Name ______(1 point)

ECE 4430 Midterm Exam Fall 2017

Each question is worth 3 points.

All of your answers need to be on this sheet. Only the final answers, as indicated by the question, will be considered correct for each question. You will only turn in this single sheet.

1	12	23
2	13	24
3	14	25
4	15	26
5	16	27
6	17	28
7	18	29
8	19	30
9	20	31
10	21	32
11	22	33

A few items to be used for this exam:

EKV equation in saturation, including σ :

$$I = 2 I_{th} \ln^2 (1 + \exp((\kappa(V_g - V_{T0}) - V_s - \sigma V_d)/(2U_T)))$$

For $z = \ln^2(1 + e^y)$, dz / dx (at $y = 0$) = 0.5 dy/dx.

Parameters for devices (unless given otherwise)

 $V_{T0} = 0.3V$ $K' = 0.14mA / V^2$ $I_{th}' = 125nA$ $\kappa = 0.7$ $\sigma = 0.001, V_A = 25V (L = 800nm)$

Transistors are devices in a 200nm minimum (drawn) channel length process.

For drawn grids, a single grid step is 100nm.

 $Cox = 0.1 \text{ fF} / (100 \text{ nm})^2$ Overlap capacitance = 0.1 fF / (100 nm) Area source-drain capacitance at zero bias = 0.01 fF / (100 nm)^2 Perimeter source-drain capacitance at zero bias = 0.003 fF / (100 nm)

Small Signal Model Questions

You have a circuit design you want to bias *right at the threshold current* for your particular application. Use the value of σ given (0.001, or V_A = 25V), which is consistent for all regions of operation. Choose the closest answer wherever necessary.

 How would you size your device (nearest size) if you wanted a bias current of 1μA operating at right at threshold? a. W/L = 2 b. W/L = 4 c. W/L = 8 d. W/L = 16 e. W/L = 32 	 2. What is your transconductance (change in channel current for change in gate voltage) for this 1μA bias current at threshold? a. 5 μA/V b. 10 μA/V c. 14 μA/V d. 20 μA/V
3. What is your source conductance (change in channel current for change in source voltage) for this 1µA bias current at threshold?	4. What is your output resistance (1 / change in channel current for change in drain voltage) for this 1µA bias current at threshold?
a. 5 μA/V b. 10 μA/V c. 14 μA/V	a. 5MΩ b. 10MΩ c. 25MΩ
d. 20 μ A/V 5.(A = true, B = False) If one use W/L = 1 (still	d. 50MΩe. 100MΩ6. What is the transconductance of the MOSFET
for a 1 μ A bias), the saturated transistor is operating with subthreshold currents.	with W/L=1 for a 1μA bias? a. 5 μA/V
	b. 7 μA/V b. 10 μA/V c. 14 μA/V
7.(A = true, B = False) For our devices operating with 1 μ A bias current, the output resistance of the transistor biased at threshold current (saturation) would be the same for the device at W/L=1 (saturation).	d. 20 μ A/V 8. (A = true, B = False) For our devices, the transistor gain would be the same between the transistor biased at threshold current would be the same for the device at W/L=1 and operating in saturation (both at 1 μ A bias current).

Transistor Layout Questions

These questions will refer to the following MOSFET transistor layouts. Transistors are biased with subthreshold currents (10nA) unless otherwise mentioned.

Α

1	Г)		
l		5		
1	-	-		

MOSFET A	MOSFET B
9. The overlap capacitance (Cdg):	10. The overlap capacitance (Cdg):
a. 0.2fF	a. 0.3fF
b. 0.4fF	b. 0.6fF
c. 0.6fF	c. 1.2fF
d. 0.8fF	d. 1.8fF
e. 1fF	e. 2.4fF
11. Capacitance from your drain region to	12. Capacitance from your drain region to
substrate (Cdb):	substrate (Cdb):
a. 0.17fF	a. 0.17fF
b. 0.23fF	b. 0.23fF
c. 0.29fF	c. 0.29fF
d. 0.32fF	d. 0.32fF
e. 0.41fF	e. 0.41fF
13. Capacitance from your source region to	14. Capacitance from your source region to
substrate (Csb):	substrate (Csb):
a. 0.17fF	a. 0.3fF
b. 0.23fF	b. 0.6fF
c. 0.29fF	c. 1.25fF
d. 0.33fF	d. 2.5fF
e. 0.41fF	e. 5fF
15. Capacitance looking into the Gate (Cgb)	16. Capacitance looking into the Gate (Cgb)
(subthreshold bias current):	(subthreshold bias current):
a. 0.14fF	a. 4fF
b. 0.27fF	b. 6fF
c. 0.54fF	c. 8fF
d. 1.2fF	d. 10fF
e. 1.8fF	e. 12fF

MOSFET A	MOSFET B
17. Transistor W/L	18. Transistor W/L
a. 1	a. 1
b. 2	b. 2
c. 4	c. 4
d. 8	d. 8
e. 16	e. 16
	1

19. (A = true, B = False): We can use V_{gs} because for a MOSFET in a bulk CMOS process, the gate and source have the equal, although different sign, effects on the transistor surface potential.

Basic Transistor Circuit Questions

These questions will refer to the following MOSFET transistor circuits. C = 100 fF. Vdd = 1.5V. Use W/L = 800nm / 800nm unless otherwise directed.

Another Transistor Circuit Question

This question uses the following circuit. C = 10 pF.

28. Circuit Type	29. Gain from V_{in} to V_{out} for a subthreshold bias
a. Common Gate 1	current
b. Common Source	a. 10
c. Common Gate 2	b. 1
d. Common Drain	c. 0.1
	d. 0.01
	e. 0.001
30. Corner Frequency for $I_{ref} = 16nA$	31. For I_{ref} at 10nA, what is the change in
a. 100Hz	output voltage if this current (Iref) moves to
b. 1kHz	20nA?
c. 10kHz	a40mV
d. 100kHz	b20mV
e. 1MHz	c. 0
	d. 20mV
	e. 40mV
32. (A = true, B = False): For frequencies above	33. What is the minimum W/L (M2) to have a
the corner frequency, the gain from V_{in} to V_{out}	corner frequency of 1MHz?
increases with frequency.	a. 0.1
	b. 1
	c. 10
	•••••

d. 100 e. 1000