rather than -10.
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EXAMPLE 9.2-2 - -3dB Frequency of Voltage Amplifiers due to Finite Unity-Gainbandwidth
Assume that the noninverting and inverting voltage amplifiers have been designed for a voltage

gain of +1 and -1.  If the unity-gainbandwidth, GB, of the op amps are 2πMrads/sec, find the upper -
3dB frequency for each amplifier.

Solution

In both cases, the upper -3dB frequency is given by

ωH = 
GB·R1
R1+R2

For the noninverting amplifier with an ideal gain of +1, the value of R2/R1 is zero.

∴   ωH = GB = 2π Mrads/sec (1MHz)

    For  the inverting amplifier with an ideal gain of -1, the value of R2/R1 is one.

∴ ωH = 
GB·1
1+1  = 

GB
2  = π Mrads/sec (500kHz)
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CHARGE AMPLIFIERS

+

-

vIN

OUTvC1 C2

Noninverting Charge Amplifier

+

-

vIN
OUTv

Inverting Charge Amplifier

C1 C2

Gain and GB = ∞:
Vout

Vin
 = 

C1+C2
C2

Vout

Vin
 = - 

C1
C2

Gain ≠ ∞, GB = ∞:

Vout

Vin
 =  



C1+C2

C2
 

Avd(0)C2
C1+C2

1 + 
Avd(0)C2
C1+C2

Vout

Vin
 =  



-

C1

C2
 

Avd(0)C2
C1+C2

1 + 
Avd(0)C2
C1+C2

Gain ≠ ∞, GB ≠ ∞:

Vout

Vin
 =  



C1+C2

C2
 

GB·C2
C1+C2

s + 
GB·C2
C1+C2

Vout

Vin
 =  



-

C1

C2
 

GB·C2
C1+C2

s + 
GB·C2
C1+C2
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SWITCHED CAPACITOR AMPLIFIERS
Parallel Switched Capacitor Amplifier:

1 2

+

-

1 2

voutinv

C1

2C

Inverting Switched Capacitor Amplifier

+
-

vC1

vC2

+
-

1 2

+

-

1

2C

C1

voutinv

Modification to prevent open-loop operation

vC1

vC2

+
-

+-

Analysis:
Find the even-odd and the even-even z-domain transfer function for the above switched capacitor

inverting amplifier.

Clock phasing for this example.

t
Tn-1n-3

2 n-1
2 n+1

2n

1 12 2 2

n+1

φ     1  : (n -1)T < t  < (n -0.5)T

v
o

C1(n -1)T = v
o
in (n -1)T 

and

v
o

C2(n -1)T  = 0
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SWITCHED CAPACITOR AMPLIFIERS - Continued

φ     2  : (n -0.5)T < t  < nT
Equivalent circuit:

From the simplified
equivalent circuit we
write,

v
e
out (n-1/2)T = - 



C1

C2
 v

o
in (n-1)T 

Converting to the z-domain gives,

z -1/2 V
e

out(z) = -



C1

C2
 z -1 V

o
in(z) 

Multiplying by z-1/2 gives,

V
e

out(z) = -



C1

C2
 z -1/ 2  V

o
in(z) 

Solving for the even-odd transfer function, Hoe (z), gives,

 Hoe (z) = 
V

e
out(z)

 V
o
in(z) 

 = -



C1

C2
 z -1/ 2  

inv o

+

-
2CC1

Simplified equivalent circuit.

vC1 vC2

+

-

+-+-

(n-1)T

= 0 = 0 vout (n-1/2)T
e

Equivalent circuit at the moment φ2 closes.

+

-
C1 inv

vC2

+
-

(n-1)T

= 0

o

+-

2

t = 0 vout (n-1/2)T
e
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SWITCHED CAPACITOR AMPLIFIERS - Continued

Solving for the even-even transfer function, Hee (z).

Assume that the applied input signal, v
o
in (n-1)T,  was uncharged during the previous φ2 phase

period(from t = (n-3/2)T to t = (n-1)T), then

v
o
in (n-1)T = v

e
in (n-3/2)T 

which gives

V
o
in(z) = z -1/2 V

e
in(z) .

Substituting this relationship into Hoe(z) gives

V
e

out(z) = -



C1

C2
 z -1 V

e
in(z) 

or

 Hee (z) = 
V

e
out(z)

 V
e
in(z) 

 = -



C1

C2
 z -1 
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FREQUENCY RESPONSE OF SWITCHED CAPACITOR AMPLIFIERS

Replace z  by e jωT.

Hoe (e jωT) = 
V

e
out(  e jωT)

 V
o
in(  e jωT) 

 = -



C1

C2
 e -jωT/2 

and

Hee (e jωT) = 
V

e
out(  e jωT)

 V
e
in(  e jωT) 

 = -



C1

C2
 e -jωT 

If C1/C2 is equal to R2/R1, then the magnitude response is identical to inverting unity gain amplifier.

However, the phase shift of Hoe(e jωT) is

Arg[Hoe(e jωT)] = ±180° - ωT/2

and the phase shift of Hoe(e jωT) is

Arg[Hee(e jωT)] = ±180° - ωT.

Comments:

•  The phase shift of the switched capacitor inverting amplifier has an excess linear phase delay.

•  When the frequency is equal to 0.5fc, this delay is 90°.

•  One must be careful when using switched capacitor circuits in a feedback loop because of the
excess phase delay.
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POSITIVE AND NEGATIVE TRANSRESISTANCE EQUIVALENT CIRCUITS
Transresistance circuits are two-port networks where the voltage across one port controls the

current flowing between the ports.  Typically, one of the ports is at zero potential (virtual ground).

Circuits:

Positive Transresistance Realization.

1

2 2

1
C

vC(t)

v1(t)

i1(t) i2(t)

CP CP

Negative Transresistance Realization.

1

2

2

1
C

vC(t)

v1(t)

i1(t) i2(t)

CP CP

Analysis (Negative transresistance realization):

RT = 
v1(t)
i2(t)

 = 
v1

i2(average) 

If we assumev1(t) is approximately constant over one period of the clock, then we can write

i2(average) = 
1
T ⌡⌠

T/2

 T

i2(t)dt = 
q2(T) - q2(T/2)

T  = 
CvC(T) - CvC(T/2)

T  = 
-Cv1

T

Substituting this expression into the one above shows that

 RT = -T/C 

Similarly, it can be shown that the positive transresistance is T/C.

Comments:

  •  These results are only valid when fc  >> f.

  •  These circuits are insensitive to the parasitic capacitances shown as dotted capacitors.
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NONINVERTING STRAY INSENSITIVE SWITCHED CAPACITOR AMPLIFIER
Analysis:

φ     1  : (n -1)T < t < (n -0.5)T

The voltages across each capacitor can be
written as

v
o

C1(n -1)T = v
o
in(n -1)T

and

v
o

C2(n -1)T = v
o

out(n -1)T = 0 .
φ     2  : (n -0.5)T < t < nT

The voltage across C2 is

v
e

out(n -1/2)T = 



C1

C2
 v

o
in(n -1)T

V
e

out(z) = 



C1

C2
 z -1/2 V

o
in(z)   →    H˚oe(z) = 







C1

C2
 z-1/2  

If the applied input signal, v
o
in(n -1)T, was unchanged during the previous φ2 phase period above

becomes

V
e

out(z) = 



C1

C2
 z-1 V

e
in(z)     →    H˚ee(z) = 







C1

C2
 z-1  

Comments:
  •  Excess phase of H oe(e jωT) is -ωT/2 and for H ee(e jωT) is -ωT

Clock phasing for this example.

t
Tn-1n-3

2 n-1
2 n+1

2n

1 12 2 2

n+1

Noninverting Switched Capacitor Voltage Amplifier.

1 2

+

-

1

2C

voutinv vC2
+-

12
1C

vC1(t)
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INVERTING STRAY INSENSITIVE SWITCHED CAPACITOR AMPLIFIER
Analysis:

φ     1  : (n -1)T < t < (n -0.5)T
The voltages across each capacitor can be

written as

v
o

C1(n -1)T = 0
and

v
o

C2(n -1)T = v
o

out(n -1)T = 0 .

φ     2  : (n -0.5)T < t < nT
The voltage across C2 is

v
e

out(n -1/2)T = - 



C1

C2
 v

e
in(n -1/2)T

V
e

out(z) = - 



C1

C2
V

o
in(z)   →    H˚oe(z) = - 







C1

C2
 

Comments:

  •  The inverting switched capacitor amplifier has no excess phase delay.
  •  There is no transfer of charge during φ1.

Inverting Switched Capacitor Voltage Amplifier.

1

2

+

-

1

2C

voutinv vC2
+-

1

2

vC1(t)vC1(t)

1C

vC1(t)
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EXAMPLE 9.2-3 - DESIGN OF A SWITCHED CAPACITOR SUMMING AMPLIFIER
Design a switched capacitor summing amplifier using the circuits in stray insensitive

transresistance circuits which gives the output voltage during the φ2 phase period that is equal to 10v1 -
5v2, where v1 and v2 are held constant during a φ2-φ1 period and then resampled for the next period.

Solution

A possible solution is shown.  Considering
each of the inputs separately, we can write that

v
e

o1(n-1/2)T = 10v
o
1(n-1)T (1)

and

v
e

o2(n-1/2)T = -5v
e
2(n-1/2)T . (2)

Because v
o
1(n-1)T = v

e
1(n-3/2)T, Eq. (1) can be

rewritten as

v
e

o1(n-1/2)T = 10v
e
1(n-3/2)T . (3)

Combining Eqs. (2) and (3) gives

v
e
o(n-1/2)T = v

e
o1(n-1/2)T + v

e
o2(n-1/2)T = 10v

e
1(n-3/2)T - 5v

e
2(n-1/2)T . (4)

or

V
e
o(z) = 10z-1V

e
1(z) - 5V

e
2(z) . (5)

Eqs. (4) and (5) verifies that proposed solution satisfies the specifications of the example.

1 2

+

-

1

vo
12

v1

1

2

1

2v2

C

10C

5C
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NONIDEALITIES OF SWITCHED CAPACITOR CIRCUITS - CAPACITORS

See Chapter 2
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NONIDEAL OP AMPS - FINITE GAIN
Finite Amplifier Gain

Consider the noninverting switched capacitor amplifier during φ2:

inv

+

-

2CC1

+

-

(n-1)T

vout (n-1/2)T
e

o
vout (n-1/2)T

e

Avd(0)
+- Op amp with finite 

value of Avd(0)
Fig. 9.2-11

The output during φ2 can be written as,

v
e

out(n -1/2)T = 



C1

C2
 v

o
in(n -1)T + 



C1+C2

C2
 
v

e
out(n -1/2)T

Avd(0)  

Converting this to the z-domain and solving for the Hoe(z) transfer function gives

Hoe(z) = 
V

e
out(z)

V
o
in(z)

 = 



C1

C2
 z-1/2 









1

1 - 
C1 + C2

Avd(0)C2

 .

Comments:
•  The phase response is unaffected by the finite gain

•  A gain of 1000 gives a magnitude of 0.998 rather than 1.0.
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NONIDEAL OP AMPS - FINITE BANDWIDTH AND SLEW RATE
Finite GB:

•  In general the analysis is complicated.  (We will provide more detail for integrators.)

•  The clock period, T, should be equal to or less that 10/GB.

•  The settling time of the op amp must be less that T/2.

Slew Rate:

•  The slew rate of the op amp should be large enough so that the op amp can make a full swing
within T/2.
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9.3 - SWITCHED CAPACITOR INTEGRATORS
CONTINUOUS TIME INTEGRATORS

-R1 C2 R R VoutVin

(a.)

+

-

+

-

Inverter

(b.)

R1 C2Vin Vout

+

-

(a.)  Noninverting and (b.) inverting continuous time integrators.

Ideal Performance:

Noninverting- Inverting-

Vout(jω)
Vin(jω)  = 

1
jω R 1C2

 = 
ω I

jω  = 
-jωI

ω  
Vout(jω)
Vin(jω)  = 

-1
jω R 1C2

 = 
-ωI

jω  = 
jω I

ω  

Frequency Response:

90°

0°

Arg[Vout(jω)/Vin(jω)]

ωI log10ω

|Vout(jω)/Vin(jω)|

ωIωIωI
100 10

10ωI 100ωI

log10ω

40 dB

20 dB

0 dB

-20 dB

-40 dB

(a.) (b.)
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CONTINUOUS TIME INTEGRATORS - NONIDEAL PERFORMANCE
Finite Gain:

Vout

Vin
 = -



1

sR1C2
 

Avd(s) sR1C2

sR1C2 + 1

1 + 
Avd(s) sR1C2

sR1C2+1

 = 





- 
ωI

s  

Avd(s) (s/ωΙ)
 (s/ωΙ) + 1

1 + 
Avd(s) (s/ωΙ)
 (s/ωΙ) + 1

  

where Avd(s) = 
Avd(0)ωa

s+ωa
 = 

GB
s+ωa

 ≈ 
GB

s  

Case 1:  s →  0  ⇒    Avd(s) = Avd(0)    ⇒
Vout

Vin
 ≈ - Avd(0) (1)

Case 2:  s → ∞  ⇒     Avd(s) = 
GB
s     ⇒   

Vout

Vin
 ≈ - 



GB

s   



ω I

s  (2)

Case 3:  0 < s < ∞   ⇒   Avd(s) = ∞    ⇒    
Vout

Vin
 ≈ - 

ωI

s  (3)

90°

0°

Arg[Vout(jω)/Vin(jω)]

log10ωωI
Avd(0)

GB

180°

45°

135°

ωI
10Avd(0) 10ωI

Avd(0)
GB
10

10GB

|Vout(jω)/Vin(jω)|

ωI log10ω0 dB GB

Avd(0) dB
Eq. (3)

Eq. (2)

Eq. (1)

ωI
Avd(0)

ωx1 =

ωx2 =
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EXAMPLE 9.3-1 - Frequency Range over which the Continuous Time Integrator is Ideal
Find the range of frequencies over which the continuous time integrator approximates ideal

behavior if Avd(0) and GB of the op amp are 1000 and 1MHz, respectively.  Assume that ωI is 2000π
radians/sec.

Solution

The “idealness” of an integrator is determined by how close the phase shift is to ±90° (+90° for
an inverting integrator and -90° for a noninverting integrator).

The actual phase shift in the asymptotic plot of the integrator is approximately 6° above 90° at the
frequency 10ωI/Avd(0) and approximately 6° below 90° at GB /10.

Assume for this example that a ±6° tolerance is satisfactory.  The frequency range can be found by
evaluating 10ωI/Avd(0) and GB/10.

Therefore the range over which the integrator approximates ideal behavior is from 10Hz to 100kHz.
This range will decrease as the phase tolerance is decreased.
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NONINVERTING SWITCHED CAPACITOR INTEGRATOR
Analysis:

φ     1  : (n -1)T < t < (n -0.5)T

The voltage across each capacitor is

v
o
c1(n-1)T = v

o
in(n-1)T 

and

v
o
c2(n-1)T = v

o
out(n-1)T .

φ     2  : (n -0.5)T < t < n T

Equivalent circuit:

o
inv

Simplified equivalent circuit.

2C

C1

vC1

+

+
+

(n-1)T

= 0

vC2 = 0

vout (n-1/2)T
e

+-
-

-
vout(n-1)To

-

+

-

Equivalent circuit at the moment the φ2 switches close.

C1 inv
+

(n-1)T

vC2 =

o

vout(n-1)To

+
2

t = 0 vout (n-1/2)T
e

-
-

+

-

t = 0
2

2C

We can write that, v
e

out(n -1/2)T  = 



C1

C2
 v

o
in(n -1)T  + v

o
out(n -1)T 

Noninverting, stray insensitive integrator.

1 2

2C

voutinv vC2
+-

12

1C

vC1(t)

+

-
+ -

S1

S2 S3

S4
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NONINVERTING SWITCHED CAPACITOR INTEGRATOR - Continued

φ     1  : nT < t < (n  + 0.5)T

If we advance one more phase period, i.e. t = (n)T to t = (n-1/2)T, we see that the voltage at the
output is unchanged.  Thus, we may write

v
o

out(n)T = v
e

out(n-1/2)T .

Substituting this relationship into the previous gives the desired time relationship expressed as

v
o

out(n)T  = 



C1

C2
 v

o
in(n -1)T  + v

o
out(n -1)T .

Transferring this equation to the z-domain gives,

V
o

out(z)  = 



C1

C2
 z-1V

o
in(z)  + z-1V

o
out(z)   →   Hoo(z) = 

V
o

out(z)
 V

o
in(z)

 = 



C1

C2
 

z-1

1-z-1 = 



C1

C2
 

1
z-1 

Replacing z by ejω Τ  gives,

Hoo(e jωΤ) = 
V

o
out( e jωΤ)

 V
o
in( e

jωΤ)
 = 



C1

C2
 

1
 e jωΤ -1 =  



C1

C2
 

e-jωΤ/2

 e jωΤ/2 - e-jωΤ/2 

Replacing ejωΤ/2 - e-jωΤ/2 by its equivalent trigonometric identity, the above becomes

     Hoo(e jωΤ) = 
V

o
out(e jωΤ)

 V
o
in( e jωΤ)

 = 



C1

C2
 

e-jωΤ/2

j2 sin(ωT/2) 





ωT

ωT  =  



C1

jωTC2
 






ωT/2

sin(ωT/2)  ( )e-jωΤ/2   

Hoo(ejωT) = (Ideal)x(Magnitude error)x(Phase error) where ωI = 
C1

TC2
  ⇒  Ideal = 

ωI

jω  
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EXAMPLE 9.3-2 - Comparison of a Continuous Time and Switched Capacitor Integrator

Assume that ωI is equal to 0.1ωc and plot the magnitude and phase response of the noninverting
continuous time and switched capacitor integrator from 0 to ωI.

Solution

Letting ωI be 0.1ωc gives

H(jω) = 
1

10jω/ωc
 and Hoo(e jωΤ) = 



1

10jω/ωc
 






πω/ωc

sin(πω/ωc)
 ( )e-jπω/ωc

Plots:

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1

Magnitude

|Hoo(ejωT)|

|H(jω)|ωI

ω/ω c

-300

-250

-200

-150

-100

-50

0

0 0.2 0.4 0.6 0.8 1

Phase Shift (Degrees)

Arg[Hoo(ejωT)]

Arg[H(jω)]

ω I ω/ω c
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INVERTING SWITCHED CAPACITOR INTEGRATOR
Analysis:

φ     1  : (n -1)T < t < (n -0.5)T

The voltage across each capacitor is

v
o
c1(n -1)T = 0 

and

v
o
c2(n -1)T = v

o
out(n -1)T  = v

e
out(n -

3
2)T.

φ     2  : (n -0.5)T < t < n T

Equivalent circuit:

e
inv

Simplified equivalent circuit.

2C

C1

vC1

+
+

+

(n-1/2)T

= 0

vC2 = 0

vout (n-1/2)T
e

+-
-

-
vout(n-3/2)Te

- +

-

Equivalent circuit at the moment the φ2 switches close.

vC2 =
vout(n-3/2)Te

+
2

t = 0 vout (n-1/2)T
e

-

+

-

C1

vC1+ +

(n-1/2)T
= 0

-

-

e
inv

2

t = 0

2C

Now we can write that,

v
e

out(n-1/2)T = v
e

out(n-3/2)T - 



C1

C2
 v

e
in(n-1/2)T . (22)

Inverting, stray insensitive integrator.

1

2

2C

voutinv vC2
+-

1

2

1C

vC1(t)

+

-S1

S2 S3

S4
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INVERTING SWITCHED CAPACITOR INTEGRATOR - Continued

Expressing the previous equation in terms of the z-domain equivalent gives,

V
e

out(z)  = z-1V
e

out(z)  - 



C1

C2
 V

e
in(z)    →    Hee(z) = 

V
e

out(z)
 V

e
in(z)

 = - 



C1

C2
 

1
1-z-1 = - 



C1

C2
 

z
z-1 

To get the frequency response, we replace z by ejωΤ giving,

Hee(e jωΤ) = 
V

e
out( e jωΤ)

 V
e
in( e

jωΤ)
 = - 



C1

C2
 

e jωΤ

e jωΤ -1 =  - 



C1

C2
 

e jωΤ/2

 e jωΤ/2 - e-jωΤ/2 

Replacing ejωΤ/2 - e-jωΤ/2 by 2j sin(ωT/2) and simplifying gives,

    Hee(e jωΤ) = 
V

e
out(e jωΤ)

 V
e
in( e jωΤ)

 =  - 



C1

jωTC2
 






ωT/2

sin(ωT/2)  ( )e jωΤ/2

Same as noninverting integrator except for phase error.

Consequently, the magnitude response is identical but the phase response is given as

Arg[Hee(e jωΤ)] = 
π
2 + 

ωΤ
2  .

Comments:

  • Note that the phase error is positive for the inverting integrator and negative for the  noninverting
integrator.

•  The cascade of an inverting and noninverting switched capacitor integrator has no phase error.
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A SIGN MULTIPLEXER

A circuit that changes the φ1 and φ2  of the leftmost switches of the stray insensitive, switched capacitor
integrator.

1 2

VC

x

y

To switch connected
to the input signal (S1).

To the left most switch
connected to ground (S2).

VC

0

1

x y

1

12

2

Fig. 9.3-8

This circuit steers the φ1 and φ2 clocks to the input switch (S1) and the leftmost switch connected to
ground (S2) as a function of whether Vc is high or low.
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SWITCHED CAPACITOR INTEGRATORS - FINITE OP AMP GAIN
Consider the following circuit which is
equivalent of the noninverting integrator at the
beginning of the φ2  phase period.

The expression for v
e

out (n-1/2)T can be written
as
  

v
e

out(n-1/2)T  = 



C1

C2
 v

o
in(n-1)T  + v

o
out(n-1)T - 

v
o

out(n-1)T
Avd(0)  + 

v
e

out(n-1/2)T
Avd(0)  



C1+C2

C2
 

Substituting  v
o

out(n)T = v
e

out(n -0.5)T  into this equation gives

v
o

out(n)T  = 



C1

C2
 v

o
in(n-1)T  + v

o
out(n-1)T - 

v
o

out(n-1)T
Avd(0)  + 

v
o

out(n)T
Avd(0)  



C1+C2

C2

Using the previous procedures to solve for the z-domain transfer function results in,

Hoo(z) = 
V

o
out(z)

 V
o
in(z)

 = 

C1

C2
 z-1

1 - z-1 + 
z-1

Avd(0) - 
C1

Avd(0)C2
  z-1

 z-1 + 
1

Avd(0) 
z-1

 z-1

 

or

Hoo(z) = 
V

o
out(z)

 V
o
in(z)

 = 



 (C1/C2) z

-1

1 - z-1  









1

1 - 1
Avd(0)

 - C1

Avd(0)C2(1-z-1)

 = 
HI(z)

1 - 
1

Avd(0) - 
C1

Avd(0)C2(1-z-1)

 

o
inv

2C

C1

vC1

+

+
+

(n-1)T

= 0

vC2 = 0

vout (n-1/2)T
e

+-
-

-

-

+

-

+-

vout (n-1/2)T
e

Avd(0)

vout (n-1)T -
o vout (n-1)T

o

Avd(0)

Fig. 9.3-10
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FINITE OP AMP GAIN - Continued

Substitute the z-domain variable, z, with ejwT to get

Hoo(e jωT) = 
HI(e

 jωT)

1 - 
1

Avd(0) 



1 + 

C1

2C2
 - j 

C1/C2

2Avd(0) tan



ωT

2

 (1)

where now HI(e
 jωT) is the integrator transfer function for Avd(0) = ∞.

 The error of an integrator can be expressed as

H(jω) = 
HI(jω)

[1-m(ω)] e-jθ(ω) 

where

m(ω) = the magnitude error due to Avd(0)

θ(ω) = the phase error due to Avd(0)

If θ(ω) is much less than unity, then this expression can be approximated by

H(jω) ≈ 
HI(jω)

1 - m(ω) - jθ(ω) (2)

Comparing Eq. (1) with Eq. (2) gives the magnitude and phase error due to a finite value of Avd(0) as

m(jω) = - 
1

Avd(0) 



1 + 

C1

2C2
 and θ(jω) = 

C1/C2

2Avd(0) tan



ωT

2
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EXAMPLE 9.3-3 - Evaluation of the Integrator Errors due to a finite value of Avd(0)
Assume that the clock frequency and integrator frequency of a switch capacitor integrator is

100kHz and 10kHz, respectively.  If the value of Avd(0) is 100, find the value of m(jω) and θ(jω) at
10kHz.

Solution

The ratio of C1 to C2 is found as

C1

C2
 = ωIT = 

2π⋅10,000
100,000  = 0.6283 .

Substituting this value along with that for Avd(0) into m(jω) and θ(jω)  gives

m(jω) =  - 



1 + 

0.6283
2  = -0.0131 

and

θ(jω) =  
0.6283

2⋅100⋅tan(18°) = 0.554° .

The “ideal” switched capacitor transfer function, HI(jω), will be multiplied by a value of approximately
1/1.0131 = 0.987 and will have an additional phase lag of approximately 0.554°.

In general, the phase shift error is more serious than the magnitude error.
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SWITCHED CAPACITOR INTEGRATORS - FINITE OP AMP GB

The precise analysis of the influence of GB can be found elsewhere† .  The results of such an
analysis can be summarized in the following table.

Noninverting Integrator Inverting Integrator

m(ω) ≈ -e-k
1 



C2

C1+C2

θ(ω) ≈ 0

m(ω) ≈ -e-k
1 



1 - 



C2

C1+C2
 cos(ωT)  

θ(ω) ≈ -e-k
1 



C2

C1+C2
 cos(ωT) 

k1 ≈ π 



C2

C1+C2
 



GB

fc

If ωT is much less than unity, the expressions in table reduce to

m(ω) ≈ -2π 



f

fc
 e-π(GB/f

c
) 

                                                
†
   K. Martin and A.S. Sedra, “Effects of the Op Amp Finite Gain and Bandwidth on the Performance of Switched-Capacitor Filters,” IEEE

Trans. on Circuits and Systems, vol. CAS-28, no. 8, August 1981, pp. 822-829.
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SWITCHED CAPACITOR CIRCUITS - kT/C NOISE
Switched capacitors generate an inherent thermal noise given by kT/C.  This noise is verified as follows.

An equivalent circuit for a switched capacitor:

C voutvin

+

-

+

-

C voutvin

+

-

+

-

Ron

(a.) (b.)
Figure 9.3-11 - (a.) Simple switched capacitor circuit.  (b.)  Approximation of (a.).

The noise voltage spectral density of Fig. 9.3-11b is given as

e
2

Ron
 = 4kTRon  Volts2/Hz  = 

2kTRon

π   Volt2/Rad./sec. (1)

The rms noise voltage is found by integrating this spectral density from 0 to ∞ to give

 v
2

Ron
 = 

2kTRon

π  
⌡

⌠

0

∞

ω1
2dω

ω1
2+ω2 = 

2kTRon

π 





πω1

2  = 
kT
C   Volts(rms)2 (2)

where ω1 = 1/(RonC).   Note that the switch has an effective noise bandwidth of

fsw = 
1

4RonC
  Hz (3)

which is found by dividing Eq. (2) by Eq. (1).
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9.4  Z-DOMAIN MODELS OF TWO-PHASE, SWITCHED CAPACITOR
CIRCUITS
Objective:

•  Allow easy analysis of complex switched capacitor circuits

•  Develop methods suitable for simulation by computer

•  Will constrain our focus to two-phase, nonoverlapping clocks

General Two-Port Characterization of Switched Capacitor Circuits:

+
-

vin(t) vout(t)

Independent
Voltage
Source

Switched
Capacitor

Circuit

Unswitched
Capacitor

Dependent
Voltage
Source

Figure 9.4-1 - Two-port characterization of a general switched capacitor circuit.

Approach:

•  Four port - allows both phases to be examined

•  Two-port - simplifies the models but not as general
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INDEPENDENT VOLTAGE SOURCES

0 1/2 1 3/2 2 5/2 3 7/2 4 9/2 5
t/T

v(t)
v*(t)

1 2 2 2 2 21 1 1 1

v (t)O

v (t)e

0 1/2 1 3/2 2 5/2 3 7/2 4 9/2 5
t/T

v(t)

1 1 1 1 1

0 1/2 1 3/2 2 5/2 3 7/2 4 9/2 5
t/T

v(t)

2 2 2 2 2

2 2 2 2 2

1 1 1 1 1

Ve(z)

Vo(z)

z-1/2Vo(z)

Vo(z)

Ve(z)

z-1/2Ve(z)

Phase Dependent
Voltage Source

Phase Independent
Voltage Source for
the Odd Phase

Phase Independent
Voltage Source for
the Even Phase
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SWITCHED CAPACITOR FOUR-PORT CIRCUITS AND Z-DOMAIN MODELS†

+

-
V o

2

+

-
V e

2

+

-
V o

1

+

-
V e

1

C

-C
z-

1/
2

C
z-

1/
2

-C
z-

1/
2

C

+

-
v1(t) v2(t)C

φ1 φ2

+

-

Parallel Switched Capacitor

+

-

+

-

Cz-1/2

V e
2V o

1

Switched Capacitor, Two-Port Circuit Simplified, Two-Port z-domain Model

+

-
v1(t) v2(t)

Cφ1 φ2

+

-

Negative SC Transresistance

φ2 φ1

+

-
V o

2

+

-
V e

2

+

-
V o

1

+

-
Ve

1

C

C
z-

1/
2

-C
z-

1/
2

C
z-

1/
2

C

+

-

+

-

-Cz-1/2

V e
2V o

1

+

-
v1(t) v2(t)

C

φ1

φ2 +

-

Positive SC Transresistance

φ2
φ1

+

-
V o

2

+

-
V e

2

+

-
V o

1

+

-
V e

1

C

+

-

+

-

C

V e
2V e

1

+

-
v1(t) v2(t)

C
φ2 +

-

Capacitor and Series Switch

+

-
V o

2

+

-
V e

2

+

-
V o

1

+

-
V e

1
C(1-z-1)

+

-

+

-
V e

2V e
1

C(1-z-1)

Four-Port, z-domain Equivalent Model

Fig. 9.4-3

(Circuit connected between
defined voltages)

(Circuit connected between
defined voltages)

(Circuit connected between
defined voltages)

(Circuit connected between
defined voltages)

                                                
†
   K.R. Laker, “Equivalent Circuits for Analysis and Synthesis of Switched  Capacitor Networks,” Bell System Technical Journal, vol. 58, no.

3, March 1979, pp. 729-769.
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Z-DOMAIN MODELS FOR CIRCUITS THAT MUST BE FOUR-PORT

+

-
v1(t) v2(t)

C

+

-

+

-
V o

2

+

-
V e

2

+

-
V o

1

+

-

Ve
1

C

-C
z-

1/
2

C
z-

1/
2

C

-C
z-

1/
2

C
z-

1/
2

+

-
V o

2

+

-
V e

2

+

-
V o

1

+

-
Ve

1

C

-C
z-

1/
2

C

-C
z-

1/
2

+

-
v1(t) v2(t)

C

φ1

+

-
Capacitor and 
Shunt Switch

+

-
V o

2

+

-
V e

2

+

-
V o

1

+

-
V e

1

C

Unswitched
Capacitor

+

-
V o

2

+

-
V e

2

+

-
V o

1

+

-
V e

1

C

Switched Capacitor 
Circuit

Four-port z-domain Model Simplified Four-port
z-domain Model

Fig. 9.4-4
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Z-DOMAIN MODEL FOR THE IDEAL OP AMP

+
-

+

-
vi(t)

+

-
vo(t) = Avvi(t)

+

-
Vi

o(z)

+

-

Vi
e(z)

+

-
Vo

o(z) = AvVi
o(z)

+

-

Vo
e(z) = AvVi

e(z)

Figure 9.4-5
 Time domain op amp model.  z-domain op amp model
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EXAMPLE 9.4-1- Illustration of the Validity of the z-domain Models
Show that the z-domain four-port model for the negative switched capacitor transresistance

circuit of Fig. 9.4-3 is equivalent to the two-port switched capacitor circuit.

Solution

For the two-port switched capacitor circuit, we observe that
during the φ1 phase, the capacitor C is charged to v1(t).  Let us
assume that the time reference for this phase is t - T/2 so that the
capacitor voltage is

vC = v1(t - T/2).

During the next phase, φ2, the capacitor is inverted and v2 can
be expressed as

v2(t) = -vC = -v1(t - T/2).

Next, let us sum the currents flowing away from the positive V
 e
2   node of the four-port z-domain

model in Fig. 9.4-3.  This equation is,

-Cz-1/2(V
 e
2  - V

 o
1  ) + Cz-1/2V

 e
2   + CV

 e
2   = 0.

This equation can be simplified as

V
 e
2   = -z-1/2V

 o
1  

which when translated to the time domain gives

v2(t) = -vC = -v1(t - T/2).

Thus, we have shown that the four-port z-domain model is equivalent to the time domain circuit
for the above consideration.

+

-
V o

2

+

-
V e

2

+

-
V o

1

+

-
Ve

1

C

C
z-

1/
2

-C
z-

1/
2

C
z-

1/
2

C

Negative SC Transresistance Model
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Z-DOMAIN, HAND-ANALYSIS OF SWITCHED CAPACITOR CIRCUITS

General, time-variant,
switched capacitor circuit.

Four-port, model of the
above circuit.

Simplification of the
above circuit to a
two-port, time-
invariant model.

+
-

vov1
φ1

φ1φ2

φ2

v2 v3

+
-

φ2

φ1φ1

φ2

v4

v1

Fig. 9.6-4a

+
-

φ1

φ1φ2

φ2 φ2

φ1φ1

φ2

V4(z)

+
-

+
-

+
-

o Vo(z)o

V3(z)o
V2(z)o

V1(z)o

V4(z)e

Vo(z)eV3(z)eV2(z)e

V1(z)e

Fig9.4-6b

+
-

φ1

φ1φ2

φ2 φ2

φ1φ1

φ2

V1(z)o

V2(z)e V4(z)e

Vo(z)e

V3(z)e

+
-

Fig. 9.4-7
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EXAMPLE 9.4-2 - z-domain Analysis of the Noninverting Switched Capacitor Integrator

Find the z-domain transfer function V
 e
o (z)/V

 o
i (z) and

V
 o
o (z)/V

 o
i (z) of the noninverting switched capacitor

integrator using the above methods.

Solution

First redraw Fig. 9.3-4a as shown in Fig. 9.4-8a.
We have added an additional φ2 switch to help in using
Fig. 9.4-3.  Because this circuit is time-invariant, we
may use the two-port modeling approach of Fig. 9.4-7.
Note that C2 and the indicated φ2 switch are modeled
by the bottom row, right column of Fig 9.4-3.  The
resulting z-domain model for Fig. 9.4-8a is shown in
Fig. 9.4-8b.

Recalling that the z-domain models are of
admittance form, it is easy to write

-C1z
-1/2V

 o
i (z) + C2(1-z-1)V

 e
o (z) = 0  →

Hoe(z) = 
V

 e
o (z)

V
 o
i (z)

 = 
C1z

-1/2

C2(1-z-1)
  .

Hoo(z) is found by using the relationship  that V
 o
o (z) = z-1/2V

 e
o (z) to get

Hoo(z) = 
V

 o
o (z)

V
 o
i (z)

 = 
C1z

-1

C2(1-z-1)
 

which is equal to z-domain transfer function of the noninverting switched capacitor integrator.

+
-vi(t)

φ1

φ1φ2

φ2

+
-

φ2

voC1 C2

Vi(z)

-C1z-1/2 C2(1-z-1)

o

Vo(z)
e

Vo(z)
o

z-1/2Vo(z)
e

(a.)

(b.)
Figure 9.4-8 - (a.) Modified equivalent circuit 
of Fig. 9.3-4a.  (b.) Two-port, z-domain model
for Fig. 9.4-8a.
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EXAMPLE 9.4-3 - z-domain Analysis of the Inverting Switched Capacitor Integrator

Find the z-domain transfer function V
 e
o (z)/V

 e
i (z)

and V
 o
o (z)/V

 e
i (z) of Fig. 9.3-4a

using the above methods.

Solution

Fig. 9.4-9a shows the modified equivalent circuit
of Fig. 9.3-4b.  The two-port, z-domain model for Fig.
9.4-9a is shown in Fig. 9.4-9b.  Summing the currents
flowing to the inverting node of the op amp gives

C1V
 e
i (z) + C2(1-z-1)V

 e
o (z) = 0

which can be rearranged to give

Hee(z) = 
V

 e
o (z)

V
 e
i (z)

 = 
-C1

C2(1-z-1)
  .

which is equal to inverting, switched capacitor
integrator z-domain transfer function.

Heo(z) is found by using the relationship  that V
 o
o (z) = z-1/2V

 e
o (z) to get

Heo(z) = 
V

 o
o (z)

V
 e
i (z)

 = 
C1z

-1/2

C2(1-z-1)
 .

+
-vi(t)

φ2

φ1φ1

φ2

+
-

φ2

voC1 C2

Vi(z)

C1 C2(1-z-1)

e

Vo(z)
e

Vo(z)
o

z-1/2Vo(z)
e

(a.)

(b.)
Figure 9.4-9 - (a.) Modified equivalent circuit of 
inverting SC integrator.  (b.) Two-port, z-domain 
model for Fig. 9.4-9a
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EXAMPLE 9.4-4 - z-domain Analysis a Time-Variant Switched Capacitor Circuit

Find V
 o
o (z) and V

 e
o (z) as function of  V

 o
1 (z) and

V
 o
2 (z) for the summing, switched capacitor integrator of

Fig. 9.4-10a.

Solution

This circuit is time-variant because C3 is charged
from a different circuit for each phase.  Therefore, we must
use a four-port model.  The resulting z-domain model for
Fig. 9.4-10a is shown in Fig. 9.4-10b.

+
-v1(t)

φ1

φ1φ2

φ2

voC1 C3

v2(t)

φ1

φ2φ2

φ1

C1

Fig. 9.4-10a - Summing Integrator.
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EXAMPLE 9.4-4 - Continued

Summing the currents flowing away from the V
 o
i (z) node

gives

C2V
 o
2 (z) + C3V

 o
o (z) - C3z

-1/2V
 e
o (z) = 0 (1)

Summing the currents flowing away from the V
 e
i (z) nodes gives

-C1z
-1/2V

 o
1 (z) - C3z

-1/2V
 o
o (z) + C3V

 e
o (z) = 0 (2)

Multiplying (2) by z-1/2 and adding it to (1) gives

C2V
 o
2 (z) + C3V

 o
o (z) - C1z

-1V
 o
1 (z) - C3z

-1V
 o
o (z) = 0 (3)

Solving for V
 o
o (z) gives,

V
 o
o (z) = 

C1z
-1V

 o
1 (z)

C3(1-z-1)
 - 

C2V
 o
2 (z)

C3(1-z-1)
 

Multiplying Eq. (1) by  z-1/2 and adding it to Eq. (2) gives

C2z
-1/2V

 o
2 (z) - C1z

-1V
 o
1 (z) - C3z

-1V
 e
o (z) + C3V

 e
o (z) = 0

Solving for V
 e
o (z) gives,

V
 e
o (z) = 

C1z
-1/2V

 o
1 (z)

C3(1-z-1)
 - 

C2z
-1/2V

 o
2 (z)

C3(1-z-1)
  .

+
-

V1(z)

-C1z-1/2

C3o

Vo(z)
o

V2(z)
o

C2

-C3z-1/2

Vi(z)
o

+
-

C3

Vo(z)eVi(z)
e

Fig. 9.4-10b - Four-port, z-domain
model for Fig. 9.4-10a.

-C3z-1/2
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FREQUENCY DOMAIN SIMULATION OF SWITCHED CAPACITOR CIRCUITS USING
SPICE

Storistors†

A storistor is a two-terminal element that has a current flow that occurs at some time after the
voltage is applied across the storistor.

z-domain:

I(z) = ±Cz-1/2 [V1(z) - V2(z)]

Time-domain:

i(t) = ±C



v1



t - 

T
2  - v2



t - 

T
2  

SPICE Primitives:

LosslessTrans-
mission Line

TD = T/2, Z0 = R

1

V1-V2

2

±CV43 4

R

Fig. 9.4-11c

                                                
†
   B.D. Nelin, “Analysis of Switched-Capacitor Networks Using General-Purpose Circuit Simulation Programs,” IEEE Trans. on Circuits and

Systems, pp. 43-48, vol. CAS-30, No. 1, Jan. 1983.

V1(z) V2(z)

I(z) I(z)

±Cz-1/2

Fig. 9.4-11a

+

- T
2

+

-
v1(t)

+ -v3(t)

+

-
v2(t)

±Cv3(t)

Rin = ∞

Delay of T/2

i(t) i(t)

Fig. 9.4-11b
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EXAMPLE 9.4-5 - SPICE Simulation of Example 9.4-2
Use SPICE to obtain a frequency domain simulation of the noninverting, switched capacitor

integrator.  Assume that the clock frequency is 100kHz and design the ratio of C1 and C2 to give an
integration frequency of 10kHz.

Solution

The design of C1/C2 is accomplished from the ideal integrator transfer function.

C1

C2
 = ωIT = 

2πfI

fc
 = 0.6283

AssumeC2 = 1F →C1 = 0.6283F.

Next we replace the switched capacitor C1 and the unswitched capacitor of integrator by the z-domain
model of the second row of Fig. 9.4-3 and the first row of Fig. 9.4-4 to obtain Fig. 9.4-12.   Note that in
addition we used Fig. 9.4-5 for the op amp and assumed that the op amp had a differential voltage gain
of 106.  Also, the unswitched C’s are conductances.

+

-
V o

i

+

-
Ve

i

C
1

C
1z

-1
/2

-C
1z

-1
/2

C
1z

-1
/2

C
1

+

-
V o

o

+

-
V e

o

C2

-C
2z

-1
/2

C
2z

-1
/2

-C
2z

-1
/2

C
2z

-1
/2

106V3

106V4

5

0

6

3

0

4

1

0

2

Figure 9.4-12 - z-domain model for noninverting switched capacitor integrator. 

C2

As the op amp gain becomes large, the important components are indicated by the darker shading.

CMOS Analog Circuit Design Page 9.4-14

Chapter 9 - Switched Capacitor Circuits (6/4/01) © P.E. Allen, 2001

EXAMPLE 9.4-5 - Continued
The SPICE input file to perform a frequency domain simulation of Fig. 9.4-12 is shown below.

VIN 1 0 DC 0 AC 1
R10C1 1 0 1.592
X10PC1 1 0 10 DELAY
G10 1 0 10 0 0.6283
X14NC1 1 4 14 DELAY
G14 4 1 14 0 0.6283
R40C1 4 0 1.592
X40PC1 4 0 40 DELAY
G40 4 0 40 0 0.6283
X43PC2 4 3 43 DELAY
G43 4 3 43 0 1
R35 3 5 1.0
X56PC2 5 6 56 DELAY
G56 5 6 56 0 1
R46 4 6 1.0
X36NC2 3 6 36 DELAY
G36 6 3 36 0 1
X45NC2 4 5 45 DELAY
G45 5 4 45 0 1
EODD 6 0 4 0 -1E6
EVEN 5 0 3 0 -1E6
********************
.SUBCKT DELAY 1 2 3
ED 4 0 1 2 1
TD 4 0 3 0 ZO=1K TD=5U
RDO 3 0 1K
.ENDS DELAY
********************
.AC LIN 99 1K 99K
.PRINT AC V(6) VP(6) V(5) VP(5)
.PROBE
.END
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EXAMPLE 9.4-5 - Continued
Simulation Results:

M
ag

ni
tu

de

Frequency (kHz)
20 40 60 80 1000

(a.)

Both H    and Hoe oo

0

1

2

3

4

5

(b.)
Frequency (kHz)

20 40 60 80 1000
-200

-150

-100

-50

0

50

100

150

200

Ph
as

e 
Sh

if
t (

D
eg

re
es

)

Phase of H    (jw)
oe

Phase of H    (jw)
oo

Comments:

• This approach is applicable to all switched capacitor circuits that use two-phase, nonoverlapping
clocks.

• If the op amp gain is large, some simplification is possible in the four-port z-domain models.

• The primary advantage of this approach is that it is not necessary to learn a new simulator.
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SIMULATION OF SWITCHED CAPACITOR CIRCUITS USING SWITCAP†

Introduction

SWITCAP is a general simulation program for analyzing linear switched capacitor networks
(SCN’s) and mixed switched capacitor/digital (SC/D) networks.

Signal
Generators

SCN's or Mixed
SC/D Networks Outputs

Clocks

General Setup of SWITCAP

Major Features

1.)  Switching Intervals - An arbitrary number of switching intervals per switching period is allowed.
The durations of the switching intervals may be unequal and arbitrary.

2.)  Network Elements -

ON-OFF switches, linear capacitors, linear VCVS’s, and independent voltage sources.

The waveforms of the independent voltage sources may be continuous or piecewise-constant.

The switches in the linear SCN’s are controlled by periodic clock waveforms only.

A mixed SC/D network may contain comparators, logic gates such as AND, OR, NOT, NAND,
NOR, XOR, and XNOR.  The ON-OFF switches in the SC/D network may be controlled not
only by periodic waveforms but also by nonperiodic waveforms from the output of
comparators and logic gates.

                                                
†
   K. Suyama, Users’ Manual for SWITCAP2, Version 1.1, Dept. of Elect. Engr., Columbia University, New York, NY 10027, Feb. 1992.
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SWITCAP - Major Features, Continued
3.)  Time-Domain Analyses of Linear SCN’s and Mixed SC/D Networks -

a.)  Linear SCN’s only: The transient response to any prescribed input waveform for t ≥ 0 after
computing the steady-state values for a set of dc inputs for t  < 0.

b.)  Both types of networks:  Transient response without computing the steady-state values as
initial conditions.  A set of the initial condition of analog and digital nodes at t = 0- may be
specified by the user.

4.)  Various Waveforms for Time Domain Analyses - Pulse, pulse train, cosine, exponential, exponential
cosine, piecewise linear, and dc sources.

5.)  Frequency Domain Analyses of Linear SCN’s - A single-frequency sinusoidal input can produce a
steady-state output containing many frequency components.  SWITCAP can determine all of these
output frequency components for both continuous and piecewise-constant input waveforms.  z-domain
quantities can also be computed.  Frequency-domain group delay and sensitivity analyses are also
provided.

6.)  Built-In Sampling Functions - Both the input and output waveforms may be sampled and held at
arbitrary instants to produce the desired waveforms for time- and frequency-domain analyses of linear
SCN’s except for sensitivity analysis.  The output waveforms may also be sampled with a train of
impulse functions for z-domain analyses.

7.)  Subcircuits - Subcircuits, including analog and/or digital elements, may be defined with symbolic
values for capacitances, VCVS gains, clocks, and other parameters.  Hierarchical use of subcircuits is
allowed.

8.)  Finite Resistances, Op Amp Poles, and Switch Parasitics - Finite resistance is modeled with SCN’s
operating at clock frequencies higher than the normal clock.  These “resistors” permit the modeling of
op amp poles.  Capacitors are added to the switch model to represent clock feedthrough.
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SWITCAP - MIXED SC/D NETWORKS
Structure of mixed SC/D networks as defined in SWITCAP2.

+
-
+
-

+
-

Threshold

...

...

Logic

+

-
v

Av

SCN - Function Generation

Timing
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SWITCAP - RESISTORS

RQ RQ

RQRQ

Ceq

R = T
4Ceq

RQ

RQ

t

t

The clock, RQ, for the resistor is run at a frequency, much higher than the system clock in order to
make the resistor model still approximate a resistor at frequencies near the system clock.
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SWITCAP - MOS SWITCHES
MOS Transistor Switch Model:

High Clock Voltage

MQ MQ

Cgd

D

G

RON

Cbd

Cgs

Cbs

S

MQMQ

MQ

Frequency
Higher than
MQ clock

D

G

S

MQ

More information:

SWITCAP Distribution Center
Columbia University
411 Low Memorial Library
New York, NY 10027

suyama@elab.columbia.edu
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INFO ON SWITCAP3
Dear Prof. Allen:

Let me explain the latest regarding the development of SWITCAP3.

The current version of SWITCAP is SWITCAP2 version 1.2.  It has time-domain and frequency-
domain (sinusoidal stead-state, spectrum, frequency-component analyses) analyses, sensitivity analysis,
group delay analysis for SCF's.  It has also time-domain analysis of mixed switched-capacitor and digital
networks so that you can simulate data converters including sigma-delta converters.  We only have Sun
and HP versions.  We don't have a PC version for SWITCAP2.  

We are distributing a graphic interface package for SWITCAP2 called XCAP.  It has input
schematic caption and postprocessing graphics. The package was developed by an outside company.

We have finished 95 percent of SWITCAP3 coding.  It will include all the analyses in SWITCAP2
plus noise analysis of SCF's and time- and frequency-domain analyses of switched-current circuits that
are modelled using actual MOSFET models (currently, we have BSIM3 and Level 3) and usual SCN
ideal components.  Although we are already running some examples, it will take a few more months to
make a beta-site version available.

I hope the above information is sufficient for your purpose.  If you or your students have further
questions, please don't hesitate to contact me.

Regards,

Ken Suyama

-----------------------------------------------------------------------

Microelectronic Circuits & Systems Laboratory
Department of Electrical Engineering, Columbia University
1312 S. W. Mudd Building, 500 West 120th Street, New York, NY 10027, USA
TEL:212-854-6895  FAX:212-663-7203  EMAIL:suyama@elab.columbia.edu
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9.5 - FIRST-ORDER, SWITCHED CAPACITOR CIRCUITS
GENERAL, FIRST-ORDER TRANSFER FUNCTIONS
A general first-order transfer function in the s-domain:

H(s) = 
sa1 ± a0
s + b0

 

a1 = 0  ⇒  Low pass,    a0 = 0    ⇒   High Pass,     a0 ≠ 0 and a1 ≠ 0  ⇒  All pass

Note that the zero can be in the RHP or LHP.

A general first-order transfer function in the z-domain:

H(z) = 
zA1 ± A0

z - B0
 = 

A1 ± A0z-1

1 - B0z
-1  
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NONINVERTING, FIRST-ORDER, LOW PASS CIRCUIT

+
-

vi(t)

φ1

φ1φ2

φ2

φ2

vo(t)

C1

(a.) (b.)
Figure 9.5-1 - (a.) Noninverting, first-order low pass circuit.  (b.) Equivalent circuit of Fig. 9.5-1a.

φ1 φ1 φ2

+
-

vi(t)

φ1

φ1φ2

φ2

φ2

vo(t)

φ2

φ1φ1vo(t)

α1C1

α2C1

α2C1

α1C1

C1

Transfer function:
Summing currents flowing toward the inverting

op amp terminal gives

α2C1V
 e
o (z) - α1C1z

-1/2V o
i (z) + C1(1-z-1)V e

o (z) = 0 

Solving for V o
o
(z)/V o

i
(z) gives

V
 o
o (z)

V o
i
(z)

 = 
α1z

-1

1 + α2 - z-1 = 

α1z
-1

1+α2

1 - 
z-1

1+α2
Equating the above to the H(z) of the previous page gives the design equations for Fig. 9.5-2 as

α1 = 
A0
B0

         and              α2 = 






1-B0

B0
 

+
-Vi(z)

-C1α1z-1/2 C1(1-z-1) Vo(z)
e

Vo(z)
o

z-1/2Vo(z)
e

Vo(z)

C1α2

o

e

Figure 9.5-2 - z-domain model of Fig. 9.5-1b.
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INVERTING, FIRST-ORDER, LOW PASS CIRCUIT
An inverting low pass circuit can be obtained by reversing the phases of the leftmost two switches in
Fig. 9.5-1a.

+
-

vi(t)

φ2

φ1φ1

φ2

φ2

vo(t)

C1

Inverting, first-order low pass circuit. Equivalent circuit.

φ1 φ1 φ2

+
-

vi(t)

φ2

φ1φ1

φ2

φ2

vo(t)

φ2

φ1φ1vo(t)

α1C1

α2C1

α2C1

α1C1

C1

It can be shown that,

V
 e
o (z)

V e
i
(z)

 = 
-α1

1 + α2 - z-1 = 

-α1

1+α2

1 - 
z-1

1+α2

Equating to H(z) gives the design equations for the inverting low pass circuit as

α1 = 
-A1
B0

        and              α2 = 






1-B0

B0
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EXAMPLE 9.5-1 - Design of a Switched Capacitor First-Order Circuit
Design a switched capacitor first-order circuit that has a low frequency gain of +10 and a -3dB

frequency of 1kHz.  Give the value of the capacitor ratios α1 and α2.  Use a clock frequency of
100kHz.

Solution

Assume that the clock frequency, fc, is much larger than the -3dB frequency.  In this example,
the clock frequency is 100 times larger so this assumption should be valid.

Based on this assumption, we approximate z-1 as

z-1 = e-sT ≈ 1- sT + ··· (1)

Rewrite the z-domain transfer function as

V
 o
o (z)

V o
i
(z)

 = 
α1z

-1

α2 + 1- z-1 (2)

Next, we note from Eq. (1) that 1-z-1 ≈ sT.  Furthermore, if sT<<1, then z-1 ≈ 1.
(Note that sT<<1 is equivalent to ω << fc which is valid.)

Making these substitutions in Eq. (2), we get

V
 o
o (z)

V o
i
(z)

 ≈ 
α1

α2 + sT = 
α1/α2

1 + s(T/α2)
(3)

Equating Eq. (3) to the specifications gives  α1 = 10α2  and α2 = 
ω-3dB

fc
 

∴     α2 = 6283/100,000 = 0.0628 and α1 = 0.6283  
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FIRST-ORDER, HIGH PASS CIRCUIT

+
-

vi(t)

φ2

vo(t)
α1C

C

φ1 φ1 φ2
α2C

+
-

vi(t)

φ2

φ2

vo(t)

C

φ1 φ1 φ2

(a.) (b.)
Figure 9.5-3 - (a.) Switched-capacitor, high pass circuit.  (b.) Version of Fig. 9.5-3a
that constrains the charging of C1 to the φ2 phase.

α1C

α2C

Transfer function:

Summing currents at the inverting input node of the op amp
gives

α1(1-z-1)V
 e
o (z) + α2V

 e
o (z) + (1-z-1)V

 e
i (z) = 0 (1)

Solving for the Hee(z) transfer function gives

Hee(z) = 
V

 e
o (z) 

V
 e
i (z)

 = 
-α1(1-z-1)
α2+1-z-1  = 

α1

α2+1 (1-z-1)

1 - 
1

α2+1 z-1
 (2)

Equating Eq. (2) to H(z) gives,

α1 = 
-A1
B0

              and                   α2 = 1 - 
1
B0

+
-

Vi(z)

α1(1-z-1) (1-z-1) Vo(z)
e

Vo(z)
o

z-1/2Vo(z)
e

α2

e

Figure 9.5-4 - z-domain model for Fig. 9.5-3.
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FIRST-ORDER, ALLPASS CIRCUIT

+
-

vi(t)

φ1

φ1φ2

φ2

φ2

vo(t)

C

(b.)

φ1 φ1 φ2

φ2

+
-

vi(t)

φ1

φ1φ2

φ2

φ2

vo(t)

α1C C

(a.)

φ1 φ1 φ2
α3C

Figure 9.5-5 - (a.) High or low frequency boost circuit.  (b.)  Modification of (a.) to simplify
the z-domain modeling

α2C α3C α2C

α1C

Transfer function:

Summing the currents flowing into the inverting input
of the op amp gives

-α1z
-1/2Vo 

i (z)+α3z
-1/2Ve 

i(z)+α2V
e 
o(z)+(1-z-1)Ve 

o(z) = 0 

Since Vo
i(z) = z-1/2Ve

i(z), then the above becomes

     Ve
o(z)  α2+1-αz-1  = α1z

-1Ve
i(z) - α3(1-z-1)Ve

i(z) 

Solving for Hee(z) gives

Hee(z) = 
α1z

-1 - α3(1-z-1)

α2˚ +˚(1-z-1)  = 






-α3

α2+1  
1 - 

α1+α3

α3
 z-1

 1 - 
z-1

α2+1

   ⇒   α1 = 
A1+A0

B0
, α2 = 1 - 

1
B0

   and  α3 = 
- A0
B0

 

+
-

Vi(z)

-α1z-1/2 (1-z-1) Vo(z)
e

Vo(z)
o

z-1/2Vo(z)
e

α2

o

Figure 9.5-6 - z-domain model for Fig. 9.5-5b.

α3(1-z-1)

Vi(z)
e
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EXAMPLE 9.5-2 - Design of a Switched Capacitor Bass Boost Circuit

Find the values of the capacitor ratiosα1, α2, and α3 using a 100kHz clock for Fig. 9.5-5 that will realize
the asymptotic frequency response shown in  Fig. 9.5-7.

dB

20

0
1kHz 10kHz10Hz 100Hz

Frequency
Figure 9.5-7 - Bass boost response for Ex. 9.5-2.

Solution

Since the specification for the example is given in the continuous time frequency domain, let us
use the approximation that z-1 ≈ 1 and 1-z-1≈ sT, where T is the period of the clock frequency.
Therefore, the allpass transfer function can be written as

Hee(s) ≈ 
-sTα3 + α1

sT + α2
 = - 

α1

α2
 






sTα3/α1 - 1

sT/α2 + 1  

From Fig. 9.5-7, we see that the desired response has a dc gain of 10, a right-half plane zero at
2π kHz and a pole at -200π Hz.  Thus, we see that the following relationships must hold.

α1

α2
 = 10 ,     

α1

Tα3
 = 2000π ,     and        

α2

T  = 200π 

From these relationships we get the desired values as

 α1 = 
2000π

fc
,    α2 = 

200π
fc

,  and  α3 = 1    
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PRACTICAL IMPLEMENTATIONS OF THE FIRST-ORDER CIRCUITS

+
-

vi(t)

φ1

φ1φ2

φ2

φ2

vo(t)
C1

C

(a.) (b.)
Figure 9.5-8 - Differential implementations of (a.) Fig. 9.5-1, (b.) Fig. 9.5-3, and (c.) Fig. 9.5-5.
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(c.)

φ1 φ1
φ2

vo(t)

+
-

C

φ1 φ1

φ2 φ2

φ1 φ2

+

-

φ2

φ2α2C

α1C

α1C

α2C

α2C

α1C

α1C

α2C

α2C

α1C

α1C

α3C

α3C

Comments:

• Differential operation reduces clock feedthrough, common mode noise sources and enhances the
signal swing.

• Differential operation requires op amps or OTAs with differential outputs which in turn requires a
means of stabilizing the output common mode voltage.
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9.6 - SECOND-ORDER SWITCHED CAPACITOR CIRCUITS
WHY SECOND-ORDER CIRCUITS?

They are fundamental blocks in switched capacitor filters.

Switched Capacitor Filter Design Approaches

  •  Cascade design

First-
Order
Circuit

Second-
Order
Circuit

Second-
Order
Circuit

Second-
Order
Circuit

Stage 1 Stage 2 Stage n

Vin Vout

Second-
Order
Circuit

Second-
Order
Circuit

Stage 1 Stage 2 Stage n

Vin Vout

(a.)

(b.)
Figure 9.6-1 - (a.) Cascade design when n is even.  (b.) Cascade designwhen n is odd. 

•  Ladder design

Also uses first- and second-order circuits

There are also other applications of first- and second-order circuits:

•  Oscillators

•  Converters
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BIQUAD TRANSFER FUNCTION
A biquad has two poles and two zeros.

Poles are complex and always in the LHP.

The zeros may or may not be complex and may be in the LHP or the RHP.

Transfer function:

Ha(s) = 
Vout(s)
Vin(s)  = 

-(K2s2+ K1s + K0)

s2 + 
ωo

Q  s+ ωo
2

  = K 






(s-z1)(s-z2)

(s-p1)(s-p2)

2Q
ωo

ωo

jω

σ

Low pass:  zeros at ∞ Bandstop:  zeros at ±jωo

High pass:  zeros at 0 Allpass:  Poles and zeros are complex

Bandpass:  One zero at 0 and the other at ∞     conjugates
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LOW-Q, SWITCHED CAPACITOR BIQUAD
Development of the Biquad:

Rewrite Ha(s) as:

s2Vout(s) + 
ωos
Q Vout(s) + ωo

2Vout(s) = -(K2s2 + K1s + K0)Vin(s)

Dividing through by s 2 and solving for Vout(s), gives

Vout(s) = 
-1
s  








(K1 + K2s)Vin(s) + 
ωo
Q  Vout(s) + 

1
s (K0Vin(s) +ωo

2Vout(s))  

If we define the voltage V1(s) as

V1(s) = 
-1
s  







K0

ωo
 Vin(s) + ωoVout(s)  

then Vout(s) can be expressed as

Vout(s) = 
-1
s  








(K1 + K2s) Vin(s) + 
ωo

Q  Vout(s) - ωoV1(s)  

Synthesizing the voltages V1(s) and Vout(s), gives

+
-

Vout(s)

Vout(s)Vin(s)
V1(s)

CA=1

ωo/K0

1/ωo

+
-

Vout(s)

Vin(s)

V1(s)

CB=1

Q/ωo

-1/ωo

Vin(s)

1/K1

K2

Figure 9.6-2 - (a.) Realization of V1(s).  (b.) Realization of Vout(s).
(a.) (b.)



CMOS Analog Circuit Design Page 9.6-4

Chapter 9 - Switched Capacitor Circuits (6/4/01) © P.E. Allen, 2001

LOW-Q, SWITCHED CAPACITOR BIQUAD - Continued
Replace the continuous time integrators with switched capacitor integrators to get:

+
-

Vout(z) V1(z)C1

V1(s)

Figure 9.6-3 - (a.) Switched capacitor realization of Fig. 9.6-2a.  (b.) Switched
capacitor realization of Fig. 9.6-2b.

(a.)

(b.)

Vin(z)

e

e

φ1

φ1 φ1

φ2φ2

α1C1

α2C1

φ2

+
-

Vout(z)

C2
Vin(z)

e

e

φ1

φ2

φ1

φ2φ2

α5C2

α4C2

φ1

Vin(z)

φ1

α6C2

φ2

o

Vout(z)
e

α3C2

e

e

From these circuits we can write that:

V
 e
1 (z) = - 

α1

1-z-1 V
e
in(z) - 

α2

1-z-1 V
e

out(z) 

and

V
 e
out(z) = -α3 V

e
in(z) - 

α4

1-z-1 V
e
in(z) + 

α5z
-1

1-z-1  V
e
1(z) - 

α6

1-z-1 V
e

out(z) .

Note that we multiplied the V
 o
1 (z) input of Fig. 9.6-3b by z-1/2 to convert it to V

 e
1 (z).
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LOW-Q, SWITCHED CAPACITOR BIQUAD - Continued
Connecting the two circuits of Fig. 9.6-3 together gives the desired, low-Q, biquad realization.

+
-

V1(z)C1

Figure 9.6-4 - Low Q, switched capacitor, biquad realization.

Vin(z)
e

φ1

φ1

φ1

φ2φ2

α2C1

α1C1
φ2

+
-

C2

φ2

α6C2

α4C2

φ2

α5C2

φ1

Vout(z)
e

α3C2

e

φ1

If we assume that ωT<<1, then 1-z-1 ≈ sT and V
e
1(z) andV

e
out(z) can be approximated as

V
 e
1 (s) ≈ - 

α1
sT V

e
in(s) - 

α2
sT V

e
out(s) = 

-1
s  






α1

T  V
e
in(s) + 

α2
T  V

e
out(s)

and

V
 e
out(s) ≈ 

-1
s  








(
α4
T  + sα3)V

e
in(s) + 

α5
T  V

e
1(s) + 

α6
sT V

e
out(s)  .

These equations can be combined to give the transfer function, Hee(s) as follows.

Hee(s) ≈ 
-







α3s
2 + 

sα4
T  + 

α1α5

T2

s2 + 
sα6
T  + 

α2α5

T2
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LOW-Q, SWITCHED CAPACITOR BIQUAD - Continued

Equating Hee(s) to Ha(s) gives

-







α3s
2 + 

sα4
T  + 

α1α5

T2

s2 + 
sα6
T  + 

α2α5

T2

 = 
-(K2s2+ K1s + K0)

s2 + 
ωo

Q  s+ ωo
2

which gives,

α1 = 
K0T
ωo

 , α2 = |α5| = ωoT, α3 = K2, α4 = K1T,  and α6 = 
ωoT
Q   .

Largest capacitor ratio:

If Q > 1 and ωoT << 1, the largest capacitor ratio is α6.

For this reason, the low-Q, switched capacitor biquad is restricted to Q <5.

Sum of capacitance:

To find this value, normalize all of the capacitors connected or switched into the inverting
terminal of each op amp by the smallest capacitor, αminC.  The sum of the normalized capacitors
associated with each op amp will be the sum of the capacitance connected to that op amp.  Thus,

ΣC = 
1

αmin
 ∑
i = 1

n
αi 

where there are n capacitors connected to the op amp inverting terminal, including the integrating
capacitor.
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EXAMPLE 9.6-1- Design of a Switched Capacitor, Low-Q, Biquad

Assume that the specifications of a biquad arefo = 1kHz, Q = 2, K0 = K2 = 0, and K1 = 2πfo/Q (a
bandpass filter).  The clock frequency is 100kHz.  Design the capacitor ratios of Fig. 9.6-4 and
determine the maximum capacitor ratio and the total capacitance assuming that C1 and C2 have unit
values.

Solution

From the previous slide we have

α1 = 
K0T
ωo

 , α2 = |α5| = ωoT, α3 = K2, α4 = K1T,  and α6 = 
ωoT
Q   .

Setting K0 = K2 = 0, and K1 = 2πfo/Q  and letting fo = 1kHz, Q = 2 gives

 α1 = α3 = 0, α2 = α5 = 0.0628, and α4 = α6 = 0.0314.

The largest capacitor ratio is α4 or α6 and is 1/31.83.

Σ capacitors connected to the input op amp = 1/0.0628 + 1 = 16.916.

Σ capacitors connected to the second op amp = 0.0628/0.0314 + 1/0.0314 + 2 = 35.85.

Therefore, the total biquad capacitance is 52.76 units of capacitance.

(Note that this number will decrease as the clock frequency becomes closer to the signal frequencies.)
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Z-DOMAIN CHARACTERIZATION OF THE LOW-Q, BIQUAD
Combining the following two equations,

V
 e
1 (z) = - 

α1

1-z-1 V
e
in(z) - 

α2

1-z-1 V
e

out(z) 

and

V
 e
out(z) = -α3 V

e
in(z) - 

α4

1-z-1 V
e
in(z) + 

α5z
-1

1-z-1  V
e
1(z) - 

α6

1-z-1 V
e

out(z) .

gives,

V
e

out(z)

V
e
in(z)

 = Hee(z) = - 
(α3 + α4)z2 + (α1α5 - α4 - 2α3)z + α3

(1 + α6)z2 + (α2α5 - α6 - 2)z + 1

A general z-domain specification for a biquad can be written as

H(z) = - 
a2z

2 + a1z + a0

b2z2 + b1˚z + 1 

Equating coefficients gives

α3 = a0,  α4 = a2-a0,  α1α5 = a2+a1+a0, α6 = b2-1, and α2α5 = b2+b1+1

Because there are 5 equations and 6 unknowns, an additional relationship can be introduced.  One
approach would be to select α5 = 1 and solve for the remaining capacitor ratios.  Alternately, one could
let α2 = α5 which makes the integrator frequency of both integrators in the feedback loop equal.
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VOLTAGE SCALING
It is desirable to keep the amplitudes of the output voltages of the two op amps approximately

equal over the frequency range of interest.  This can be done by voltage scaling.

If the voltage at the output node of an op amp in a switched capacitor circuit is to be scaled by
a factor of k, then all switched and unswitched capacitors connected to that output node must be
scaled by a factor of 1/k.

For example,

+
-

+
-

α1C1 C1 α2C2 C2v1

The charge associated with v1 is:

Q(v1) = C1v1 + α2C2v1

Suppose we wish to scale the value of v1 by k1 so that v1’ = k1v1.  Therefore,

Q(v1’) = C1v1’ + α2C2v1’ = C1k1v1 + α2C2k1v1

But, Q(v1) = Q(v1’) so that  C1’ = C1/k1 and C2’ = C2/k1.

This scaling is based on keeping the total charge associated with a node constant.  The choice
above of α2 = α5 results in a near-optimally scaled dynamic range realization.
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HIGH-Q, SWITCHED CAPACITOR BIQUAD
Desired: A biquad capable of realizing higher values of Q without suffering large element spreads.

Development of such a biquad:

Reformulate the equations for V1(s) and Vout(s) as follows,

Vout(s) = - 
1
s  [ ]K2sVin - ωoV1(s)

and

V1(s) = - 
1
s 















K0

ωo
 + 

K1

ωo
 s  Vin(s) + 



ωo + 

s
Q  Vout(s)

Synthesizing these equations:

+
-

Vout(s)

Vout(s)

Vin(s)

V1(s)

CA=1

ωo/K0

1/ωo

+
-

Vout(s)

Vin(s)

V1(s)

CB=1

K1/ωo

-1/ωo

Vin(s)
1/Q

K2

Realization of V1(s). Realization of Vout(s).
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HIGH-Q, SWITCHED CAPACITOR BIQUAD - Continued
Replace the continuous time integrators with switched capacitor integrators to get:

+
-

V1(z)C1

V1(s)

Figure 9.6-6 - (a.) Switched capacitor realization of Fig. 9.6-5a.  (b.) Switched
capacitor realization of Fig. 9.6-5b.

(a.) (b.)

Vin(z)

Vout(z)
e

e

φ1

φ1 φ1

φ2
φ2

α1C1

α2C1

φ2

+
-

Vout(z)

C2Vin(z)

e

e

φ1

φ2α5C2

φ2

α6C2

φ1

o

Vout(z)
e

α4C1

eα3C1Vin(z)
e

From these circuits we can write that:

V
 e
1 (z) = - 

α1

1-z-1 V
e
in(z) - 

α2

1-z-1 V
e

out(z) - α3V
e
in(z) - α4V

e
out(z)

and

V
 e
out(z) =  -α6 V

e
in(z) + 

α5z
-1

1-z-1  V
e
1(z) .

Note that we multiplied the V
 o
1 (z) input of Fig. 9.6-6b by z-1/2 to convert it to V

 e
1 (z).
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HIGH-Q, SWITCHED CAPACITOR BIQUAD - Continued
Connecting the two circuits of Fig. 9.6-6 together gives the desired, high-Q biquad realization.

+
-

V1(z)C1Vin(z)
e

φ1 φ1

φ2

α1C1

α2C1

φ2

+
-

C2

φ1

φ2

α5C2

φ2

α6C2

φ1

Vout(z)e

α4C1

e

α3C1

Figure 9.6-7 - High Q, switched capacitor, biquad realization.

φ1
φ2

If we assume that ωT<<1, then 1-z-1 ≈ sT and V
e
1(z) andV

e
out(z) can be approximated as

V
 e
1 (s) ≈ - 

1
s 






α1

T  + sα3 V
e
in(s) - 

1
s 






α2

T  + sα4 V
e

out(s) (19)

and

V
 e
out(s) ≈ 

-1
s  








(sα6)V
e
in(s) - 

α5
T  V

e
1(s)  . (20)

These equations can be combined to give the transfer function, Hee(s) as follows.

Hee(s) ≈ 
-







α6s
2 + 

sα3α5
T  + 

α1α5

T2

s2 + 
sα4α5

T  + 
α2α5

T2
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HIGH-Q, SWITCHED CAPACITOR BIQUAD - Continued

Equating Hee(s) to Ha(s) gives

-







α6s
2 + 

sα3α5
T  + 

α1α5

T2

s2 + 
sα4α5

T  + 
α2α5

T2

 = 
-(K2s2+ K1s + K0)

s2 + 
ωo

Q  s+ ωo
2

which gives,

α1 = 
K0T
ωo

 ,   α2 = |α5| = ωoT,   α3 = 
K1

ωo
,  α4 =

1
Q,  and   α6 = K2 .

Largest capacitor ratio:

If Q > 1 and ωoT << 1, the largest capacitor ratio is α2 (α5) or α4 depending on the values 
of Q and ωoT.
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EXAMPLE 9.6-2 - Design of a Switched Capacitor, High-Q, Biquad

Assume that the specifications of a biquad arefo = 1kHz, Q = 10, K0 = K2 = 0, and K1 = 2πfo/Q
(a bandpass filter).  The clock frequency is 100kHz.  Design the capacitor ratios of the high-Q biquad of
Fig. 9.6-4 and determine the maximum capacitor ratio and the total capacitance assuming that C1 and
C2 have unit values.

Solution

From the previous slide we have,

α1 = 
K0T
ωo

 ,   α2 = |α5| = ωoT,   α3 = 
K1

ωo
,  α4 =

1
Q,  and   α6 = K2 .

Using  fo = 1kHz, Q = 10 and setting K0 = K2 = 0, and K1 = 2πfo/Q (a bandpass filter) gives

 α1 = α6 = 0, α2 = α5 = 0.0628, and α3 =α4 = 0.1.

The largest capacitor ratio is α2 or α5 and is 1/15.92.

Σ capacitors connected to the input op amp = 1/0.0628 + 2(0.1/0.0628) + 1 = 20.103.

Σ capacitors connected to the second op amp = 1/0.0628 + 1 = 16.916.

Therefore, the total biquad capacitance is 36.02 units of capacitance.
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Z-DOMAIN CHARACTERIZATION OF THE HIGH-Q, BIQUAD
Combining the following two equations,

V
 e
1 (z) = - 

α1

1-z-1 V
e
in(z) - 

α2

1-z-1 V
e

out(z) - α3V
e
in(z) - α4V

e
out(z)

and

V
 e
out(z) =  -α6 V

e
in(z) + 

α5z
-1

1-z-1  V
e
1(z) 

gives,

V
e

out(z)

V
e
in(z)

 = H ee(z) = - 
α6z

2 + (α3α5 - α1α5 - 2α6)z + (α6 - α3α5)

z2 + (α4α5 + α2α5 - 2)z + (1 - α4α5)

A general z-domain specification for a biquad can be written as

H(z) = - 
a2z

2 + a1z + a0

b2z2 + b1˚z + 1 = - 
(a2/b2)z

2 + (a1/b2)z + (a0/b2)
z2 + (b1/b2)z + (b0/b2)

Equating coefficients gives

  α6 = 
a2
b2

,  α3α5 = 
a2-a0

b2
,  α1α5 = 

a2+a1+a0
b2

 ,  α4α5 = 1- 
1
b2

  and α2α5 = 1 + 
b1+1

2  

Because there are 5 equations and 6 unknowns, an additional relationship can be introduced.  One
approach would be to select α5 = 1 and solve for the remaining capacitor ratios.  Alternately, one could
let α2 = α5 which makes the integrator frequency of both integrators in the feedback loop equal.
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FLEISCHER-LAKER, SWITCHED CAPACITOR BIQUAD†

+
-

V1(s)D

Figure 9.6-8 - Fleischer-Laker, switched capacitor biquad.

Vin(z)
e

φ1

φ2

φ1

φ2φ2

C

G

φ2

+
-

B

φ2

F

I

φ2

A

φ1

Vout(z)
ee

φ1φ1

φ2

J

H

L

K

φ1

E

φ2

V
e

out(z)

V
e
in(z)

 = 
(D J ^  -  AH ^)z-2 - [D ( I ^  +  J ^ )  -  A G ^ ]z  - D I ^

(DB  - AE)z-2 - [2DB  - A(C  + E) + DF ]z-1 + D (B  +F)

V
e
1(z)

V
e
in(z)

 = 
(E J ^  -  B H ^)z-2+[B(G ^+ H ^ )  + F H ^  - E ( I ^+ J ^ ) -  C J ^ ]z -1  -  [ I ^(C +E ) - G ^(F+B)]

(DB  - AE)z-2 - [2DB  - A(C  + E) + DF ]z-1 + D (B  +F)

where G ^ = G+L,      H ^ = H+L ,         I ^ = I+K      and      J ^ = J+L

                                                
†
   P.E. Fleischer and K.R. Laker, “A Family of Active Switched Capacitor Biquad Building Blocks,” Bell System Technical Journal, vol. 58,

no. 10, Dec. 1979, pp. 2235-2269.
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Z-DOMAIN MODEL OF THE FLEISCHER-LAKER BIQUAD

+
-

Vin(z)

-Az-1 B(1-z-1) Vout(z)
e

F

e

I

E(1-z-1)

+
-

G D(1-z-1) V1(z)
e

C
K(1-z-1)

-Hz-1

-Jz-1

L(1-z-1)

Figure 9.6-9 - z-domain equivalent circuit for the Fleischer-Laker biquad of Fig. 9.6-8.

Type 1E Biquad (F = 0)

V
e

out

V
e
in

 = 
z-2(JD - HA) + z-1(AG - DJ - DI) + DI

z-2(DB - AE) + z-1(AC + AE - 2BD) + BD (1)

and

V
e
1

V
e
in

 = 
z-2(EJ - HB) + z-1(GB + HB - IE - CJ - EJ) + (IC + IE - GB)

z-2(DB - AE) + z-1(AC + AE - 2BD) + BD (2)
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Z-DOMAIN MODEL OF THE FLEISCHER-LAKER BIQUAD - Continued

+
-

Vin(z)

-Az-1 B(1-z-1) Vout(z)
e

F

e

I

E(1-z-1)

+
-

G D(1-z-1) V1(z)
e

C
K(1-z-1)

-Hz-1

-Jz-1

L(1-z-1)

Figure 9.6-9 - z-domain equivalent circuit for the Fleischer-Laker biquad of Fig. 9.6-8.

Type 1F Biquad (E = 0)

V
e

out

V
e
in

 = 
z-2(JD - HA) + z-1(AG - DJ - DI) + DI

z-2DB  + z-1(AC - 2BD - DF) + (BD + DF) (3)

and

V
e
1

V
e
in

 = 
-z-2HB + z-1(GB + HB + HF - CJ) + (IC + GF - GB)

z-2DB + z-1(AC - 2BD - DF) + (BD + DF) (4)
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EXAMPLE 9.6-3 - Design of a Switched Capacitor, Fleischer-Laker Biquad
Use the Fleischer-Laker biquad to implement the following z-domain transfer function which has

poles in the z-domain at r = 0.98 and θ = ±6.2°.

H(z) = 
0.003z-2 + 0.006z-1 + 0.003
0.9604z-2 - 1.9485z-1 + 1

 

Solution

Let us begin by selecting a Type 1E Fleischer-Laker biquad.  Equating the numerator of Eq. (1)
with the numerator of H(z) gives

DI = 0.003 AG-DJ-DI = 0.006 →  AG-DJ = 0.009 DJ-HA = 0.003

If we arbitrarily choose H = 0, we get

DI = 0.003  JD = 0.003 AG = 0.012

Picking D = A = 1 gives  I = 0.003, J = 0.003 and G = 0.012.  Equating the denominator terms of Eq.
(1) with the denominator of H(z), gives

BD = 1   BD-AE = 0.9604  →  AE = 0.0396

AC+AE-2BD = -1.9485  →  AC+AE = 0.0515  →  AC = 0.0119

Because we have selected D = A = 1, we get B = 1, E = 0.0396, and C = 0.0119.  If any capacitor
value was negative, the procedure would have to be changed by making different choices or choosing a
different realization such as Type 1F.

Since each of the alphabetic symbols is a capacitor, the largest capacitor ratio will be D or
A divided by I or J which gives 333.  The large capacitor ratio is being caused by the term BD = 1.  If
we switch to the Type 1F, the term BD = 0.9604 will cause large capacitor ratios.  This example is a
case where both the E and F capacitors are needed to maintain a smaller capacitor ratio.
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9.7 - SWITCHED CAPACITOR FILTERS
APPROACH

Today’s switched capacitor filters are based on continuous time filters.  Consequently, it is
expedient to briefly review the subject of continuous time filters.

Filter
Specifications

→ Continuous Time
Filter

→ Switched
Capacitor Filter

Ideal Filter:

Magnitude

1.0

0.0
0 fcutoff =

 fPassband
Frequency

Passband Stopband Phase

0° 0
Frequency

Slope =
-Time delay

This specification cannot be achieve by realizable filters because:

  •  An instantaneous transition from a gain of 1 to 0 is not possible.

  •  A band of zero gain is not possible.

Therefore, we develop filter approximations which closely approximate the ideal filter but are
realizable.

CMOS Analog Circuit Design Page 9.7-2

Chapter 9 - Switched Capacitor Circuits (6/4/01) © P.E. Allen, 2001

CHARACTERIZATION OF FILTERS
A low pass filter magnitude response.

T(jω)

T(j0)
T(jωPB)

T(jωSB)

ωSBωPB
0 0

ω

T(jωPB)/T(j0)

T(jωSB)/T(j0)

ωSB/ωPB=Ωn

1

0

Tn(jωn)

1
ωn0

(a.) (b.)
Figure 9.7-1 - (a.) Low pass filter.  (b.) Normalized, low pass filter.

Three basic properties of filters.

1.)  Passband ripple = |T(j0) - T(jωPB)|.

2.)  Stopband frequency = ωSB.

3.)  Stopband gain/attenuation = T(jωSB).

For a normalized filter the basic properties are:

1.)  Passband ripple = T(jωPB)/T(j0) = T(jωPB) if T(j0) = 1.

2.)  Stopband frequency (called the transition frequency) = Ωn = ωSB/ωPB.

3.)  Stopband gain = T(jωSB)/T(j0) = T(jωSB) if T(j0) = 1.
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FILTER SPECIFICATIONS IN TERMS OF BODE PLOTS (dB)

T(jωPB)

T(jωSB)

Ωn1
0 log10(ωn)

A(jωPB)

A(jωSB)

Ωn0

Tn(jωn) dB

10

(a.) (b.)
Figure 9.7-2 - (a.) Low pass filter of Fig. 9.7-1 as a Bode plot.  (b.) Low pass filter of
Fig. 9.7-2a shown in terms of attenuation (A(jω) = 1/T(jω)).

An(jωn) dB

log10(ωn)

Therefore,

Passband ripple = T(jωPB) dB

Stopband gain = T(jωSB) dB  or Stopband attenuation = A(jωPB)

Transition frequency is still = Ωn = ωSB/ωPB
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BUTTERWORTH FILTER APPROXIMATION
This approximation is maximally flat in the passband.

Normalized Frequency, ωn

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

A

N=5

N=3
N=6

1

1+ε 2

|T LPn (jω )|n

N=8

N=10

N=4
N=2

Butterworth Magnitude Approximation:

 TLPn(jωn)   = 
1

1 + ε2 ω2N
n

   

where N is the order of the approximation and ε is defined in the above plot.

The magnitude of the Butterworth filter approximation at ωSB is given as









TLPn





jωSB

ωPB
  = |TLPn(jΩn)| = TSB =  

1

1 + ε2 Ω2N
n

   

This equation in terms of dB is useful for finding N given the filter specifications.

20 log10(TSB) = TSB (dB) = -10 log10 1 + ε2 Ω2N
n    
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EXAMPLE 9.7-1 - Determining the Order of A Butterworth Filter Approximation

Assume that a normalized, low-pass filter is specified as TPB = -3dB, TSB = -20 dB, and Ωn = 1.5.
Find the smallest integer value of N of the Butterworth filter approximation which will satisfy this
specification.

Solution

TPB = -3dB corresponds to TPB = 0.707 which implies that ε = 1.  Thus, substituting ε = 1 and
Ωn = 1.5 into the equation at the bottom of the previous slide gives

TSB (dB) = - 10 log10( )1 + 1.52N   

Substituting values of N into this equation gives,

 TSB =  -7.83 dB for N = 2
-10.93 dB for N = 3
-14.25 dB for N = 4
-17.68 dB for N = 5
-21.16 dB for N = 6.

Thus, N must be 6 or greater to meet the filter specification.
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POLES AND QUADRATIC FACTORS OF BUTTERWORTH FUNCTIONS

Table 9.7-1 - Pole locations and quadratic factors (sn
2 + a1sn + 1) of normalized, low pass Butterworth

functions for ε = 1.  Odd orders have a product (sn+1).

N Poles a1 coefficient
2 -0.70711 ± j0.70711 1.41421
3 -0.50000 ± j0.86603 1.00000
4 -0.38268 ± j0.92388

-0.92388 ± j0.38268
0.76536
1.84776

5 -0.30902 ± j0.95106
-0.80902 ± j0.58779

0.61804
1.61804

6 -0.25882 ± j0.96593 -0.96593 ± j0.25882
-0.70711 ± j0.70711

0.51764 1.93186
1.41421

7 -0.22252 ± j0.97493 -0.90097 ± j0.43388
-0.62349 ± j0.78183

0.44505 1.80194
1.24698

8 -0.19509 ± j0.98079 -0.83147 ± j0.55557
-0.55557 ± j0.83147 -0.98079 ± j0.19509

0.39018 1.66294
1.11114 1.96158

9 -0.17365 ± j0.98481 -0.76604 ± j0.64279
-0.50000 ± j0.86603 -0.93969 ± j0.34202

0.34730 1.53208
1.00000 1.87938

10 -0.15643 ± j0.98769 -0.89101 ± j0.45399
-0.45399 ± j0.89101 -0.98769 ± j0.15643
-0.70711 ± j0.70711

0.31286 1.78202
0.90798 1.97538
1.41421
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Example 9.7-2 - Finding the Butterworth Roots and Polynomial for a given N

Find the roots for a Butterworth approximation with ε =1 for N = 5.

Solution

For N = 5, the following first- and second-order products are obtained from Table 9.7-1

TLPn(sn) = T1(sn)T2(sn)T3(sn) =  



1

sn+1






1

s
2
n+0.6180sn+1 






1

s
2
n+1.6180sn+1

   

Illustration of the individual magnitude contributions of each product of TLPn(sn).

0

0.5

1

1.5

2

0 0.5 1 1.5 2 2.5 3

T1(jωn)

T2(jωn)

T3(jωn)

(jωnTLPn )
M

ag
ni

tu
de

Normalized Frequency, ωn
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CHEBYSHEV FILTER APPROXIMATION

The magnitude response of the Chebyshev filter approximation for ε = 0.5088.

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3

TLPn(jωn)

A

N=5

N=2

N=4

N=3

1

1+ε2

Normalized Frequency, ωn

The magnitude of the normalized, Chebyshev, low-pass, filter approximation can be expressed as

| |TLPn(jωn)  = 
1

1 + ε2 cos2[Ncos-1(ωn)]
   ,   ωn ≤ 1

and

| |TLPn(jωn)  = 
1

1 + ε2 cosh2[Ncosh-1(ωn)]
   ,   ωn > 1

where N is the order of the filter approximation and ε is defined as

 |TLPn(ωPB)| = |TLPn(1)| = TPB =  
1

1+ε2
 .

N is determined from 20 log10(TSB) = TSB (dB) = -10log10{1 + ε2cosh2[Ncosh-1(Ωn)]} 
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EXAMPLE 9.7-3 - Determining the Order of A Chebyshev Filter Approximation
Repeat Ex. 9.7-1 for the Chebyshev filter approximation.

Solution

In Ex. 9.7-2, ε = 1 which means the ripple width is 3 dB or TPB = 0.707.  Now we substitute ε =
1 into

20 log10(TSB) = TSB (dB) = -10log10{1 + ε2cosh2[Ncosh-1(Ωn)]} 

and find the value of N which satisfies TSB  = - 20dB.

For N = 2, → TSB = - 11.22 dB.

For N =3, → TSB = -19.14 dB.

For N = 4, → TSB = -27.43 dB.

Thus N = 4 must be used although N = 3 almost satisfies the specifications.  This result compares with N
= 6 for the Butterworth approximation.
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POLES AND QUADRATIC FACTORS OF CHEBYSHEV FUNCTIONS

Table 9.7-2 - Pole locations and quadratic factors (a0 + a1sn + sn
2) of normalized, low pass Chebyshev

functions for ε = 0.5088 (1dB).

N Normalized Pole
Locations

a0 a1

2 -0.54887 ± j0.89513 1.10251 1.09773
3 -0.24709 ± j0.96600

-0.49417
0.99420 0.49417

4 -0.13954 ± j0.98338
-0.33687 ± j0.40733

0.98650
0.27940

0.27907
0.67374

5 -0.08946 ± j0.99011
-0.23421 ± j0.61192
-0.28949

0.98831
0.42930

0.17892
0.46841

6 -0.06218 ± j0.99341
-0.16988 ± j0.72723
-0.23206 ± j0.26618

0.99073
0.55772
0.12471

0.12436
0.33976
0.46413

7 -0.04571 ± j0.99528
-0.12807 ± j0.79816
-0.18507 ± j0.44294
-0.20541

0.99268
0.65346
0.23045

0.09142
0.25615
0.37014
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EXAMPLE 9.7-4 - Finding the Chebyshev Roots for a given N

Find the roots for the Chebyshev approximation with ε =1 for N = 5.

Solution

For N = 5, we get the following quadratic factors which give the transfer function as

TLPn(sn) = T1(sn)T2(sn)T3(sn) = 



0.2895

sn+0.2895






0.9883

s
2
n+0.1789sn+0.9883 






0.4293

s
2
n+0.4684sn+0.4293

 .
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OTHER APPROXIMATIONS

Thomson Filters - Maximally flat magnitude and linear phase1

Elliptic Filters - Ripple both in the passband and stopband, the smallest transition region of all filters.2

An excellent collection of filter approximations and data is found in A.I. Zverev, Handbook of
Filter Synthesis, John Wiley & Sons, Inc., New York, 1967.

                                                
1
   W.E. Thomson, “Delay Networks Having Maximally Flat Frequency Characteristics,” Proc. IEEE, part 3, vol. 96, Nov. 1949, pp. 487-490.

2
   W. Cauer, Synthesis of Linear Communication Networks, McGraw-Hill Book Co., New York, NY, 1958.
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GENERAL APPROACH FOR CONTINUOUS AND SC FILTER DESIGN

Low-Pass,
Normalized
Filter with a 
passband of 
1 rps and an 
impedance 
of 1 ohm.

Denormalize 
the  Filter 

Realization

Cascade of 
First- and/or 
Second-Order 

Stages

First-Order
Replacement

of Ladder
Components

Frequency 
Transform the 
Roots to HP, 

BP, or BS

Frequency 
Transform the 
L's and C's to 

HP, BP, or BS

Normalized 
LP Filter

Root
Locations

Normalized 
Low-Pass 

RLC Ladder 
Realization

All designs start with a normalized, low pass filter with a passband of 1 radian/second and an impedance
of 1Ω that will satisfy the filter specification.

1.)  Cascade approach - starts with the normalized, low pass filter root locations.

2.)  Ladder approach - starts with the normalized, low pass, RLC ladder realizations.
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A DESIGN PROCEDURE FOR THE LOW PASS, SC FILTERS USING THE CASCADE
APPROACH

1.)  From TPB, TSB,  and Ωn (or APB, ASB, and Ωn) determine the required order of the  filter
approximation, N.

2.)  From tables similar to Table 9.7-1 and 9.7-2 find the normalized poles of the approximation.

3.)  Group the complex-conjugate poles into second-order realizations.  For odd-order realizations there
will be one first-order term.

4.)  Realize each of the terms using the first- and second-order blocks of Secs. 9.5 and 9.6.

5.)  Cascade the realizations in the order from input to output of the lowest-Q stage first (first-order
stages generally should be first).

More information can be found elsewhere1,2,3,4.

                                                
1
   K.R. Laker and W.M.C. Sansen, Design of Analog Integrated Circuits and Systems, McGraw Hill, New York, 1994.

2
   P.E. Allen and E. Sanchez-Sinencio, Switched Capacitor Circuits, Van Nostrand Reinhold, New York, 1984.

3
   R. Gregorian and G.C. Temes, Analog MOS Integrated Circuits for Signal Processing, John Wiley & Sons, New York, 1987.

4
   L.P. Huelsman and P.E. Allen, Introduction to the Theory and Design of Active Filters, McGraw Hill Book Company, New York, 1980.
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EXAMPLE 9.7-5 - Fifth-order, Low Pass, Switched Capacitor Filter using the Cascade
Approach

Design a cascade, switched capacitor realization for a Chebyshev filter approximation to the filter
specifications of TPB = -1dB, TSB = -25dB, fPB = 1kHz and fSB = 1.5kHz.  Give a schematic and
component value for the realization.  Also simulate the realization and compare to an ideal realization.
Use a clock frequency of 20kHz.

Solution

First we see that Ωn = 1.5.  Next, recall that when TPB = -1dB that this corresponds to ε =
0.5088.  We find that N = 5 satisfies the specifications (TSB = -29.9dB).  Using the results of Ex. 9.7-4,
we may write TLPn(sn) as

TLPn(sn) = 



0.2895

sn+0.2895






0.9883

s
2
n+0.1789sn+0.9883 






0.4293

s
2
n+0.4684sn+0.4293

 . (1)

Next, we design each of the three stages individually.
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EXAMPLE 9.7-5 - Continued
Stage 1 - First-order Stage

Let us select Fig. 9.5-1 to realize the first-order stage.
We will assume that fc is much greater than fBP (i.e. 100) and
use Eq. (10) of Sec. 9.5 repeated below to accomplish the
design.

T1(s) ≈ 
α11/α21

1 + s(T/α21)
 (2)

Note that we have used the second subscript 1 to denote the first stage.  Before we can use this
equation we must normalize the sT factor.  This normalization is accomplished by

sT  = 






s

ωPB
 · (ωPBT) = snTn . (3)

Therefore, Eq. (2) can be written as

T1(sn) ≈ 
α11/α21

1 + sn(Tn/α21)
  = 

α11/Tn

sn +  α21/Tn
 (4)

where α11 = C11/C and α21 = C21/C.   Equating Eq. (4) to the first term in TLPn(sn) gives the design of
Fig. 9.5-1 as

α21 = α11 = 0.2895Tn = 
0.2895·ωPB

fc
 = 

0.2895·2000π
20,000  =  0.0909

The sum of capacitances for the first stage is

First-stage capacitance = 2 + 
1

0.0909 = 13 units of capacitance

+
-φ1

φ1φ2

φ2

φ2

φ1

α11C11
α21C11

C11

Vin(ejω)

Stage 1

V2(ejω)
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EXAMPLE 9.7-5 - Continued
Stage 2 - Second-order,
High-Q Stage

The next product of TLPn(sn) is

    
0.9883

s
2
n + 0.1789sn + 0.9883

= 
T(0)ω2

n

s
2
n + 

ωn

Q sn + ω2
n

  (5)

where T(0) = 1, ωn = 0.9941 and Q = (0.9941/0.1789) = 5.56.  Therefore, select the low pass version of
the high-Q biquad of Fig. 9.6-7. First, apply the normalization of Eq. (3) to get

T2(sn) ≈ 

-










α62s
2
n + 

snα32α52

Tn
 + 

α12α52

T
2
n

s
2
n + 

snα42α52

Tn
 + 

α22α52

T
2
n

   . (6)

To get a low pass realization, select α32 = α62 = 0 to get

T2(sn) ≈ 

-
α12α52

T
2
n

s
2
n + 

snα42α52

Tn
 + 

α22α52

T
2
n

   . (7)

+
-φ2

φ1φ1

φ2

α12C12

C12

+
-φ1

φ1φ2

φ2

φ2

φ1

α52C22

α22C12

C22

α42C12

V3(ejω)V2(ejω)

Stage 2
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EXAMPLE 9.7-5 - Continued
Equating Eq. (7) to the middle term of TLPn(sn) gives

α12α52 = α22α52 = 0.9883T
2
n = 

0.9883·ωPB
2

fc
2   = 

0.9883·4π2

400   = 0.09754

and

α42α52 = 0.1789Tn = 
0.1789·ωPB

fc
  = 

0.1789·2π
20   = 0.05620

Choose a12 = a22 = α52 to get optimum voltage scaling.  Thus we get, α12 = α22 = α52 = 0.3123
and α42 = 0.05620/0.3123 = 0.1800.  The second-stage capacitance is

Second-stage capacitance = 1 + 
3(0.3123)

0.1800  + 
2

0.1800  = 17.316 units of capacitance

Stage 3 - Second-order, Low-Q Stage

The last product of TLPn(sn) is

  
0.4293

s
2
n + 0.4684sn + 0.4293

 

    = 
T(0)ω2

n

s
2
n + 

ωn

Q sn + ω2
n

(8)

where we see that T(0) = 1, ωn = 0.6552 and Q = (0.6552/0.4684) = 1.3988.  Therefore, select the low
pass version of the low-Q biquad.  First, apply the normalization of Eq. (3) to get

+
-φ2

φ1φ1

φ2

α13C13

C13

+
-φ1

φ1φ2

φ2

φ2

φ1

α53C23
α21C13

C23

α63C23

Stage 3

V3(ejω)
Vout(ejω)
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EXAMPLE 9.7-5 - Continued

T3(sn) ≈ 

-










α33s
2
n + 

snα43

Tn
 + 

α13α53

T
2
n

s
2
n + 

snα63

Tn
 + 

α23α53

T
2
n

   . (9)

To get a low pass realization, select α33 = α43 = 0 to get

T3(sn) ≈ 

-
α13α53

T
2
n

s
2
n + 

snα63

Tn
 + 

α23α53

T
2
n

   . (10)

Equating Eq. (10) to the last term of TLPn(sn) gives

α13α53 = α23α53 = 0.4293T
2
n = 

0.4293·ωPB
2

fc
2   = 

0.4293·4π2

400   = 0.04237

and

α63 = 0.4684Tn = 
0.4684·ωPB

fc
  = 

0.4684·2π
20   = 0.1472

Choose a13 = a23 = α53 to get optimum voltage scaling.  Thus , α13 = α23 = α53 = 0.2058 and
α63 = 0.1472.  The third-stage capacitance is

Third-stage capacitance = 1 + 
3(0.2058)

0.1472  + 
2

0.1472  = 18.78 units of capacitance

The total capacitance of this design is 13 + 17.32 + 18.78 = 49.10 units of capacitance.
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EXAMPLE 9.7-5 - Continued
Final design with stage 3 second to maximize the dynamic range.

+
-φ1

φ1φ2

φ2

φ2

φ1

α11C11
α21C11

C11

+
-φ2

φ1φ1

φ2

α13C13

C13

+
-φ1

φ1φ2

φ2

φ2

φ1

α53C23
α23C13

C23

α63C23

+
-φ2

φ1φ1

φ2

α12C12

C12

+
-φ1

φ1φ2

φ2

φ2

φ1

α52C22

α22C12

C22

α42C12

Vin(ejω)

Vout(ejω)

Stage 1

Stage 3

Stage 2

Figure 9.7-7 - Fifth-order, Chebyshev, low pass, switched capacitor filter
of Example 9.7-5.
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EXAMPLE 9.7-5 - Continued
Simulated Frequency Response:
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Figure 9.7-8a - Simulated magnitude response of Ex. 9.7-5
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Figure 9.7-8b - Simulated phase response of Ex. 9.7-5

Comments:

•  There appears to be a sinx/x effect on the magnitude which causes the passband specification to not
be satisfied.  This can be avoided by prewarping the specifications before designing the filter.

•  Stopband specifications met

•  None of the outputs of the biquads exceeds 0 dB (Need to check internal biquad nodes)
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EXAMPLE 9.7-5 - Continued
SPICE Input File:

******** 08/29/97 13:17:44 *********
*******PSpice 5.2 (Jul 1992) ********

*SPICE FILE FOR EXAMPLE 9.7-5
*EXAMPLE 9-7-5: nodes 5 is the output
*of 1st stage, node 13 : second stage (in
*the figure it is second while in design it
*is third, low Q stage), and node 21 is the
*final output of the *filter.

**** CIRCUIT DESCRIPTION ****

VIN    1 0 DC 0 AC 1

*.PARAM CNC=1 CNC_1=1 CPC_1=1

XNC1    1 2 3 4 NC1
XUSCP1    3 4 5 6 USCP
XPC1    5 6 3 4 PC1
XAMP1    3 4 5 6 AMP

XPC2    5 6 7 8 PC2
XUSCP2    7 8 9 10 USCP
XAMP2    7 8 9 10 AMP
XNC3    9 10 11 12 NC3
XAMP3    11 12 13 14 AMP
XUSCP3    11 12 13 14 USCP
XPC4    13 14 11 12 PC4
XPC5    13 14 7 8 PC2

XPC6    13 14 15 16 PC6
XAMP4    15 16 17 18 AMP
XUSCP4    15 16 17 18 USCP

XNC7    17 18 19 20 NC7
XAMP5    19 20 21 22 AMP
XUSCP5 19 20 21 22 USCP
XUSCP6    21 22 15 16 USCP1
XPC8    21 22 15 16 PC6

.SUBCKT DELAY 1 2 3
ED    4 0 1 2 1
TD    4 0 3 0 ZO=1K TD=25US
RDO    3 0 1K
.ENDS DELAY

.SUBCKT NC1 1 2 3 4
RNC1    1 0 11.0011
XNC1    1 0 10 DELAY
GNC1    1 0 10 0 0.0909
XNC2    1 4 14 DELAY
GNC2    4 1 14 0 0.0909
XNC3    4 0 40 DELAY
GNC3    4 0 40 0 0.0909
RNC2    4 0 11.0011
.ENDS NC1

.SUBCKT NC3 1 2 3 4
RNC1    1 0 4.8581
XNC1    1 0 10 DELAY
GNC1    1 0 10 0 0.2058
XNC2    1 4 14 DELAY
GNC2    4 1 14 0 0.2058
XNC3    4 0 40 DELAY
GNC3    4 0 40 0 0.2058
RNC2    4 0 4.8581
Ends NC3
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EXAMPLE 9.7-5 - Continued
Spice Input File - Continued

.SUBCKT NC7 1 2 3 4
RNC1    1 0 3.2018
XNC1    1 0 10 DELAY
GNC1    1 0 10 0 0.3123
XNC2    1 4 14 DELAY
GNC2    4 1 14 0 0.3123
XNC3    4 0 40 DELAY
GNC3    4 0 40 0 0.3123
RNC2    4 0 3.2018
.ENDS NC7

.SUBCKT PC1 1 2 3 4
RPC1    2 4 11.0011
.ENDS PC1

.SUBCKT PC2 1 2 3 4
RPC1    2 4 4.8581
.ENDS PC2

.SUBCKT PC4 1 2 3 4
RPC1    2 4 6.7980
.ENDS PC4

.SUBCKT PC6 1 2 3 4
RPC1    2 4 3.2018
.ENDS PC6

.SUBCKT USCP 1 2 3 4
R1    1 3 1
R2    2 4 1
XUSC1    1 2 12 DELAY
GUSC1    1 2 12 0 1
XUSC2    1 4 14 DELAY

GUSC2    4 1 14 0 1
XUSC3    3 2 32 DELAY
GUSC3    2 3 32 0 1
XUSC4    3 4 34 DELAY
GUSC4    3 4 34 0 1
.ENDS USCP

.SUBCKT USCP1 1 2 3 4
R1    1 3 5.5586
R2    2 4 5.5586
XUSC1    1 2 12 DELAY
GUSC1    1 2 12 0 0.1799
XUSC2    1 4 14 DELAY
GUSC2    4 1 14 0 .1799
XUSC3    3 2 32 DELAY
GUSC3    2 3 32 0 .1799
XUSC4    3 4 34 DELAY
GUSC4    3 4 34 0 .1799
.ENDS USCP1

.SUBCKT AMP 1 2 3 4
EODD    3 0 1 0 1E6
EVEN    4 0 2 0 1E6
.ENDS AMP

.AC LIN 100 10 3K

.PRINT AC V(5) VP(5) V(13) VP(13)
V(21) VP(21)
.PROBE
.END
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EXAMPLE 9.7-5 - Continued
Switcap2 Input File (The exact same results were obtained as for SPICE)

TITLE: EXAMPLE 9-7-5

OPTIONS;
 NOLIST;
 GRID;
 END;

TIMING;
 PERIOD 50E-6;
 CLOCK CLK 1 (0 25/50);
 END;

SUBCKT (1 100) STG1;
 S1 (1 2) CLK;
 S2 (2 0) #CLK;
 S3 (3 4) #CLK;
 S4 (3 0) CLK;
 S5 (5 100) #CLK;
 S6 (5 0) CLK;
 CL11 (2 3) 0.0909;
 CL21 (3 5) 0.0909;
 E1 (100 0 0 4) 1E6;
 END;

SUBCKT (200 300) STG2;
 S1 (200 2) #CLK;
 S2 (2 0) CLK;
 S3 (3 0) CLK;
 S4 (3 4) #CLK;
 S5 (6 5) CLK;

 S6 (6 0) #CLK;
 S7 (7 0) CLK;
 S8 (7 8) #CLK;
 S9 (300 9) #CLK;
 S10 (9 0) #CLK;
 CL12 (2 3) 0.3123;
 CL22 (3 9) 0.3123;
 CL42 (4 300) 0.1799;
 C12 (4 5) 1;
 CL52 (6 7) 0.3123;
 C22 (8 300) 1;
 E1 (5 0 0 4) 1E6;
 E2 (300 0 0 8) 1E6
 END;

SUBCKT (100 200) STG3;
 S1 (100 2) #CLK;
 S2 (2 0) CLK;
 S3 (3 0) CLK;
 S4 (3 4) #CLK;
 S5 (6 5) CLK;
 S6 (6 0) #CLK;
 S7 (7 0) CLK;
 S8 (7 8) #CLK;
 S9 (200 9) #CLK;
 S10 (9 0) #CLK;
 CL13 (2 3) 0.2058;
 CL23 (3 9) 0.2058;
 CL63 (9 7) 0.1471;
 C13 (4 5) 1;

 CL53 (6 7) 0.2058;
 C23 (8 200) 1;
 E1 (5 0 0 4) 1E6;
 E2 (200 0 0 8) 1E6
 END;

CIRCUIT;
 X1 (1 100) STG1;
 X2 (100 200) STG3;
 X3 (200 300) STG2;
 V1 (2 0);
 END;

ANALYZE SSS;
 INFREQ  1  3000  LIN  150;
 SET V1 AC 1.0 0.0;
 PRINT vdb(100) vp(100);
 PRINT vdb(200) vp(200);
 PRINT vdb(300) vp(300);
 PLOT vdb(300);
 END;

END;
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USING THE CASCADE APPROACH FOR OTHER TYPES OF FILTERS
Other types of filters are developed based on the low pass approach.

(a.) (b.)

(c.) (d.)

0 ωSBωPB

1

0 ω (rps)

TLP(jω)

TPB

TSB

Transition
Region

A

B

One possible
filter realization

ωPB

THP(jω)

1

0
0

ω (rps)
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B
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tion Region

0
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filter realization

Lower
Transition
Region

Upper Transi-
tion Region

Practical magnitude responses of (a.) low pass, (b.) high pass, (c.) bandpass, and (d.) bandstop filter.

We will use transformations from the normalized, low pass filter to the normalized high pass,
bandpass or bandstop to achieve other types of filters.
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HIGH PASS, SC FILTERS USING THE CASCADE APPROACH
Normalized, low pass to normalized high pass transformation:

sln = 
1

shn
   

where shn is the normalized, high-pass frequency variable.

A general form of the normalized, low-pass transfer function is

TLPn(sln) = 
p1lnp2lnp3ln···pNln 

(sln+p1ln)(sln+p2ln)(sln+p3ln)···(sln+pNln)  

where pkln is the kth normalized, low-pass pole.

Applying the normalized, low-pass to high-pass transformation toTLPn(sln) gives

THPn(shn) = 
p1lnp2lnp3ln···pNln





1

shn
+p1ln 



1

shn
+p2ln 



1

shn
+p3ln ···



1

shn
+pNln

 = 
s

N
hn 





shn+

1
p1ln 



shn+

1
p2ln 



shn+

1
p3ln

···



shn+

1
pNln

    

     = 
s

N
hn 

( )shn+p1hn ( )shn+p2hn ( )shn+p3hn ···( )shn+pNhn
   

where pkhn is the kth normalized high-pass pole.

Use the high pass switched capacitor circuits of Secs. 9.5 and 9.6 to achieve the implementation.

Ωn is defined for the high pass normalized filter as:     Ωn = 
1

Ωhn
 = 

ωPB

ωSB
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EXAMPLE 9.7-7 - Design of a Butterworth, High-Pass Filter
Design a high-pass filter having a -3dB ripple bandwidth above 1 kHz and a gain of less than -35

dB below 500 Hz using the Butterworth approximation.  Use a clock frequency of 100kHz.

Solution

From the specification, we know that TPB = -3 dB and TSB  = -35 dB.  Also, Ωn = 2 (Ωhn = 0.5).
ε = 1 because TPB  = -3 dB.  Therefore, find that N = 6 will give TSB  = -36.12 dB which is the lowest,
integer value of N which meets the specifications.

Next, the normalized, low-pass poles are found from Table 9.7-1 as

p1ln, p6ln = -0.2588 ± j 0.9659

p2ln, p5ln = -0.7071 ± j 0.7071
and

p3ln, p4ln = -0.9659 ± j 0.2588

 Inverting the normalized, low-pass poles gives the normalized, high-pass poles which are

p1hn, p6hn = -0.2588 -+  j 0.9659
p2hn, p5hn = -0.7071 -+  j 0.7071

and
p3hn, p4hn = -0.9659 -+  j 0.2588  .

We note the inversion of the Butterworth poles simply changes the sign of the imaginary part of the
pole.

CMOS Analog Circuit Design Page 9.7-28

Chapter 9 - Switched Capacitor Circuits (6/4/01) © P.E. Allen, 2001

EXAMPLE 9.7-7 - Continued
The next step is to group the poles in second-order products, since there are no first-order

products.  This result gives the following normalized, high-pass transfer function.

THPn(shn) = T1(shn)T2(shn)T3(shn) = 





s

2
hn

(shn+p1hn)(shn+p6hn) 





s

2
hn

(shn+p2hn)(shn+p5hn) 





s

2
hn

(shn+p3hn)(shn+p4hn)  

=  






s

2
hn

s
2
hn+0.5176shn+1 






s

2
hn

s
2
hn+1.4141shn+1 






s

2
hn

s
2
hn+1.9318shn+1

   .

Now we are in a position to do the stage-by-stage design.  We see that the Q’s of each stage are
Q1 = 1/0.5176 = 1.932, Q2 = 1/1.414 = 0.707, and Q3 = 1/1.9318 = 0.5176.  Therefore, we will choose
the low-Q biquad to implement the realization of this example.

The low-Q biquad design equations are:

α1 = 
K0Tn

ωon
 , α2 = |α5| = ωonTn, α3 = K2, α4 = K1Tn,  and α6 = 

ωonTn

Q   .

For the high pass,

K0 = K1 = 0 and K2 = 1, so that α1 = α4 = 0 and α2 = |α5| = ωonTn, α3 = K2 and α6 = 
ωonTn

Q .

Stage 1

α21 = α51 = 
ωPB

fc
 = 

2π·103

105  = 0.06283,  α31 = 1, and α61 = 
ωPB

Qfc
 = 

0.06283
1.932  = 0.03252
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EXAMPLE 9.7-7 - Continued
Stage 2

α22 = α52 = 
ωPB

fc
 = 

2π·103

105  = 0.06283,

α32 = 1, and

α62 = 
ωPB

Qfc
 = 

0.06283
0.707  = 0.08884

Stage 3

α23 = α53 = 
ωPB

fc
 = 

2π·103

105  = 0.06283,

α33 = 1, and

α63 = 
ωPB

Qfc
 = 

0.06283
0.5176  = 0.1214

Realization  →
Lowest Q stages are first in the

cascade realization.

Σ capacitances = 104.62 units of 
capacitance

+
-
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+
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+
-
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+
-
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-
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-
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BANDPASS, SC FILTERS USING THE CASCADE APPROACH
1.)  Define the passband and stopband as

BW = ωPB2 - ωPB1 and SW = ωSB2 - ωSB1

whereωPB2 is the larger passband frequency and ωPB1 is the smaller passband frequency of the
bandpass filter.  ωSB2 is the larger stopband frequency and ωSB1 is the smaller stopband frequency.

2.)  Geometrically centered bandpass filters have the following relationship:

ωr = ωPB1ωPB2   = ωSB2ωSB1   

3.)  Define a normalized low-pass to unnormalized bandpass transformation as

sln = 
1

BW 





sb

2 + ω r
2

sb
  = 

1
BW 








sb + 
ω r

2

sb
 .

4.)  A normalized low-pass to normalized bandpass transformation is achieved by dividing the
bandpass variable, sb, by the geometric center frequency, ωr, to get

sln = 





ωr

BW 





sb

ωr
 + 

 1
(sb/ωr)

  = 





ωr

BW 







sbn + 
1

sbn
      where sbn = 

sb

ωr
  .

5.)   Multiply by BW/ωr and define yet a further normalization of the low-pass, complex frequency
variable as

sln
'   = 







BW

ωr
 sln = Ωbsln = Ωb






sl

ωPB
  = 








sbn + 
1

sbn
  where Ωb = 

BW
ωr

   .

6.)  Solve for sbn in terms of sln
'  from the following quadratic equation.

s
2
bn  - sln

'   sbn + 1 = 0   → sbn = 





sln

'

2   ± 





sln

'

2
2 - 1   .
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ILLUSTRATION OF THE ABOVE APPROACH

(a.) (b.)

0 ωbn (rps)

1

0
0

TPBn(jωb)

ωr-ωr

BW BW

ωb (rps)

(c.)(d.)

Bandpass 
Normalization

Normalized 
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normalized 
bandpass 
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Bandpass
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1

0
0-1 1

TLPn(jωln)
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1

0
0

1Ωb-Ωb
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' )

ωln
'  (rps)

sln
'

2
 ± 

sln
'

2

2

- 1

↓
sbn

1

0

TBPn(jωbn)

ΩbΩb

1-1

sb ← Ωbsbn = BW
ωr

sbn

Ωbsln = BW
ωr

sln → sln
'

Figure 9.7-10 - Illustration of the development of a bandpass filter from a low-pass filter. (a.) Ideal
normalized, low-pass filter.  (b.) Normalization of (a.) for bandpass transformation.  (c.)  Application of
low-pass to bandpass transformation.  (d.) Denormalized bandpass filter.
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BANDPASS DESIGN PROCEDURE FOR THE CASCADE APPROACH
1.)  The ratio of the stop bandwidth to the pass bandwidth for the bandpass filter is defined as

Ωn = 
SW
BW  = 

ωSB2 - ωSB1

ωPB2 - ωPB1
.

2.)  From TPB, TSB, and Ωn, find the order N or the filter.

3.)  Find the normalized, low-pass poles, p ‘ 
kln

.

4.)  The normalized bandpass poles can be found from the normalized, low pass poles, p ‘ 
kln

 using

pkbn = 
p ‘ 

kln

2   ± 









p ‘ 
kln

2
2
 - 1  .

For each pole of the low-pass filter, two poles result for the bandpass filter.

pjln
'

pkln
'

= pjln
'  *

pkbn
*

pjbn
*

pjbn

pkbn

jωln
'

σln
' σbn

jωbn

Low-pass Poles
Normalized by ωPBωr

BW
Normalized 

Bandpass Poles

Figure 9.7-11 - Illustration of how the normalized, low-pass, complex conjugate poles are transformed into two
normalized, bandpass, complex conjugate poles.
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BANDPASS DESIGN PROCEDURE FOR THE CASCADE APPROACH - Continued
5.)  Group the poles and zeros into second-order products having the following form

Tk(sbn) = 
Kk sbn

(sbn + pkbn)(sbn + pjbn
* )

   = 
Kk sbn

(sbn+σkbn+jωkbn)(sbn+σkbn-jωkbn)
 

 = 
Kk sbn

sbn
2 +(2σkbn)sbn+(σbn

2 +ωkbn
2 )

  = 
Tk(ωkon)






ωkon

Qk
sbn

sbn
2  + 






ωkon

Qk
sbn + ωkon

2
 

where j and k corresponds to the jth and kth low-pass poles which are a complex conjugate pair, Kk is a
gain constant, and

ωkon = σkbn
2 +ωkbn

2  and Qk = 
σbn

2 +ωkbn
2

2σbn
   .

6.)  Realize each second-order product with a bandpass switched capacitor biquad and cascade in the
order of increasing Q.
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EXAMPLE 9.7-8 - Design of a Cascade Bandpass Switched Capacitor Filter
Design a bandpass, Butterworth filter having a -3dB ripple bandwidth of 200 Hz geometrically

centered at  1 kHz and a stopband of 1 kHz with an attenuation of 40 dB or greater,  geometrically
centered at 1 kHz.  The gain at 1 kHz is to be unity.  Use a clock frequency of 100kHz.

Solution

From the specifications, we know that TPB = -3 dB and TSB  = -40 dB.  Also, Ωn = 1000/200 = 5.
ε = 1 because TPB  = -3 dB.  Therefore, we find that N = 3 will give TSB  = -41.94 dB which is the
lowest, integer value of N which meets the specifications.

Next, we evaluate the normalized, low-pass poles from Table 9.7-1 as

p1ln, p3ln = -0.5000 ± j0.8660 and p2ln = -1.0000 .

Normalizing these poles by the bandpass normalization of Ωb = 200/1000 = 0.2 gives

p'  1ln , p'  3ln  = -0.1000 ± j 0.1732 and p'  2ln  = -0.2000 .

Each one of the p'  kln  will contribute a second-order term.  The normalized bandpass poles are

found by using sbn =  sln
' /2   ±  sln

' /2 2 - 1 which results in 6 poles given as follows.

For p'  1ln  = -0.1000 + j0.1732 →  p1bn, p2bn = -0.0543 + j1.0891, -0.0457 - j0.9159.

For p'  3ln  = -0.1000 - j0.1732 →   p3bn, p4bn = -0.0457 + j0.9159, -0.543 - j 1.0891.

For p'  2ln  = -0.2000 →  p5bn, p6bn = -0.1000 ± j 0.9950.
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EXAMPLE 9.7-8 - Continued

The normalized low-pass pole locations, pkln, the bandpass normalized, low-pass pole locations, pkln
'  ,

and the normalized bandpass poles, pkbn are shown below.  Note that the bandpass poles have very high
pole-Qs if BW < ωr.

p1ln

p2ln

p3ln

p3ln
'

p2ln
'
p1ln

'

j1

-j1

-1
σln

'

jωln
'

(b.)(a.)

-1

j1

-j1

-0.5000

j0.8660

-j0.8660

jωln

σln

p1ln

p2ln

p3ln

σbn

p1bn

p2bn

p3bn

p4bn

p5bn

p6bn

jωbn

j1

-1

-j1

(c.)

3 zeros
at ±j∞

Figure 2-16 - Pole locations for Ex. 9.7-8.  (a.) Normalized low-pass poles.  (b.)  Bandpass normalized
low-pass poles.  (c.)  Normalized bandpass poles.

Grouping the complex conjugate bandpass poles gives the following second-order transfer
functions.

T1(sbn) = 
K1sbn

(s+p1bn)(s+p4bn) 
 = 

K1sbn

(sbn+0.0543+j1.0891)(sbn+0.0543-j1.0891) = 




1.0904

10.0410 sbn

sbn
2 +



1.0904

10.0410 sbn+1.09042
   .
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EXAMPLE 9.7-8 - Continued

T2(sbn) = 
K2sbn

(s+p2bn)(s+p3bn) 
 = 

K2sbn

(sbn+0.0457+j0.9159)(sbn+0.0457-j0.9159)  = 




0.9170

10.0333 sbn

sbn
2 +



0.9170

10.0333 sbn+0.91592

   .

and

T3(sbn) = 
K3sbn

(s+p5bn)(s+p6bn)  = 
K3sbn

(sbn+0.1000+j0.9950)(sbn+0.1000-j0.9950)  = 




1.0000

5.0000 sbn

sbn
2 +



1.0000

5.0000 sbn+1.00002
   .

Now we can begin the stage-by-stage design.  Note that the Q’s of the stages are Q1 = 10.0410,
Q2 = 10.0333, and Q3 = 5.0000.  Therefore, use the high-Q biquad whose design equations are:

α1 = 
K0Tn

ωon
 ,   α2 = |α5| = ωonTn ,   α3 = 

K1

ωon
,  α4 =

1
Q,  and   α6 = K2 .

For the bandpass realization K0 = K2 = 0 and K1 = ωon/Q, so that the design equations simplify to

α1 = 0,   α2 = |α5| = ωon,Tn = 
ωon·ωr

fc
 ,   α3 = 

K1
ωon

 = 
ωon/Q

ωon  = 
1
Q ,  α4 =

1
Q,  and   α6 = 0 .

Stage 1

    α11 = α61 = 0, α21 = |α51| = 
ωo1
fc

 = 
1.0904·2πx103

105  = 0.06815, α31 = 0.09959, and α41  = 0.09959
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EXAMPLE 9.7-8 - Continued
Stage 2

  α12 = α62 = 0,

  α22 = |α52| = 
ωo2
fc

 = 
0.9159·2πx103

105

= 0.05755,

  α32 = 0.09967, and α42  = 0.09967

Stage 3

  α13 = α63 = 0,

  α23 = |α53| = 
ωo3
fc

 = 
1.0000·2πx103

105

= 0.06283,

  α31 = 0.2000, and α41  = 0.2000

Realization →

+
-

C11

φ2
α21C11

φ1

+
-

C21

φ1

φ2

α51C21

φ2

φ1 Vout(z)e

α41C11

α31C11

φ1
φ2

+
-

C13Vin(z)
e

φ2
α23C13

φ1

+
-

C23

φ1

φ2

α53C23

φ2

φ1
V3(z)

e

α43C13

α33C13

φ1
φ2

+
-

C12

φ2
α22C12

φ1

+
-

C22

φ1

φ2

α52C22

φ2

φ1

α42C12

α32C12

φ1
φ2

V2(z)
e

Stage 3

Stage 2

Stage 1
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HIGHER ORDER SWITCHED CAPACITOR FILTERS - LADDER APPROACH
The ladder approach to filter design starts from RLC realizations of the desired filter specification.

These RLC realizations are called prototype circuits.

Advantage:

  •  Less sensitive to capacitor ratios.

Disadvantage:

  •  Design approach more complex

  •  Requires a prototype realization

Singly-terminated RLC prototype filters:

(a.)

(b.)

1

+

-

+

-

L2nLN,n

CN-1,n C3n C1nVin(sn) Vout(sn)

1

+

-

+

-

C2nCN-1,n

LN,n L3n L1n

Vin(sn) Vout(sn)

Figure 9.7-12 - Singly-terminated, RLC prototype filters.  (a.) N even.  (b.)  N odd.
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TABLE 9.7-3 - Normalized component values for Fig. 9.7-12 for the Butterworth and
Chebyshev singly-terminated, RLC filter approximations.

Use these component designations for even order circuits of Fig. 9.7-12a.
N C1n L2n C3n L4n C5n L6n C7n L8n C9n L10n

2 0.7071 1.4142
3 0.5000 1.3333 1.5000 Butterworth (1 rps passband)
4 0.3827 1.0824 1.5772 1.5307
5 0.3090 0.8944 1.3820 1.6944 1.5451
6 0.2588 0.7579 1.2016 1.5529 1.7593 1.5529
7 0.2225 0.6560 1.0550 1.3972 1.6588 1.7988 1.5576
8 0.1951 0.5576 0.9370 1.2588 1.5283 1.7287 1.8246 1.5607
9 0.1736 0.5155 0.8414 1.1408 1.4037 1.6202 1.7772 1.8424 1.5628
10 0.1564 0.4654 0.7626 1.0406 1.2921 1.5100 1.6869 1.8121 1.8552 1.5643

2 0.9110 0.9957
3 1.0118 1.3332 1.5088 1-dB ripple Chebyshev (1 rps passband)
4 1.0495 1.4126 1.9093 1.2817
5 1.0674 1.4441 1.9938 1.5908 1.6652
6 1.0773 1.4601 2.0270 1.6507 2.0491 1.3457
7 1.0832 1.4694 2.0437 1.6736 2.1192 1.6489 1.7118
8 1.0872 1.4751 2.0537 1.6850 2.1453 1.7021 2.0922 1.3691
9 1.0899 1.4790 2.0601 1.6918 2.1583 1.7213 2.1574 1.6707 1.7317
10 1.0918 1.4817 2.0645 1.6961 2.1658 1.7306 2.1803 1.7215 2.1111 1.3801

L1n C2n L3n C4n L5n C6n L7n C8n L9n C10n
Use these component designations for odd order circuits of Fig. 9.7-12b.
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EXAMPLE 9.7-9 - Use of the Table 9.7-3 to Find a Singly-Terminated, RLC Low pass Filter
Find a singly-terminated, normalized, RLC filter for a 4th-order Butterworth low pass filter

approximation.

Solution

Use Table 9.7-3 with the component designations at the top to get:

1 Ω
+

-

+

-

Vin(sn) Vout(sn)C1n=
0.3827 F

C3n=
1.5772 F

L2n=1.0824 HL4n=1.5307 H
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DOUBLY-TERMINATED RLC PROTOTYPE FILTERS

(a.)

(b.)

1

+

-

+

-

L2nLN,n

CN-1,n C3n C1nVin(sn) Vout(sn)
R

1

+

-

C2nCN-1,n

LN,n L3n L1n

Vout(sn)
+

-

Vin(sn)
R

These structures experience a 6dB loss in the passband.
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TABLE 9.7-4 - Normalized component values for Fig. 9.7-14 for the Butterworth and 1-dB
Chebyshev doubly-terminated RLC approximations.

Use these component designations for even order of Fig. 9.7-14a, R = 1Ω.

N C1n L2n C3n L4n C5n L6n C7n L8n C9n L10n

2 1.4142 1.4142
3 1.0000 2.0000 1.0000 Butterworth (1 rps passband)
4 0.7654 1.8478 1.8478 0.7654
5 0.6180 1.6180 2.0000 1.6180 0.6180
6 0.5176 1.4142 1.9319 1.9319 1.4142 0.5176
7 0.4450 1.2470 1.8019 2.0000 1.8019 1.2740 0.4450
8 0.3902 1.1111 1.6629 1.9616 1.9616 1.6629 1.1111 0.3902
9 0.3473 1.0000 1.5321 1.8794 2.0000 1.8794 1.5321 1.0000 0.3473
10 0.3129 0.9080 1.4142 1.7820 1.9754 1.9754 1.7820 1.4142 0.9080 0.3129

3 2.0236 0.9941 2.0236 1-dB ripple Chebyshev (1 rps passband)
5 2.1349 1.0911 3.0009 1.0911 2.1349
7 2.1666 1.1115 3.0936 1.1735 3.0936 1.1115 2.1666
9 2.1797 1.1192 3.1214 1.1897 3.1746 1.1897 3.1214 1.1192 2.1797

L1n C2n L3n C4n L5n C6n L7n C8n L9n C10n

Use these component designations for odd order of Fig. 9.7-14b, R = 1Ω.

Note that no solution exists for the even-order cases of the doubly-terminated, RLC Chebyshev
approximations for R = 1 Ω.  This is a special result for R = 1 Ω and is not true for other values of R.
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EXAMPLE 9.7-10 - Use of Table 3-2 to Find a Doubly-Terminated, RLC Low-pass Filter
Find a doubly-terminated, RLC filter using minimum capacitors for a fifth-order Chebyshev filter

approximation having 1 dB ripple in the passband and a source resistance of 1 Ω.

Solution

Using Table 9.7-4 and using the component designations at the top of the table gives:

1 Ω
+

-

+

-

Vin(sn) Vout(sn)
1 Ω

C4n=
1.0911 F

C2n=
1.0911 F

L1n=2.1349 HL5n=2.1349 H L3n=3.0009 H
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FORMULATION OF THE STATE VARIABLES OF A PROTOTYPE CIRCUIT
State Variables:

The state variables of a circuit can be the current through an element or the voltage across it.

The number of state variables to solve a circuit = number of inductors and capacitors - 
inductor cutsets and capacitor loops.

An inductor cutset is a node where only inductors are connected.

A capacitor loop is a loop where only capacitors are in series.

The approach:

 • Identify the “correct” state variables and formulate each state variable as function of itself and
other state variables.

 • Convert this function to a form synthesizable by switched capacitor circuits (i.e. an integrator).

A low pass example:

+

-

C2n

L3nL1n

Vout(sn)
+

-

Vin(sn) C4n

L5nR0n

R6n
+

-

+

-

I1 I3 I5

V2 V4

Fig. 9.7-16 - A fifth-order, low pass, normalized RLC ladder filter.

The state variables are I1 , V2,  I3,  V4, and I5.

(The “correct” state variables will be the currents in the series elements and the voltage across 
the shunt elements.)
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WRITING THE STATE EQUATIONS FOR A RLC PROTOTYPE CIRCUIT
Alternately use KVL and KCL for a loop and a node, respectively.

I1: Vin(s) - I1(s)R0n - sL1nI1(s) - V2(s) = 0

V2: I1(s) - sC2nV2(s) - I3(s) = 0

 I3: V2(s) - sL3nI3(s) - V4(s) = 0

V4: I3(s) - sC4nV4(s) - I5(s) = 0
and

I5: V4(s) - sL5nI5(s) - R6nI5n(s) = 0

However, we really would prefer Vout as a state variable instead of I5.  This is achieved using Ohm’s
law to get for the last two equations:

V4: I3(s) - sC4nV4(s) - 
Vout(s)

R6n
= 0

and

Vout: V4(s) - 
sL5nVout(s) 

R6n
 - Vout = 0
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VOLTAGE ANALOGS OF CURRENT
A voltage analog, Vj’, of a current Ij is defined as

Vj’ = RIj

where R’is an arbitrary resistance (normally 1 ohm).

Rewriting the five state equations using voltage analogs for current gives:

V1’: Vin(s) - 





V1’(s)

R  (R0n + sL1n)  - V2(s) = 0

V2: 





V1’(s)

R  - sC2nV2(s) - 





V3’(s)

R  = 0

V3’: V2(s) - sL3n





V3’(s)

R  - V4(s) = 0

V4: 





V3’(s)

R  - sC4nV4(s) - 
Vout(s)

R6n
 = 0

and

Vout: V4(s) - 
sL5nVout(s) 

R6n
 - Vout = 0
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THE STATE VARIABLE FUNCTIONS
Solve for each of the state variables a function of itself and other state variables.

V'
 1(s)  = 

R'
sL1n

 





Vin(s) - V2(s) - 



R0n

R' V'
 1(s)  

V2(s) = 
1

sR'C2n
  [V '

 1(s)  - V'
  3(s) ]

V'
  3(s)  = 

R'
sL3n

  [V2(s) - V4(s)]

V4(s) =  
1

sR'C4n
  [V'  3(s)  - 



R'

R6n
  Vout(s)]

Vout(s) =  
R6n

sL5n
  [V4(s) - Vout(s)]

Note that each of these functions is the integration of voltage variables and is easily realized using
the switched capacitor integrators of Sec. 9.3.
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GENERAL DESIGN PROCEDURE FOR LOW PASS, SC LADDER FILTERS

1.)  From TBP, TSB, and Ωn (or APB, ASB, and Ωn) determine the required order of the filter
approximation.

2.)  From tables similar to Table 9.7-3 and 9.7-2 find the RLC prototype filter approximation.

3.)  Write the state equations and rearrange them so each state variable is equal to the integrator of
various inputs.

4.)  Realize each of rearranged state equations by the switched capacitor integrators of Secs. 9.3.
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EXAMPLE 9.7-11 - Fifth-order, Low Pass, Switched Capacitor Filter using the Ladder
Approach

Design a ladder, switched capacitor realization for a Chebyshev filter approximation to the filter
specifications of TBP = -1dB, TSB = -25dB, fPB = 1kHz and fSB  = 1.5 kHz.  Give a schematic and
component value for the realization.  Also simulate the realization and compare to an ideal realization.
Use a clock frequency of 20 kHz.  Adjust your design so that it does not suffer the -6dB loss in the pass
band.  (Note that this example should be identical with Ex. 9.7-5.)

Solution

From Ex. 9.7-5, we know that a 5th-order, Chebyshev approximation will satisfy the
specification.  The corresponding low pass, RLC prototype filter is

1 Ω
+

-

+

-

Vin(sn) Vout(sn)
1 Ω

C4n=
1.0911 F

C2n=
1.0911 F

L1n=2.1349 HL5n=2.1349 H L3n=3.0009 H

Next, we must find the state equations and express them in the form of an integrator.
Fortunately, the above results can be directly used in this example.

Finally, use the switched-capacitor integrators of  Sec. 9.3 to realize each of the five state
functions and connect each of the realizations together.
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EXAMPLE 9.7-11 - Continued

L1n: V'
 1(sn)  = 

R'
sn L1n

 





Vin(sn) - V2(sn) - 



R0n

R' V'
 1(sn)    (1)

This equation can be realized by the switched capacitor
integrator of Fig. 9.7-17 which has one noninverting input
and two inverting inputs.  Using the results of Sec. 9.3, we
can write that

    V
’
1(z) = 

1
z-1 



α11Vin(z) - α21zV2(z) - α31zV

‘
1(z)  . (2)

However, since fPB < fc, replace z by 1 and z-1 by sT.

Further, let us use the normalization defined earlier to get

V
‘
1(sn) ≈ 

1
snTn

 



α11Vin(s) - α21V2(s) - α31V

‘
1(s)   .   (3)

Equating Eq. (1) to Eq. (3) gives the design of the capacitor ratios for the first integrator as

α11 = α21 = 
R’Tn

L1n
 =  

R’ωPB

fcL1n
 = 

1·2000π
20,000·2.1349 =   0.1472 

and

α31 = 
R0nTn

L1n
 =  

R0nωPB

fcL1n
 = 

1·2000π
20,000·2.1349 =   0.1472 .

Assuming that R0n = R’ = 1Ω.  Also, double the value of α11 (α11 = 0.2943) in order to gain 6dB and
remove the -6dB of the RLC prototype.  The total capacitance of the first integrator is

First integrator capacitance = 2 + 
2(0.1472)

0.1472  + 
1

0.1472  = 10.79 units of capacitance.

V2(ejω)
+
-

V'1(ejω)

C1
Vin(ejω)

φ2

φ1

φ1

φ2φ1

α21C1

α11C1

φ2

φ1

α31C1

φ2

V'1(ejω)

Figure 9.7-17 - Realization of V1'.
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EXAMPLE 9.7-11 - Continued

C2n: V2(sn) = 
1

sn R'C2n
  [V '

 1(sn)  - V'
  3(sn)] (4)

This equation can be realized by the switched capacitor
integrator of Fig. 9.7-18 which has one noninverting input
and one inverting input.  As before we write that

V2(z) = 
1

z-1 



α12V

‘
1 (z) - α22zV

‘
3(z)  . (5)

Simplifying as above gives

V2(sn) ≈ 
1

snTn
 



α12V

‘
1 (sn) - α22V

‘
3(sn)  . (6)

Equating Eq. (4) to Eq. (6) yields the design of the capacitor ratios for the second integrator as

α12 = α22 = 
Tn

R’C2n
 =  

ωPB

R’fcC2n
 = 

2000π
1·20,000·1.0911 =   0.2879.

The second integrator has a total capacitance of

Second integrator capacitance = 
1

0.2879 + 2 = 5.47 units of capacitance.

V'3(ejω)
+
-

V'1(ejω)
C2

φ2

φ1 φ1

φ2φ1

α22C2

α12C2

φ2

V2(ejω)

Figure 9.7-18 - Realization of V2.
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EXAMPLE 9.7-11 - Continued

L3n: V'
  3(sn)  = 

R'
sn L3n

  [V2(sn) - V4(sn)] (7)

Eq. (7) can be realized by the switched capacitor integrator
of Fig. 9.7-19 which has one noninverting input and one
inverting input.  For this circuit we get

V
‘
3(z) = 

1
z-1 [ ]α13V2 (z) - α23zV4(z)  . (8)

Simplifying as above gives

V
‘
3(sn) ≈ 

1
snTn

 [ ]α13V2(sn)  - α23V4(sn)   . (9)

Equating Eq. (7) to Eq. (9) yields the capacitor ratios for the third integrator as

α13 = α23 = 
R’Tn

L3n
 =  

R’ωPB

fcL3n
 = 

1·2000π
20,000·3.0009 =   0.1047.

The third integrator has a total capacitance of

Third integrator capacitance = 
1

0.1047 + 2 = 11.55 units of capacitance

V4(ejω)
+
-

V2(ejω)
C3

φ2

φ1 φ1

φ2φ1

α23C3

α13C3

φ2

V'3(ejω)

Figure 9.7-19 - Realization of V3'.
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EXAMPLE 9.7-11 - Continued

C4n: V4(sn) =  
1

sn R'C4n
  [V'  3( sn)  - 



R'

R6n
  Vout(sn)] (10)

Eq. (10) can be realized by the switched capacitor integrator
of Fig. 9.7-20 with one noninverting and one inverting
input.  As before we write that

V4(z) = 
1

z-1 



α14V

‘
3 (z) - α24zVout(z)  . (11)

Assuming that  fPB < fc gives

V4(sn) ≈ 
1

snTn
 



α14V

‘
3 (sn) - α24Vout(sn)  . (12)

Equating Eq. (10) to Eq. (12) yields the design of the capacitor ratios for the fourth integrator as

α14 = α24 = 
Tn

R’C4n
 =  

ωPB

R’fcC4n
 = 

2000π
1·20,000·1.0911 =   0.2879.

if R’ = R0n.  In this case, we note that fourth integrator is identical to the second integrator with the
same total integrator capacitance.

Vout(ejω)
+
-

V'2(ejω)
C4

φ2

φ1 φ1

φ2φ1

α24C4

α14C4

φ2

V4(ejω)

Figure 9.7-20 - Realization of V4.
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EXAMPLE 9.7-11 - Continued

L5n: Vout(sn) =  
R6n

snL5n
  [V4(sn) - Vout(sn)]

(13)

The last state equation, Eq. (13), can be realized by the
switched capacitor integrator of Fig. 9.7-21 which has one
noninverting input and one inverting input.  For this circuit
we get

Vout(z) = 
1

z-1 [ ]α15V4 (z) - α25zVout(z)  . (14)

Simplifying as before gives

Vout(sn) ≈ 
1

snTn
 [ ]α15V4(sn)  - α25Vout(sn) . (15)

Equating Eq. (13) to Eq. (15) yields the capacitor ratios for the fifth integrator as

α15 = α25 = 
R6nTn

L3n
 =  

R6nωPB

fcL3n
 = 

1·2000π
20,000·2.1349 =   0.1472

where R6n = 1Ω.

The total capacitance of the fifth integrator is

Fifth integrator capacitance = 
1

0.1472 + 2 = 8.79 units of capacitance

We see that the total capacitance of this filter is 10.79 + 5.47 + 11.53 + 5.47 + 8.79 =  42.05.
We note that Ex. 9.7-5 which used the cascade approach for the same specification required 49.10 units
of capacitance.

Vout(ejω)
+
-

V4(ejω)
C5

φ2

φ1 φ1

φ2φ1

α25C5

α15C5

φ2

Vout(ejω)

Figure 9.7-21 - Realization of Vout.
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EXAMPLE 9.7-11 - Continued

Final realization of Ex. 9.7-11.

V2(ejω)

C1

Vin(ejω)

φ2

φ1

α21C1

2α11C1

α31C1

V'1(ejω)

C2

α22C2

α12C2

+
-

+
-

φ1

φ2

φ2

φ2

φ1

φ1

φ1

φ1

φ1

φ1

φ2 φ2

φ2C3

φ2

φ1

α23C3

α13C3

V'3(ejω)+
-

φ1

φ2

φ1

V4(ejω)

C4

α24C4

α14C2

+
-

φ1 φ1

φ2 φ2

φ2
φ1

φ2

φ2

α25C5 Vout(ejω)
+
-

φ1

φ2

φ1

φ2

C5α15C5
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EXAMPLE 9.7-11 - Continued
Simulated Frequency Response:
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Comments:

•  Both passband and stopband specifications satisfied.

•  Some of the op amp outputs are exceeding 0 dB (need to voltage scale for maximum dynamic range)
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EXAMPLE 9.7-11 - Continued
SPICE Input File:

******* 08/29/97 13:12:51 *********
******PSpice 5.2 (Jul 1992) ********

****     CIRCUIT DESCRIPTION ****

*SPICE FILE FOR EXAMPLE 9.7_5
*Example 9.7-8 : ladder filter
*Node 5 is the output at V1'
*Node 7 is the output at V2
*Node 9 is the output of V3'
*Node 11 is the output of V4
*Node 15 is the final output

VIN    1 0 DC 0 AC 1

**************************
* V1' STAGE
XNC11    1 2 3 4 NC11
XPC11    7 8 3 4 PC1
XPC12    5 6 3 4 PC1
XUSC1    5 6 3 4 USCP
XAMP1    3 4 5 6 AMP
**************************
*V2 STAGE
XNC21    5 6 19 20 NC2
XPC21    9 10 19 20 PC2
XUSC2    7 8 19 20 USCP
XAMP2    19 20 7 8 AMP
**************************
*V3' STAGE
XNC31    7 8 13 14 NC3
XPC31    11 12 13 14 PC3
XUSC3    9 10 13 14 USCP
XAMP3    13 14 9 10 AMP

**************************
*V4 STAGE
XNC41    9 10 25 26 NC2
XPC41    15 16 25 26 PC2
XUSC4    11 12 25 26 USCP
XAMP4    25 26 11 12 AMP
**************************
*VOUT STAGE
XNC51    11 12 17 18 NC1
XPC51    15 16 17 18 PC1
XUSC5    15 16 17 18 USCP
XAMP5    17 18 15 16 AMP
*************************

.SUBCKT DELAY 1 2 3
ED    4 0 1 2 1
TD    4 0 3 0 ZO=1K TD=25US
RDO    3 0 1K
.ENDS DELAY

.SUBCKT NC1 1 2 3 4
RNC1    1 0 6.7934
XNC1    1 0 10 DELAY
GNC1    1 0 10 0 .1472
XNC2    1 4 14 DELAY
GNC2    4 1 14 0 .1472
XNC3    4 0 40 DELAY
GNC3    4 0 40 0 .1472
RNC2    4 0 6.7934
.ENDS NC1
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EXAMPLE 9.7-11 - Continued
SPICE Input File:

.SUBCKT NC11 1 2 3 4
RNC1    1 0 3.3978XNC1    1 0 10
DELAY
GNC1    1 0 10 0 .2943
XNC2    1 4 14 DELAY
GNC2    4 1 14 0 .2943
XNC3    4 0 40 DELAYGNC3    4 0 40 0
.2943
RNC2    4 0 3.3978
.ENDS NC11

.SUBCKT NC2 1 2 3 4
RNC1    1 0 3.4730
XNC1    1 0 10 DELAY
GNC1    1 0 10 0 .2879
XNC2    1 4 14 DELAY
GNC2    4 1 14 0 0.2879
XNC3    4 0 40 DELAY
GNC3    4 0 40 0 0.2879
RNC2    4 0 3.4730
.ENDS NC2

.SUBCKT NC3 1 2 3 4
RNC1    1 0 9.5521
XNC1    1 0 10 DELAY
GNC1    1 0 10 0 0.1047
XNC2    1 4 14 DELAY
GNC2    4 1 14 0 0.1047
XNC3    4 0 40 DELAY
GNC3    4 0 40 0 0.1047
RNC2    4 0 9.5521
.ENDS NC3

.SUBCKT NC4 1 2 3 4
RNC1    1 0 3.4730
XNC1    1 0 10 DELAY
GNC1    1 0 10 0 .2879
XNC2    1 4 14 DELAY
GNC2    4 1 14 0 .2879
XNC3    4 0 40 DELAY
GNC3    4 0 40 0 .1472
RNC2    4 0 6.7955
.ENDS NC4

.SUBCKT PC1 1 2 3 4
RPC1    2 4 6.7934
.ENDS PC1

.SUBCKT PC2 1 2 3 4
RPC1    2 4 3.4730
.ENDS PC2

.SUBCKT PC3 1 2 3 4
RPC1    2 4 9.5521
.ENDS PC3
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EXAMPLE 9.7-11 - Continued
Switcap2 Input File (The results are exactly the same as for the SPICE simulation)

TITLE: EXAMPLE 9-7-11

OPTIONS;
 NOLIST;
 GRID;
 END;

TIMING;
 PERIOD 50E-6;
 CLOCK CLK 1 (0 25/50);
 END;

SUBCKT (1 4) NC (P:CAP);
 S1 (1 2) CLK;
 S2 (2 0) #CLK;
 S3 (3 0) CLK;
 S4 (3 4) #CLK;
 C11 (2 3) CAP;
 END;

SUBCKT (1 4) PC (P:CAP1);
 S1 (1 2) #CLK;
 S2 (2 0) CLK;
 S3 (3 0) CLK;
 S4 (3 4) #CLK;
 C21 (2 3) CAP1;
 END;

CIRCUIT

 /*****  V1’ STAGE ****/
 X11 (1 2) NC (0.2943);
 X12 (3 2) PC (0.1472);
 X13 (4 2) PC (0.1472);
 E11 (4 0 0 2) 1E6;
 C11 (2 4) 1;

/*****  V2 STAGE ****/
 X21 (1 2) NC (0.2879);
 X22 (3 2) PC (0.2879);
 E21 (3 0 0 6) 1E6;
 C21 (6 3) 1;

/*****  V3’ STAGE ****/
 X31 (3 8) NC (0.1047);
 X32 (7 8) PC (0.1047);
 E31 (5 0 0 8) 1E6;
 C31 (8 5) 1;

/*****  V4 STAGE ****/
 X41 (5 9)  NC (0.2879);
 X42 (100 9) PC (0.2879);
 E41 (7 0 0 9) 1E6;
 C41 (9 7) 1;

 /*****  VOUT STAGE ****/
 X51 (7 10) NC (0.1472);
 X52 (100 10) PC (0.1472);
 E51 (100 0 0 10) 1E6;
 C51 (10 100) 1;
 V1 (1 0);
 END;

ANALYZE SSS;
 INFREQQ 20 3000 LOG 80;
 SET V1 AC 1.0 0.0;
 PRINT VDB(4) VP(4) VDB(3);
 PRINT VP(3) VDB(7) VP(7);
 PRINT VDB(100) VP(100);
 PLOT VDB(100);
 END;

END;
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HIGH PASS SWITCHED CAPACITOR FILTERS USING THE LADDER APPROACH
High pass, switched capacitor filters using the ladder approach are achieved by applying the

following normalized, low pass to normalized, high pass transformation on the RLC prototype circuit.

sln = 
1

shn
   

This causes the following transformation on the inductors and capacitors of the RLC prototype:

sln → 1
shn

Normalized Low-
Pass Network

Normalized High-
Pass Network

Lln

Cln
Lhn = 1

Cln

Chn = 1
Lln

Design Procedure:

1.)  Identify the appropriate RLC prototype, low pass circuit to meet the specifications.

2.)  Transform each inductor and capacitor by the normalized, low pass to high pass transformation.

3.)  Choose the state variables and write the state functions.

4.)  Realize the state functions using switched capacitor circuits.

The problem:  The realizations are derivative circuits.
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SWITCHED CAPACITOR DERIVATIVE CIRCUIT

+
-

Vin(z) C2

φ2

φ1
C1 Vout(z)

Figure 9.7-26 - (a.) Switched capacitor differentiatior circuit.  (b.)  Stray insensitive version of (a.).  
(c.) Modification to keep op amp output from being discharged to ground during φ1.

+
-

Vin(z)

C2
φ2

φ1

C1 Vout(z)

φ2

C2

(a.) (b.)

+
-

C1

C1

φ1 φ1

φ1

φ2φ2

φ2
Vout(z)Vin(z)

(c.)

Transfer function:

φ     1  : (n-1)T < t < (n -0.5)T

v
 o
c1(n -0.5)T = v

 e
in(n -1)T and  v

 o
c2(n -0.5)T = 0

φ     2  : (n-0.5)T < t < (n )T

v
 e

out(n )T  = - 
C1
C2

 v
 e
in(n )T + 

C1
C2

 v
 e
in(n -1)T

∴  V
 e
out(z)  =  

C1
C2

 V
 e
in(z) - z-1 

C1
C2

 V
 e
in(z) = - 

C1
C2

 (1-z-1)V
 e
in(z) Hee(z) = 

V
 e

out(z)

V
 e
in(z)

 = - 
C1
C2

 (1-z-1)

+
-vin(n)

C1 C2

e

vin(n-1)
e

vout(n)e
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FREQUENCY RESPONSE OF THE DERIVATIVE CIRCUIT

Replace z by ejωT to get,

Hee(ejωT) = - 
C1
C2

( )1 - e-jωT  = - 
C1
C2

 






ejωT/2 - e-jωT/2

ejωT/2  = - 
C1
C2

 ( )2jω sin(ωT/2) ( )e-jωT/2  

or

= - 
jωTC1

C2
 






sin(ωΤ/2)

ωΤ/2 (ε-jωΤ/2) = 






-jω

ωo 





sin(ωΤ/2)

ωΤ/2 ( )e-jωT/2 = (Ideal)x(Mag. Error)x(Phase Error)

where  ωo = C2/(C1T).

Frequency Response for C2 = 0.2πC1:

|Hee(ejωT)

5
10

1
0

0 ωo= ωc
2

ωc
10

ωc

Continuous
Time

Discrete
Time

π

ω

Phase

-90°

-180°

-270°

0 ωc
2

ωc
ω

Continuous
Time

Discrete
Time
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EXAMPLE 9.7-12 - High Pass, Switched Capacitor Ladder Filter
Design a high pass, switched capacitor ladder filter starting from a third-order, normalized, low

pass Butterworth prototype filter.  Assume the cutoff frequency is 1kHz and the clock frequency is
100kHz.  Use the doubly terminated structure.

Solution

A third-order prototype filter transformed to the normalized high pass filter is shown below.

 

Vin

R0n
=1Ω

L1n
=1H

L3n
=1H

C2n
=2F

R4n
=1Ω

+

-
Vout

sln = shn
1

Vin

R0n
=1Ω

C1hn
=1F

C3hn
=1F

L2hn
=0.5H

R4n
=1Ω

+

-
VoutI1

I3

+

-
V2

State Variable Eqs:

Vin = I1R0n + 
I1

snC1hn
 + V2  → I1 = snC1hn [Vin - I1R0n - V2]  → V1’ = snC1hnR [Vin - 

R0n

R V1’-V2]  

I1 = 
V2

snL2hn
 + I3 = 

V2
snL2hn

 + 
Vout

R4n
→ V2 = snL2hn [I1  - 

Vout

R4n
 ] →  V2 = snL2hn[ 

V1’
R  - 

Vout

R4n
 ] 

V2 = 
I3

snC3hn
 + I3R4n →  I3 = snC3hn [V2 - I3R4n]  →   Vout = snR4nC3hn [V2 - Vout]  

Problem!  Derivative circuit only has inverting inputs.  Solution?

1.)  Use inverters.
2.)  Rearrange the equations to get integrators where possible (they will have nonintegrated inputs).
3.)  Redefine the polarity of the voltages at internal nodes (180° phase reversal).
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EXAMPLE 9.7-12 - Continued
Make the first equation into an integrator, reverse the sign of V2 and V1’, and use one inverter.

Note that V1’ = - V1’  andV2 = - V2 .  Therefore the rewrite the first state equation  as:

V1’=snC1hnR [Vin - 
R0n

R  V1’ -V2]  → V1’=
-V1’

snC1hnR0n
 +

R
R0n

(Vin -V2)  → V1’ =
- V1’

snC1hnR0n
 -

R
R0n

(Vin + V2 )

V2 = snL2hn[ 
V1’
R  - 

Vout

R4n
 ] → V2  = -snL2hn[

- V1’

R  - 
Vout

R4n
 ]  →  V2 =-snL2hn








V1’

R  + 
Vout

R4n

Vout = snR4nC3hn [- V2  - Vout]

C  1    hn  :

This state equation can be realized by the SC integrator
shown with two inverting unswitched inputs.

We may write that:

V1’ (z) = 
-α11z
z -1  V1’ (z) - α21Vin(z) - α31 V2 (z)

Assuming that z -1 ≈ sT  and z ≈ 1, we write that

V1’ (s) ≈ 
-α11
sT  V1’ (s) - α21Vin(s) - α31 V2 (s)

Normalizing this equation gives,

+
-

α11C1

φ1 φ1

α21C1

α31C1

C1

V1'

V2

Vin V1'

φ2 φ2
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V1’ (sn) ≈ 
-α11
snTn

 V1’ (sn) -α21Vin(sn) -α31 V2 (sn) →  α11 = 
Tn

R0nC1hn
 = 

2π·103

1·105  = 0.06283, α21 = α31 =

1
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EXAMPLE 9.7-12 - Continued
L  2   hn  :

This state eq. can be realized by the SC
differentiator circuit shown with two inputs.

We may write that:

      V2(z) = -(1-z-1)[α12 V1’ (z) + α22Vout(z)]

      V2(s) ≈ -sT [α12 V1’ (s) + α22Vout(s)]

Normalizing T  by ωPB gives V2(sn) = -snTn

[α12 V1’ (sn) + α22Vout(sn)]

∴  α12 = α22 = 
L2hn

Tn
 = 

0.5·105

2π·103 = 7.9577 if R = R0n = 1Ω.

L  2   hn  :

This state equation can be realized by the SC
differentiator circuit shown with two inputs.

We may write that:

Vout(z) = -(1-z-1)[α13 V2 (z) + α23Vout(z)]

Vout(s) ≈ -sT [α13 V2 (s) + α23Vout(s)]

Normalizing T  by ωPB gives Vout(sn) = -snTn [α13 V2 (sn) + α23Vout(sn)]

∴  α13 = α23 = 
R4nC3hn

Tn
 = 

1·105

2π·103 = 15.915 if R4n = 1Ω.  

Σ capacitances = 100.49 units of capacitance

+
-

C2

φ1 φ1

φ1

φ2

φ2

φ2

V2

Vout
α22C2

φ2

α12C2

V1'

+
-

C C V2

+
-

C3

φ1 φ1

φ1

φ2

φ2

φ2

Vout

Vout
α23C3

φ2

α13C3

V2
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BANDPASS SWITCHED CAPACITOR FILTERS USING THE LADDER APPROACH
Bandpass switched capacitor ladder filters are obtained from low pass RLC prototype circuits by

applying the normalized, low pass to normalized bandpass transformation given as

sln = 





ωr

BW 





sb

ωr
 + 

 1
(sb/ωr)

  = 





ωr

BW 







sbn + 
1

sbn
 

This causes the following transformation on the inductors and capacitors of the RLC prototype:

Normalized
Low-Pass
Network

Lln

Cln sn → ωr
BW

sbn + 1
sbn

Normalized Bandpass Network

Lbn= ωr
BW

Lln Cbn= BW
ωr

1
Lln

Lbn= BW
ωr

1
Cln

Cbn= ωr
BW

Cln

Design Procedure:

1.)  Identify the appropriate RLC prototype, low pass circuit to meet the specifications.

2.)  Transform each inductor and capacitor by the normalized, low pass to bandpass transformation.

3.)  Choose the state variables and write the state functions.

4.)  Realize the state functions using switched capacitor circuits.

In this case, the state functions will be second-order, bandpass functions which can be realized by
the second-order circuits of Sec. 9.6.
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EXAMPLE 9.7-13 - Design of a Fourth-Order, Butterworth Bandpass Switched Capacitor
Ladder Filter
Design a fourth-order, bandpass, switched capacitor ladder filter.  The filter is to have a center
frequency (ωr) of 3kHz and a bandwidth (BW) of 600 Hz.  The clock frequency is 128kHz.

Solution

The low pass normalized prototype
filter is shown (Note that this form is slightly
different than the form used in Table 9.7-4)

Applying the transformation
illustrated in Fig. 9.7-27 gives

The state equations for this
circuit can be written as illustrated
below.

Vin(s) = 








I2(s) + 
V1(s)
Z1bn

R0n +

V1(s) → V1(s) = 
Z1bn
R0n

[Vin(s) - I2(s)R0n - V1(s)]

where Z1bn = 
sL1bn(1/sC1bn)

sL1bn + (1/sC1bn) = 
s/C1bn

s 2 + (1/L1bnC1bn)
 = 

s/C1bn

s 2+1

∴  V1(s) = 
s/R0nC1bn

s2 + 1
 







Vin(s) - 
R0n
R  V2’(s) - V1’(s) (1)

+

-

C1n

L2n

Vout(sn)
+

-

Vin(sn)

R0n

R5n+

-

=1Ω

0.7659F
=

=1.8478H

C3n
1.8478F

=

L =0.7659H4n

=1Ω

I2

V1 V3

+

-

C1bn

L2bn

Vout(sn)
+

-

Vin (sn)

R0n

R5n

+

-

C2bn

=

BW
ωr 1ln

L1bn=
1

C1bn

=BW
ωr

2ln
1

L2bn
=

C3bn
+

-

=

BW
ωr

3ln

L3bn=
1

C3bn

I4

L4bn C4bn=BW
ωr 4ln

1
L4bn

=L

C C

L
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EXAMPLE 9.7-13 - Continued

I2(s) = Y2bn[V1(s) - V3(s)] → V2’(s) = 






sR/L2bn

s 2+1
[V1(s) - V3(s)] (2)

V3(s) = Z3bn(I2(s)-I4(s)) = Z3bn





V2’(s)

R -
Vout(s)

R5n
 →  V3(s) = 

s/RC3bn

s 2+1
 








V2’(s)- 






R

R5n
Vout (3)

and

I4(s) =Y4bn[V3(s)-Vout(s)] →  Vout(s) = R5nY4bn[V3(s)-Vout(s)]

or Vout(s) = 
sR5n/L4bn

s 2+1
 [V3(s)-Vout(s)] (4)

The design of the state equations requires a re-examination of the low-Q and high-Q biquad
circuits.  Close examination of the above state equations and these biquads shows that the high-Q
biquad can only have inverting inputs.  Therefore, we shall use the low-Q biquad to realize the above
state equations because it can have both inverting and noninverting inputs.

For the low-Q biquad, if we let α1 = α3  = α6 = 0, we get

Hee(s) ≈ 
- 

α4s
T

s 2˚+ 
α2α5

T˚
2

Normalizing by Ωn gives
→  Hee(sn) ≈ 

- 
α4sn
Tn

sn
2˚+ 

α2α5

Tn
2

We see that all α2’s and α5’s will be given as: α2α5 = Tn
2 = Ωn

2T 2 = 
ωr

2

fc
2  = (2π)2







fr

fc
2
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EXAMPLE 9.7-13 - Continued

Therefore, let  α2 = |α5| = 
2π·fr

fc
 = 

2π·3x103

128x105  = 0.1473

Now all that is left is to design α4 for each stage (assuming R0n = R5n = R = 1Ω).

Also, the sum of capacitances per stage will be:

Σ capacitances/stage = 
α2

αmin
 + 

|α5|

αmin
 + 

2
αmin

 + 
α4

αmin
 x (no. of inputs) 

Stage 1

α41
Tn

 = 
1

R0nC1bn
      →   α41 = 

Tn
R0nC1bn

 = 
ωr·BW

fc·ωr·C1ln
 = 

2π·600

128x103·0.7658
 = 0.03848

There will be one noninverting input (Vin) and two inverting inputs (V2’ and V1).

Σ capacitances = 
2(0.1437)
0.03848  + 

2
0.03848 + 3 = 62.44 units of capacitance

Stage 2
α42
Tn

 = 
R

L2bn
      →   α42 = 

Tn·BW

ωrL2ln
 = 

ωr·BW

fc·ωr·L2ln
 = 

2π·600

128x103·1.8478
 = 0.01594

There will be one noninverting input (V1) and one inverting input (V3).

Σ capacitances = 
2(0.1437)
0.01594  + 

2
0.01594 + 2 = 145.50 = units of capacitance

Stage 3
Same as stage 2.  α43 = 0.01594

There will be one noninverting input (V2’) and one inverting input (Vout).

Σ capacitances = 145.50 units of capacitance
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EXAMPLE 9.7-13 - Continued
Stage 4

Same as stage 1.  α44 = 0.03848.
There will be one noninverting input (V3) and one inverting input (Vout).
Σ capacitances = 61.44 units of capacitance.

Total capacitance of this example is 414.88 units of capacitance.

Realization:

Using this simplification gives:

φ2

φ1
α   C41 21

φ1
φ2

α   C41 21

α 21 =
α 51=

0.1473

φ2

α   C41 21

φ1

φ1

φ2 α   C42 22

α 22 =
α 52=

0.1473

V1

V'2

φ2

φ1
α   C43 23

α 23 =
α 53=

0.1473

φ2
α   C42 22 φ1

φ1

φ2 α   C44 42
V3

φ2

α   C43 23

φ1

α   C44 42 φ1

φ2

α 24 =
α 52=

0.1473

VoutVin

+
-

+
-

α2C1C1

C2

φ1φ1

φ2φ2

α5C2

φ2φ1

φ1

φ2

α2,α5

Ex.9.7-13B
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GENERAL APPROACH TO DESIGNING SWITCHED CAPACITOR LADDER FILTERS

Choose
State

Variables

Write
State

Equations

Use SC 
Integrators to
Design Each

State Equation

Low Pass
Switched
Capacitor

Filter

Use SC 
BP Ckts. to

Design Each
State Equation

Bandpass
Switched
Capacitor

Filter

Normalized LP
to Normalized

Bandpass
Transformation

Use SC 
Differentiators
to Design Each
State Equation

High Pass
Switched
Capacitor

Filter

Normalized LP
to Normalized

Bandpass
Transformation

Use SC 
BS Ckts. to
Design Each

State Equation

Bandstop
Switched
Capacitor

Filter

Eliminate
L-cutsets

and 
C-loops

Low pass
Prototype
RLC Ckt.

Choose
State

Variables

Write
State

Equations

Normalized LP
to Normalized

High pass
Transformation

Choose
State

Variables

Write
State

Equations

Normalized LP
to Normalized

High pass
Transformation

Choose
State

Variables

Write
State

Equations



CMOS Analog Circuit Design Page 9.7-73

Chapter 9 - Switched Capacitor Circuits (6/4/01) © P.E. Allen, 2001

ANTI-ALIASING IN SWITCHED CAPACITOR FILTERS
A characteristic of circuits that sample the signal (switched capacitor circuits) is that the signal

passbands occur at each harmonic of the clock frequency including the fundamental.

T(jω)

T(j0)
T(jωPB)

ωPB

0
0

ω

Figure 9.7-28 - Spectrum of a discrete-time filter and a continuous-time 
anti-aliasing filter.

-ωPB ωc 2ωc

ωc+ωPBωc-ωPB 2ωc-ωPB 2ωc+ωPB

Anti-Aliasing Filter

Baseband

The primary problem of aliasing is that there are undesired passbands that contribute to the noise
in the desired baseband.
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NOISE ALIASING IN SWITCHED CAPACITOR CIRCUITS
In all switched capacitor circuits, a noise aliasing occurs from the passbands that occur at the

clock frequency and each harmonic of the clock frequency.

��
��

f
0.5fc fcfBfsw-fB

fc-fsw

fc+fBfc-fB

fc+fsw

Magnitude

0

Noise Aliasing

�
�

From higher bands

Baseband

Figure 9.7-31 - Illustration of noise aliasing in switched capacitor circuits.

 It can be shown that the aliasing enhances the baseband noise voltage spectral density by a factor of
2fsw/fc.  Therefore, the baseband noise voltage spectral density is

eBN
2  = 







kT/C

fsw
x







2fsw

fc
 = 

2kT
fcC

 volts2/Hz

Multiplying this equation by 2fB gives the baseband noise voltage in volts(rms)2.   Therefore, the
baseband noise voltage is

vBN
2 = 







2kT

fcC
 ( )2fB  = 

2kT
C  







2fB

fc
 = 

2kT /C
OSR   volts(rms)2 

where OSR is the oversampling ratio.
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SIMULATION OF NOISE IN SWITCHED CAPACITOR FILTERS
The noise of switched capacitor filters can be simulated using the above concepts.

1.)  Convert the switched capacitor filter to a continuous time equivalent filter by replacing each
switched capacitor with a resistor whose value is 1/(fcC).

2.)  Multiply the noise of this resistance by 2fB/fc, to make the resulting noise to approximate that of the
switched capacitor filter.

Unfortunately, simulators like SPICE do not permit the multiplication of the thermal noise.
Another approach is to assume that the resistors are noise-free and build a noise generator that
represents the effect of the noise of vBN

2.

1.)  Put a zero dc current through a resistor identical to the one being modeled.

2.)  A voltage source that is dependent on the voltage across this resistor can be placed at the input of
an op amp to implement vBN

2.  The gain of the voltage dependent source should be 2fB/fc.

3.)  Model all resistors that represent switched capacitors in the same manner.

The resulting noise source model along with the normal noise sources of the op amp will serve as a
reasonable approximation to the noise in a switched capacitor filter.
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CONTINUOUS TIME ANTI-ALIASING FILTERS
Sallen and Key, Unity Gain, Low Pass Filter:

Voltage
Amplifier

Vout(s)Vin(s) K=1
R1 R3

C2

C4

(a.) (b.)

K=1

Fig. 9.7-29 - (a.) A second-order, low pass active filter using positive feedback.  (b.) The realization of
the voltage amplifier K by the noninverting op amp configuration.

Transfer function:

Vout(s)
Vin(s)   = 

K
R1R3C2C4

s 2 + s 



1

R3C4
 + 

1
R1C2

 + 
1

R3C2
 - 

K
R3C4

+ 
1

R1R3C2C4

   =  
TLP(0) ωo

2

s 2 + 





ωo

Q  s + ωo
2

We desire K  = 1 in order to not influence the passband gain of the SCF.  Therefore, with K = 1,

Vout(s)
Vin(s)   = 

1
R1R3C2C4

s 2 + s 



1

R1C2
 + 

1
R3C2

 + 
1

R1R3C2C4

   = 
1/mn(RC)2

s 2 + (1/RC)[(n+1)/n]s + 1/mn(RC)2   

where R3 = nR1 = nR and C4 = mC2 = mC.
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DESIGN EQS. FOR THE UNITY GAIN, SALLEN AND KEY LOW PASS FILTER
Equating Vout(s)/Vin(s) to the standard second-order low pass transfer function, we get two design

equations which are

ωo = 
1

mnRC
 

1
Q = (n +1)

m
n  

The approach to designing the components of Fig. 9.7-29a is to select a value of m compatible
with standard capacitor values such that

m ≤ 
1

4Q 2  .

Then, n, can be calculated from

n = 






1

2mQ 2 - 1  ± 
1

2mQ 2 1-4mQ 2 .

This equation provides two values of n  for any given Q  and m.  It can be shown that these values are
reciprocal.  Thus, the use of either one produces the same element spread.
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EXAMPLE 9.7-9 - Application of the Sallen-Key Anti-Aliasing Filter
 Use the above design approach to design a second-order, low-pass filter using Fig. 9.7-7a if  Q =
0.707 and fo = 1 kHz

Solution

We see that m should be less than 0.5 for this example.  Let us choose m = 0.5.

m = 0.5   →   n = 1.

These choices guarantee that Q = 0.707.

Now, use ωo = 
1

mnRC
  to find the RC product  →  RC = 0.225x10-3.

At this point, one has to try different values to see what is best for the given situation (typically the area
required).

Let us choose C = C2 = 500pF.

This gives R  = R1 = 450kΩ.   Thus, C4 = 250pF and R3 = 450kΩ.

It is readily apparent that the anti-aliasing filter will require considerable area to implement.
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A NEGATIVE FEEDBACK, SECOND-ORDER, LOW PASS ANTI-ALIASING FILTER
Another continuous-time filter suitable for anti-aliasing filtering is shown in Fig. 9.7-30.  This filter

uses frequency-dependent negative feedback to achieve complex conjugate poles.

+
-

C5=C

C4=
4Q2(1+|TLP(0)|)C

R1= 1
2|TLP(0)|ωoQC

R2= 1
2ωoQC

R3=
1

2(1+|TLP(0)|)ωoQC

Vin Vout

Figure 9.7-30 - A negative feedback realization of a second-order, low pass filter.

This gain of this circuit in the passband is determined by the ratio of R2/R1.
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EXAMPLE 9.7-10 - Design of A Negative Feedback, Second-Order, Low-Pass Active Filter
Use the negative feedback, second-order, low-pass active filter of Fig. 9.7-30 to design a low-pass

filter having a dc gain of -1, Q = 1/ 2 , and fo = 10kHz.

Solution

Let us use the design equations given on Fig. 9.7-30.  Assume that C5 = C = 100pF.  Therefore,
we get C4 = (8)(0.5)C = 400pF.  The resistors are

R1 = 
2

(2)(1)(6.2832)(10-6)   = 112.54 kΩ .

R2 = 
2

(2)(6.2832)(10-6)  = 112.54 kΩ  .

and

R3 = 
2

(2)(6.2832)(2)(10-6)  = 56.27 kΩ  .

Unfortunately we see that because of the passive element sizes that anti-aliasing filters will occupy
a large portion of the chip.
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SUMMARY
• Switched capacitor circuits have reached maturity in CMOS technology.

• The switched capacitor circuit concept was a pivotal step in the implementation of analog signal
processing circuits in CMOS technology.

• The accuracy of the signal processing is proportional to capacitor ratios.

• Switched capacitor circuits have been developed for:

Amplification

Integration

Differentiation

Summation

Filtering

Comparing

Analog-digital conversion

• Approaches to switched capacitor circuit design:

Oversampled approach - clock frequency is much greater than the signal frequency

z-domain approach - specifications converted to the z-domain and directly realized, can 
operate to within half of the clock frequency

• Switched capacitor circuits can be simulated in the frequency domain by SPICE or SWITCAP

• Clock feedthrough and kT/C noise represent the lower limit of the dynamic range of switched
capacitor circuits.


