Basics of Transconductance – Capacitance Filters

Dr. Paul Hasler

Operational Amplifiers

 A_v is frequency dependent

Transconductance Amplifiers

• Most op-amps can be used as OTAs, most OTAs can be used as op-amps. (depends which application is being optimized)

Major Issues for OTAs

Major Issues for OTAs:

- Linearity
- Offsets
- Output Resistance (depends upon application)

How to Build OTAs

Basic transistor differential amplifer, Wide-output-range differential amplifier ...

Build with cascodes or folded cascode or differential approaches.

Differential Pair Currents

Basic Differential Amplifier

Transfer Functions

Wide-Output Range Differential Amplifier

Simplest Gm-C Filter

If an ideal op-amp, then $V_{in} = V_{out}$ $V_{in} + V_{out}$ V_{out} V_{out} $V_{in} = V_{out} + \tau \frac{dV_{out}(t)}{dt}$ $V_{in} = V_{out} + \tau \frac{dV_{out}(t)}{dt}$

We can set Gm and build C sufficiently big enough (slow down the amplifier), or set by C (smallest size to get enough SNR), and change Gm.

Also, should mention the high-pass version as well.

Tuning Frequency using Bias Current

Bias Current	Transconductance	Cutoff Frequency
1mA	$1/250\Omega$	600MHz
1µA	$1/25 \mathrm{k}\Omega$	6MHz
1nA	1/25MΩ	6kHz
1pA	1/25GΩ	6Hz

C = 1pF, W/L of input transistors = 30, $I_{th} \sim 10 \mu A$.

This approach is the most power-efficient approach for any filter.

All electronically tunable: Advantage: we can electronically change the corner Disadvantage: we need a method to set this frequency (tuning)

A Low-Pass Filter

Another First-Order Low-Pass Filter

Second-Order Behavior

Second-Order Behavior

Basic Second-Order Sections

Diff2 Based Second-Order Filter

$$\frac{V_{out}}{V_{in}} = \frac{1}{1 + (\tau/Q) s + \tau^2 s^2} \qquad \tau = (\tau_1 \tau_2)^{1/2} Q = (\tau_2/\tau_1)^{1/2}$$

Diff2 Responses

Diff2 Second-Order Section

We will see this circuit again a sample and hold elements

Issue of feedback with an out₁ buffer for an op-amp.

Tow-Thomas Second-Order Section

Bandpass Second-Order Section

Another Second-Order Section

Even Bigger Gm-C Filter

Filter Design Problem

Design example(s):

Design a Chebyshev filter with the following specs:

From our MATLAB functions, we get the following τ 's and Q's:

Tpb	-1dB (0.5088)
Tsb	-25dB
fpb	100kHz
fsb	150kHz

We get the following filter:

Filter Design Example

From MATLAB code: N = 5

Q = 5.5561e+000, tau = 1.6009e-006 Q = 1.3987e+000, tau = 2.4290e-006

tau = 5.4974e-006