Switched Capacitor Filters (SCF)

® Passive Filters
® Components are R, L, C
® Big, Heavy, discrete
® |nductors are limited in quality
® Designed in s-domain
® Active RC filters

® Components are Opamps, OTAs, R’s and C’s
® Can be integrated on the same chip
® |naccurate RC in ICs
® Designed in s-domain
® Switched Capacitor Filters
Idea well known for over 80 years
Accurate RC, where R is realized using switches and capacitors
Clock noise and noise alias
Small chip area
Designed in z-domain
Two most useful filter realizations
- Cascade

= Ladder Realization
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SCF Design

® Three basic methods
I. Resistor substitution
® Replace the resistors in a continuous time active RC
filter, with switched capacitor circuits
2. Uses switched capacitor integrators to simulate passive
RLC prototype circuits, RLC ladder networks, for a
desired filter realization
3. Uses a direct building block approach in the Z- domain
of which there are two approaches:
a. Convert the transfer function into a signal flow
diagram consisting of amplifiers, delays and summers
b. Break the transfer function into products of first and
second order terms.
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SC Resistor Simulation

14 | ) )

Cc

I —

2 0‘/2 VI
T, -1
T -

v, L3y v ¢1ﬂ,_|r|

oo LT LT

* ¢;,%, is a two phase nonoverlapping clock
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SC Resistor Simulation (Cont’d)

At position | the charge on C at steady state is g, = CV}
At position 2 the charge on C at steady state is g, =CV,
Assuming V| > V,, the charge Aq transferred is

Ag=q g, =C(V;-V,)
The current flowing will be on average

i1)=%1D _ jiyy A _C11-V))
Ot  AT.—0AT, T

c

Consider now a resistance of value R connected to the same
two sources V; & V,. Then

Vi-V,)
R

ig(t)=

T 1
Equating (1) and (2) yields R="¢=—
quating (1) and (2) y e

Ex. Using C=1pF,f.=100kHz = R=10M<Q

(1

2




Conditions for SC-R Approximation

* At least one of the sources must be a voltage source
Rl
‘/'l .
J R = +1)
C

C, T,
I “IfC,>>C), R =
Cl

Note if neither V| nor V, are voltage sources then

To other
\ R / nodes 1 2

AR B

€ : ¢ © c_leare e,
T ] [ ey
EREERRY 8- 5
Conditions for SC-R Approximation (Cont’d)
* SC Resistors cannot close an opamp feedback path
1 2
R
=P °T Not allowed
Allowed

B
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Conditions for SC-R Approximation (Cont’d)

* No floating nodes allowed
Floating Node

. | /V2
CII CZI

¢ Switches

G/¢\G

1
s Tle  sile o T
NMOS PMOS U

3 7 .
Lo Complementary Switch
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Summary of Approximated Resistance of Four Switched
Capacitor Resistor Circuits

& LU}

v . v, T
Parallel i Ro E
C I
o) [
i , v, T
Series ' b H‘ 2 R="
C
C
<
o} 9y
Vi ‘—{ , 1A R T
Series-Parallel =
% Ci+C
B , )
P o5

Bilinear VI@E;E}VZ R=4TC
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MOS Switch Realization

G Polysilicon

; /o

| AN |
W W NMOS Switch

p-type silicon
Substrate
SiO
e G Polysilicon

/ D
| PMOS Switch

S
| §

n-well
p-type silicon
\@@N
%&3&4‘7 Substrate
UNIVERSITY OF 8 -
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Switches Continued

* Switch turns on when V;; > V5 and turns off when V5 < Vi
* Typically R, =1kQ -10kQ, and Rz = 100M€2 - 1GQ2 for single switches. For

complementary MOS switches R, is lower and in the order of R, =102 - 1k€2

) )
W S n 1 1
[ [ ]

J v |
7 = %

c

e
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Capacitor Realization

® Basically two types of capacitors
I. Metal Oxide Crystalline Silicon Capacitor (Grounded capacitor)

® Best suited for metal to gate CMOS and MOS processes which
do not use self alignment procedures.

2. Polysilicon-Oxide-Polysilicon Capacitor (Floating Capacitor)

® Found in many processes today

® Requires little self alignment
® Selling feature of SCs is the capacitor ratio accuracy which can reach

0.1% in some cases. Note transistors can also be used as capacitors!

502 T Aluminum SI02 T
Poly 1
/ N —
n,p Substrate n,p Substrate

«@m MOS Cap. Cl Poly-Poly Cap. ¢

“"*\«z;anﬁﬁ
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Capacitance Mismatch
* Area Inaccuracy & Oxide Thickness Variation
* Keep Capacitance Ratio Constant
A_. ‘;,,,,,,,
A ]5 o e C, _(40-05)-(40-0.5) _,
« ¥ C, (20-0.5)-(20-0.5)
m’ rtvrirircrsriririnisiiniriess — 2.6% error
40 ym
20 ym
E |
£ g] (/ | G, _4(20-05)-(20-05) _,
s o ¢, (20-0.5)-(20-0.5)
20 ym |




Capacitance Layout
"\ i
Non optimal approach

¢ \'\

C, C,
* Optimal layout is the
C, o C, Centroid Approach
* Ground shielding should
\'\ ., /') also be added
%&*E@;@ ~— | —
CALEARY

Parasitic Capacitances

Parasitic capacitances exist in switches and in capacitors

Switch
Ces G Ced «+—Overlap component ,
NS f\\ D I
E==8 o] | Fe
! ALY \ M
n+ n+
—C
T /Voltage dependent Csb =< ;:Cgb = Cab
Csb Cdb L
v <~
Substrate
Cyy = Coq =0.005 pF
,‘@p Csb = Cdb = 002pF
\Q\«Eaéﬁﬂ
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Parasitic Capacitances Continued

Poly-poly Capacitor

Poly |

/

SiOy T
T\\\\&/\\\\\\\\\\w
/ \ -~

Cr \ce
/\ n,p Substrate

Poly 2

L Lo
°l

Cr =0.1%-1% of the desired MOS capacitance C

“"*\«z;anﬁﬁ

Cp =5%—-20% of the desired MOS capacitance C

CREERRY 8-15
A Switched Capacitor Integrator
|
AW I
- * s—domain "Miller" Integrator
Vo __ 1
| Vin  RCys
Vin N
_><i\* _°V0 * SC Integrator obtained by replacing "R"
¢ T with a switched capacitor
1 Vo __s (Q)l
= — C
: fch Vi C2/s
O b,
1 1 i
[ ] [ ] G
Vin - * Implementation
+ \%
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Effects of Parasitics

C2
o ¢ |
i Crzi CBi
L1l e | T T
C()[]T |—| /!\ Culz/r ,—I T
Vln i - % o %E R N . L -
Cl’l :\C”l 1 § \\\ CWI +
N Cliﬁ Cr,

* C,, is always charging from V;, and has no effect

* Cp, is shorted

C,'sare Cy and Cy,

C,i'sare Cyoand Cyy

* C,, and Cr, have zero voltage across them. This has no effect

* Cp, is always charging to V,

* C,, and C,;, only affect the output by feeding the clock signal

through the integrator. This is known as clockfeedthrough. It

G
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can be minimized but never eliminated.

* Thus we are left with Cp =Cp] +Cp2 +CTl

Effects of Parasitics (Cont'd)

o) ¢y

1 1

[ ] [ ]
— )

C, =~ 1 P
(66
c
Vin C2

* The above integrator is said to be parasitic sensitive

* Not desireable if precision is required

* Parasitic insensitive integrators exist.
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A Noninverting (Parasitic Insensitive) Integrator

Negative Resistor Oy

W?T/ o B

37_>L 1 # €17 [
— L] _ | .
p K i JD v,
O

Examining parasitics

| c ¢ .
“ T ™ 0 ’ * C,_always has a zero potential
$ i 29]
* C, charges to Vj, during one cycle
Yo and discharges to zero in the next.

@ It has no effect.
ég\%&&ﬁﬁ VO( s)= fc( )

12

/1

s
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A Differential (Parasitic Sensitive) Integrator
ﬁﬂ
G

Pl@ C1 |
$ I
‘/illz A
J> v,

* By superposition

TN
A C2 ! C] 2

IfC,, <<C,

Vo (s)= fc(q)[vml - Vin2 ]
@ S
\?‘%\:.,géﬁ
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First order SC section

Sample Circuits

SC direct replacement

Ry
C
4
. I ] v
Vi" 3 C2 Vin C] ; C2
E/{ m v, 3? —oV
+ 0
C, o $
C
S+— s+ f. 2
\A (C) RyC) A (C) G,
Vin C2 s+ 1 Vin C2 s+ fc g
R,C 2
CALEARY 8-21
Sample Circuits (Cont'd)
Second order SC section
R, RC opamp realization
LP Filter /
[l 1
R, 1 —_—
Vin o—ANA—— C2 R2 &(S) - _ R1R3C2C4
v Vin 5%+ ! S+ I
o R Cy RR;CCy
G
H
%
m |_ ‘/{) C1C3 f
. C
>? 3 l o (5)= -2
. cC
c in S2 + f 3 S+ 1~3
1 @ C3 @ C4$ fcc4 C2C4fc
2
= — wo
5%+ % S+ a)g
& TE
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Sample Circuits (Cont'd)
Ex. 1
* Design a LP filter with f, =1.59kHzand Q=5 . The DC gain is to be unity.

Solution 5 q
ﬁ(s) __ wa)o - 10 :
Vin 4% g 2 8 +20005+10

Using the previous circuit the design equations are

ngcz -10% and gfc =2000.

C, Cy Cy
Choosing f. =16kHz (=10 times f,))
G 3.125 and G _ 0.125.

C, Cy
Let C, =1pF and C4 =10 pF yields C; = 3.125pF and C3 =1.25pF

4@ Note the maximum capacitance ratio is 10
&

UNIVERSITY OF
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Sample Circuits (Cont'd)

Ex. BP Filter R RC opamp realization
1

SC opamp realization

c 3?%

[

1T 1

¢ C C2fcs

V.HO—H__ 1= f.R Vo
! K — o)==
Vo
T
PR
\%‘%éi@i;@’ Behaves as a negative resistor
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Ex.2 e Realize a SC BPF with f, =1.59kHz and Q = 5. The center frequency gain
is to be 2.5.

Soln. e Using the previous SC BPF we obtain the following design equations:
0, =CCof;
LG
Ot\ Cz

CFG=l

o
Letting f. =16kHz(=10 f,) and solving the above equations, yields

a=04
C; =125
C, =03125

We may scale by 10" to yield C; =1.25pF,C, =0.3125pF,C =1pF

and aC =0.4 pF. Note the maximum capacitance ratio is 4.0, which is

;@@ practical.
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A Useful Circuit - The Sample & Hold

® The sample and hold provides a means for delaying the
input or the output of a circuit by half a clock delay in a two

phase clock system.
® The simplest sample and hold is an opamp configured as a

buffer with a switch clocked on either of the two clock
phases and a holding capacitor. Other more elaborate
schemes exist.

— SIH |—" = g

| 2
¢ or ¢ ¢ I

* In the z-domain V,(z) = z_5V1 (z) regardless of the clock phasing.

\%\@N
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Numerical Integration and the s-to-z transformation

Vi > y
o

t t, t
v, (t)= f v;, (1) = f v, (1) + f v;, (1)
—00 —00 t

4

=v,(t,)+ Area under the v, (¢) curve from ¢, — ¢

* In the frequency domain this can be expressed as,

Vols) _1

Viu(s) s

Numerically we can calculate v, (¢) by
v,(nT)=v,(nT -T)+ Area

* There are four well known methods of area calculation

@p Note others exist!
o 5
%@g@,ﬁ
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V.(s)= 1V, ()
S

Four methods of discrete integration

vin(l)

Vin () \

A

Q) Vm(n—;)T //// 3) vin(nT)
- >
(n-1T (n—;)T nT t (n_l)/T >
vin(nT) :
) 4) iz // |
(n-1)T (n— )T nT :

Middle Point Integrator or Lossless Discrete Integration (LDI)

l.

2. Forward Euler Discrete Integration (FEDI

3. Backward Euler Discrete Integration (BEDI)

4. Bilinear Discrete Integration (BDI) or Trapeziodal Integration Rule

UNIVERSITY OF
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Middle Point Integrator

Vin (t)
A

(n-1T (n— ;)T nT t

* Area=Tv;, (nT - g) Thus v, (nT)=v,(nT -T)+Tv;, (nT - Z)

Taking z - transforms
1

V. ()=2 V(z)+Tz Vi (2)
1

Vv, z 2 V, 1
s (=T < 2 (s)=-
V-() 1-771 V()s

in -z in

The corresponding s- to -z transform is then obtained as

ll—z_l 1 1
& S=T( 1 )=T(Z2_Z ZJ

i

2
EREERRY z 8-29

Forward Euler Integrator

Vin(t)

(n-DT (n-‘y~ T

* Area=T1v;,(nT -T). Thus v,(nT)=v,(nT =T )+Tv,,(nT -T)

Taking z - transforms

V,(2) =2V, (2)+ Tz 'V, (2)

1Y -1 1

. (=T ¢ o 0(s)—f
Vin I-z in S

The corresponding s- to -z transform is then obtained as

11=27)
c@@% S= - —(z 1)

EREERR 8-30




Backward Euler Integrator

1 Vin(t)
vin(nT)
P
(n-1T (n_

* Area=Tv,,(nT). Thus v,(nT)=v,(nT -T)+Tv,,(nT)

Taking z - transforms

V. (2)=2""V,(2)+ TV, (2)

V 1 V |
S 2 (=T - 2 (s)=—
|4 l1-z Vin §
The corresponding s - to - z transform is then obtained as
1 -
S = ? (1 -2 1)
EREERRY 83l
Bilinear Discrete Integrator
Vin(t)
vin(nT)
Vin(n_l)} R
(n-1)T t
., T
* Area of the trapezoid = E[Vin (nT =T)+v;,(nT)].
Thus v,(nT)=v,(nT -T)+ Z[Vin(”T =T)+v;,(nT)]
Taking z - transforms
- T -
Vo (Z) =Z IVO (Z) + E[Vzn(z) +2 lvin(z)]
v, T 1+7" v, 1
G T I O
Vin 2 1-¢ in S
The corresponding s - to-z transform is then obtained as
5 2(=<)
v/ 7 -1
i T
ERER 1+2 8-32




Bilinear Discrete Integrator (Cont'd)

1+S

-1 —

S=2 I_Zl < = 2
T\1+ 7 sT

=34
2
For s = jQ and z = re’”"
1+ ]g;T
joT _
e TTT
- 7  digital

frequency

sr=l,and w= gtan'l(g)
T 2

Ifs=-0+jQ — |r|<1

. analo
Ifs=+0%jQ — |r]>1 5 - frequincy
\;\@m * We have distortion in the digital frequency domain T
Lo . . .
UCWL%T@ * Prewarping the digital frequency can compensate for this 8.33
Another Transform and Summary
* There exists the impulse -invariance transform which is popular
due to its simplicity.
1
ez=¢*T ors=—1In(z)
T
Summary
1 , ,
4= Backward Euler For high sampling rates sT <1
-
7, =1+sT, Forward Euler 2 = 145T +(sT)* +(sT) +..=1+5T
T 7 =1+sT,
1+ S2 = , \
= ili T T
%3 sT’ Bilinear z3=1+sT+(S ) +(S ) +..=1+sT
1-— 2 4
v (sT)* (sT)°
=€, Impulse Invariance 2y =1+sT+ 5 + ) +..=1+5T

%Eanﬁéﬁ
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Errors associated with the Discrete Integrators

* Errors exist with each integrator
* |deal integrator should have zero magnitude and phase error
1

s=jo

H(w)=H(s)

* Let us assume each integrator has a magnitude error ¢ and phase
error 0 asscociated with it. That is,

HN,(w)=jiw(1+£)ej9 3)

For the LDI

JoT  joT “

UNIVERSITY OF

CALGARY 8-

Errors associated with the Discrete Integrators (Cont’d)

Magnitude Errorphase Error
C)
LDI Cosec(sz) 0
FEDI Cosec(wT) 1 —g
2 2
BEDI wTCosec(wT)—l +ﬂ
2 2 2
T T
BDI | Cot 1 0
2 ( 2 )

* Because 6 =0 (for LDI) Dr. Bruton called this integrator the
@ Lossless Discrete Integrator. Note the LDI has no real part.
&

* For high sampling rates all errors are low.
EREERRY 8-




Summary

Type of Magnitude Phase Mapping Transfer
Integrator [H(e™T)| | Arg(H(e*T)) | (Equivalent) [ Function
T & w, T In the s- by - - _ _wd

v, W 2 Plane sR1Cy s
For V, at ¢,
C, .TE C -1/2
e wT /2 — LDI () C_l 12_ —
_‘\L . sin(wT'/2) 2 2 z
c.$ N For V, at ¢, T a)T .
InveeriOSrt:f;;is)ensmve (,()7( oT /2 ] _ Forward H(Z) _ 7% 1 i Zil
o \sin(wT/2 2 2
For V, at ¢,
JU C -1/2
w,(_orr2 -= LDI ()= G 1—m
& ¢ & o \sin(wT'/2) 2 2L 7%
—
g % For V, at ¢, T G)T C H—1
Normering o,(_oT2 -——— Forward [H(z) = 51 —o1
o \sin(wT'/2) 2 2 21774
For V, at ¢,
. ' x ol o, 1
o o, T —+— Backward |i(:)=-7 71—
_‘}I_'U—i:liﬁli’ o | sin(wT/2) 2 2 ?
LA ¢ | For V, at ¢,
nvertin; ’ '7-[ —1/2
IBacward) (1)_ wT/2 — LDI H(Z) gl ]_Z* 271
o | sin(wT/2) 2 2

s-plane

“%&a&ﬁ
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* A strip of length 27/T is wrapped once around the unit circle

* Method is only applicable to filters with a bandlimited analog

frequency response that satisfies |[H(jQ) =0 for |Q > Qjp




Backward Euler Mapping

s-plane 2-plane
JjQ
\ Im
B 1
B
D Re
# 1
e ,jr' A ¥ -1 D A
E
-1
Jjip E
* Poles in the LHP map to a circle of center 1/2 and radius 1/2
* Integrator has good performance for low frequency signals.
@ That is signals with discrete frequency close to |I.
b * For high frequencies it performs poorly.
EREERRY 8-39
Forward Euler Mapping
s-plane 2-plane
JjQ
B A Im

* Like the BEDI this integrator works well with low frequency signals.
* |t is possible for points to be mapped outside the unit circle yielding

3@@ and unstable system.

UNIVERSITY OF 8 - 40
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Bilinear Mapping

s-plane

* Points all along the jw axis are mapped to the unit circle.

“"*\«z;anﬁﬁ
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Midpoint Integration e
2 o
-1 1(z-1 z-1 Vi "
LDI Transformation S, = < = (Z + 2 ) — b3
2Tz 2\ T Tz
/ \ (n—-1T nT (n+D)T ¢t
Forward Euler Backward Euler
Zp=5,T = (s,T)" +1

=72 = (saT +~/(s,T)° +1) : (SaT —(s,T)* + ) =-1
=z =—
2
* If |z;/>1 then |z| <1 and vice versa
* A stable pole s, will transform into one stable and one unstable pole
in the z-plane
* This implies H ,(s,) will not transform into a stable H(z)
@ * However, the LDl is still useful in understanding the operation of SCFs

W based on the LDI transformation

UNIVERSITY OF 8 - 42
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Midpoint Integration Cont'd

»
-

Image of the jw, axis Image of the jw, axis
for |jwa|>]17 — for |ja)a|s%
|
9]
\ 4
%)

&
\%@5 é @L;/
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SC Analysis using Charge Equations

The priniciple of charge conservation can be used to analyze SC circuits.

® Useful guidelines
I. Charge at the present time= Charge at the instant

before + Charge Injected.

2. If the output is to be evaluated at time nT-T/2 draw the
circuit at time (nT-T/2) and at (nT-T). Similarly if the
output is to be evaluated at time (nT) draw the circuit at
time (nT) and at (nT-T/2).

3. If the polarity of the capacitor injecting charge into
another has the same polarity as the one receiving the
charge use a -ve sign in the charge equation otherwise
use a +ve sign.

;\@p
\%{Eaé@if
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The Middle Point Integrator (Parasitic sensitive)

. V . .
* We wish to evaluate —%(z) at an instant we designate as nT
in

&)
||
1y
vino_o
* Vo
Cl $ _VC]
G

Vi, R N
l o nT—T
+ v, 2
C $ e

* Assuming a + — - current flow

@ C,v, (nT - z) =Cyv,(nT -T)+ 0 (Zero charge Injected) ¢
%{\%éﬁ

UNIVERSITY OF
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The Middle Point Integrator (Cont'd)

Cyv,(nT) = szo(nT —§)+Cllvcl (nT)-ve, (nT —2)}

but v¢, (nT)=0 and v¢, (nT - Z) =V, (nT - Z)

= Cyv,(nT)=C,v, (nT - Z) - Clvl-n(nT - g) ©
Substuting (5) in (6) yields
Cyv,(nT)=Cyv,(nT -T)-Cyv;, (nT —~ g)

and taking z - transforms
1
GV, (Z) =GV, (Z)Z_l -CViy (Z)Z 2
1
2
@ = &(Z) Gz 1
%%,ggg‘f‘f Vin C2 -z

EREERR 8-46




A Forward Euler Discrete Integrator (PS)

. V . .
* We wish to evaluate —%(z) at an instant we designate as nT
in

2
il
s
‘/iIT [ U— T
n
b—\i ' v,
G /]; Ve,
)
|1
15
Vino_o
—o nT -
* Vo
C] $ })C]
* Assuming a + — - current flow
T ,
Cyv,(nT)=Cyv,|nT 5| 0 (Zero charge Injected) @
EREERS 8-

A Forward Euler Discrete Integrator (PS)-Cont’d

szo(nT —Z) =Cyv,(nT -T)+C,

v (nT . g) —ve, (nT - T)}

T
but ve, (nT - 2) =0 and ve, (nT ~T) =v;,(nT - T)

:>szo(nT—§)=szo(nT—T)—Clvm(nT—T) ©
Substituting (7) in (8) yields

Cyv,(nT)=Cyv,(nT -T)-Cyv,;,(nT -T)

and taking z - transforms

CoV,(2) = CaV,(2)7 = CViu(2)2™

-1

Vv C
= 0 (7)=="L. 2 —
Vi G 1-z

® Depending on which clock phase the output is sampled the

m@p outcome is a parasitic sensitive LDI or FEDI integrator.
%\%ﬁ‘f

wane: @ 1 he two outcomes are separated only by half a clock delay. 5.
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A (Stray Insensitive) Forward Euler Discrete Integrator

&
- +

Vin C,
L B
V

é + VC] - o

2
+ VC - ‘/0
g 4

szo(n)=C2vo(n—;)- 0

szo(n -;) = Cyv,(n-1)- CI[VCI (n -;) ~ve, (n- 1)]

1
but v¢, (n - 2) =0 and v¢, (n=1)=v,,(n-1)

= C,yv,(n)=Cyv,(n=1)+Cyv;,(n-1)

-1
=] v o :
o = 0 ()= L
VRN, Vin G 1-2

Notes

Output is to be

evaluated at time n.
T can be omitted

since it conveys no
useful information
in the charge

equations
If the output was to

be evaluated at time
n-1/2 instead, the
numerator of the
answer would be

112

z ' '“ instead of z'l.
That is the circuit
would be non
inverting LDI (Stray

insensitive).

A (Stray Insensitive) Backward Euler Discrete Integrator

&)
R
Vin C, )
RS >—°
L e g

+
1

|*_
Vine & C, v—L—{> n_[
2
+ v,
e\ T

Cavy(n)=Cav, (n - ;) , Cl[vcl (n)-ve, (n _ ;)l

with ve, (n) =-v;,(n) and v¢, (n - ;) =0

n-1 szo(n—;)=C2v0(n—l)+O

= szo(") = Cz"o(” - 1) - Cl"m(”)

%@«5 .'.ﬁ(z)=—g' 1_1
ITY OF ‘/l C2 1_Z

Notes

Output is to be
evaluated at time n.
If the output was to
be evaluated at
time n-1/2 instead,
the numerator of

the answer would

be z'”2 instead of
I. That is the

circuit would be an
inverting LDI (Stray

insensitive).




A (Stray Insensitive) Bilinear Discrete Integrator

¢l C C2
Vin V/ —\_¢ -
—— S/H 3
| . g

RN

* By superposition the output can be computed by recognizing the presence
of a BEDI and a LDI. Loosely speaking therefore,
V,(z)={BEDI + LDI}-V,(z)
1
a 1 ¢ z°?

V,(2)=|-—- -
¢ C2 l—z_l C2 l—z_]

Vi(2)

1
G W Vs
C, |1-z71 1=

1 1
but Vi(2)=z 2V;,(2) = V()2 2 =2V, (2)

-1
) - Yo@ __Cl.[m

s Vin(Z)_ C, l_Z—l

UNIVERSITY OF
CALGARY

A First Order Building Block
N

<

oy
_\Jé/_ Notes
< <

o  All switches

o yC c
discharge into C
y N
- S/H e i3 ] ) simultaneously.
v This eases how
‘I’ — ne *+ fast the the
O M_ opamp has to
o 4 work.
|
\

e

-1
<
VO(Z)=(YI ]_}/2_ Y3

-z -z

-1

<
1 — 1 -1 ‘/in(z)+(1y4 1~ yS_]]VO(Z)
-2 -z

VD(Z)[l ~2 s - Y4Z_1] = Vin(Z)[ﬁZ_l —yy 102 - 73]

ﬁ(z) _~(n+r)+(n +1)7"
Vi (1+75)=(1+74)”"

-1

-1
o] Bo+Biz 8-52




Another First Order Building Block

—0 Y4C
G
o '\{SC

o—

a7

Notes

® Opamp has to

work twice as

hard.
o e C e Output is
Vi, v, _\—{ M— ‘_ availal:e only on
—— S/H <T7 é | ) p
1 +—o 'Y2C o— +
ol
ol
—
by Y2 -1
< (r)+ V3R
0 1+y,
7(Z) == 1+
@p in 1- Y5 Z—l
@%&%&ﬁ/ 1 + }/4
CREERRY 8-33
Yet another First Order Building Block
—o Y4C —
LN
Notes
¢ vsC —
—\_{ H e  Opamp has
to work
q)l Y|C é C twice as
Vin V] —\_{ M— l_ o I;?l:;:lput is
S/H é é available
only on
(g . l V:C ] ) Yo one phase
g ol E

e

INIVERSITY OF

CALERRY




Signal Flow Graph Analysis

Oy e C
Yo g € —
—(7)=- n
v (2)=-n |
-1 V. ¢ y,C — Vo
0 ( ) V2% ’ D_(\l—{
v oA . %ﬁ;
0( ) I—Z T -1 Vjo_'\(h_\{hé/_
< <
By superposition therefore
1 _
V@)= [-n(1- 7 M@+ 12 Va@)-13V3(2)]
-z
ERTERRY
Signal Flow Graph Analysis (Cont'd)
® Equivalent signal flow graph
1 Vo (2)

e

UNIVERSITY OF
CALGARY




Signal Flow Graph -1st Order Example

* Active RC Version g, * SC Version Q_Yiélﬁ

_/\/v\,_
= =
} } o 12Cy

o Ci v, m%ﬁ C]H

‘/in (S) in
— Vo) R &

v:1C YJl/Cl *
AN
* Signal Flow Graph
-1 -1
Vin(2) (%) (1-7) V,(2) E(Z) __Nntr- )/121
L//\ Vin 1+ Y3 — z
n(1-27) T

%&g@éﬁﬁ

UNIVERSITY OF

CALGARY

General Stray-Insensitive SC Biquad (Dr. EI-Masry)

2 110C)
Y J
& <
MICI
o YSCHI/— é Y9Gy
i€ GRS
i 3 N

g <

—Q_Y(C] po—
D y6Cr ]
U2 $ W _\_| ‘:

LAY

I V;QH/_
L% y,G
Ve f%/_
¢ 746 3
N~ ]
& <
[ Y6Co
'
o ¢
\2}%&)&@/ Y_ISKCZ
1€

UNIVERSITY OF
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General Stray-Insensitive SC Biquad (Cont’d)

A general SC Biquad can be used to realize the biquadratic transfer

function

-1 -2
o, +0yz +0,2

-1 -2
[30 + ﬁlz + /52Z

using two of the SC Ist order building blocks in a feedforward/ feedback manner.

T(z)=

For the circuit shown in the figure the equations are:

-1 -1
Z Z
Vi=| 1% o T2y | VTR T e TS0yl )
1-7 1-z2 1-z 1-7- 1-z 1-7
and
vuzl oy N6z Vs oy
Va(a)=| P4 - T2y ()4 | T16S TSy, (g4 | TOS Tyl (o)
1-z2 1-z2 1-z7 1-7 l—Z 1-z2
RN 8-59

General Stray-Insensitive SC Biquad (Cont’d)

Vi ay+a 7z varz V. by +bz  +byz72
Ti(z)=—L(z) =" 2 and Ty(z) = -2 ()= 0% _F%

—1 -1 -2
i Co+CZ +02 in Co+Cz +62

where

ap = (74 +75) (Yo +710) = (1 +72)(1+115)
‘(Vl+V2)(1+V16)+()’1+V3)(1+715)—()’4+V5)()’9+V11)—(75+Y6)(7’9+7/10)
2 =(rs+76)(vo +111) = (11 +73)(1+716)

(n+12)(r2+713) = (va+vs)(1+7s)

(V4+}’5)(1+)’7) 75 +76)(1+7g)=(

(n+7v3) (13 +714) = (vs +76)(1+77)

(1+)’8)(1+V15)‘(}’9+)’10)(Y12+)’13)

=(vo +711) (12 +713) + (Yo +710) (113 + 712) = (1+77)(1+115) = (1+ 75 )1+ 716)

¢ =(1+77)(1+716) = (vo +711) (113 + 714)
The equivalent analog pole frequency w, and pole Q are given by

Nty )(}’13 +V14)‘(}’1 +}’3)(}’12 +V13)

)-
)-
(
)-

w,=2f, “*ta*ta .4 Q=V(C0+Cl+cz)(co—cl+cz)
Neg-ci-c; 2(co-¢y)

where f, is the clock frequency.

4@ * Note @, and Q are obtained by using the bilinear z - transform
\%Eagﬁﬂ

UNIVERSITY OF 8 - 60
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Simplified version of the General Biquad
L3

5Cy

N
126

e
" v [T SR
» . » % % ) ’_| 114C2
. 13C y Vi f%/_{[>—_|—

=1

Letusset yy=ys=y; =Yg ="11="Y12=V13="16=0. Then

Vi [ralre+110) = r2 (L4 1is)]+[v2 +v3(1+ 715) = veYi0 = Yo va +76) )" +[Yero —v3)
TI(Z)—V ()= Do)
in

v _ DV I O -2
Tz(z)=f2(z)= Va+[1raria =va =16 +[-vana+vsle

Vin D(z)
| where
%r:.nge/ -1 -2
o D(z)=(1 —ye =2 1-
e (@)= (1+115)+[1a(ro +110) ~115 = 2] +[1-7o114 ]2 8.6l

A SC Low Q Biquad (Q<I)

(D()

Kl + Kzs

Vy(s)=—1
S

(ky +kzs)vm<s>+“gvz<s>—wovl}
and

Vi(s)= —l[kovm(s)+w0V2]
slo

@ ’
& i
W

UNIVERSITY OF

CALGARY 8-62




A SC Low Q Biquad (Q<I)-Contd

1/(1)0
A%
0/,
A%
CA =1
[l Cp=
K I
Vin, m’?/\//\,() | —1/000 H
VWV -
+ ° —o V.
VI + ?

* Note the presence of the negative resistor —1/w, making it not practical
as an active RC filter.

e

UNIVERSITY OF

CALGARY

8-63
A SC Low Q Biquad (Q<I)-Contd
SC Equivalent with switch sharing
I K,
i€ V== \Ha (O)\a)OT
G, = W,
i V2a=V3= on
Ve a0 Gy | 0
Y w,T
— _ Y
< < (v V4 =
@ @ Q
e vs =~ KT
b Yo = K3
Signal Flow Graph v:

Ya

Yi -1 —Y3Z -1
V, (@) —1——()— o D—> e V,(2)
¥s
\@@N
W

UNIVERSITY OF Y((l - zil)
CALGARY




A SC Low Q Biquad (Q<I)-Contd

* Note for low Q the capacitance spread Cmax _ 1 _ 1
Cmin on V2

and for frequencies of interest w <<w, = w,T|<<1
so that the capacitance spread will be large.

* The direct z - transfer function of the circuit is given by

H(z)= (vs +V6)22 +(173 =75 —2Y6)2+ Y6
(1+74)2% +(rar3 - 74 =2)2+1

azzz + CZIZ + Clo

by2* +byz+by
6 unknown values and
= Y6 =4

5 relations. One
')/5 = az — ')/6 = a2 — ao / minimization
constraint is to

¥, = (1)(a1 +7s + 2V6) _dtaq tay choose
73 & Y2 =V3=1/b+by+1
@ Ya=by -1
\%‘\:é‘?i
:j:;mor )/2'}/3 = bl +2+ '}/4 = bl +b2 +1 8. 65

CALERRY

A SC Low Q Biquad (Q<I)-Contd

Possible Realizations of the low-Q Biquad

Lowpass ys=y,=0
Highpass vy, =v,=0
Bandpass y;=0

Notch V=7 =0

Allpass realizations are possible if an inverting SC branch is added

between the input terminal and node A with y, removed.

\%\@N
\’4’\«¢5§@

EREERR 8- 66




A SC High Q Biquad

¢ Active RC Version

K,s’+Ks+K,

| %
H(S)=V—2(S)=— p”
in S+ s+

o T
< <

|
1

Y6Ci

* SC Version ). czH
Vino, 0 hite] O
mﬁﬁ ySw_ _/_c
< < gm oV

&

A SC High Q Biquad (Cont'd)

Vs

* Signal Flow Graph .
Yo(1=277)
Y, / -1 | -
V,(2) —1—(H)— ]7;' —Z>@_. ﬁ V,(2)
n(1-71 ‘

B1-z7"

H(z) = ﬁ(z) __ V3Z22+ (V]ys + V)5 — 2V3)Z + (V3 - szs) _ a,z’ +az+ a,
i 2+ (1a¥s + 156 = 2)z+ (1= 7576) 2 +bz+b,

V=4,

VVs=4a,—4a,

NYs=d,+a,+a,

YsYe =1-b,

@b Ys¥s=1+D +b,
N




SC Filter Design Strategy using the Bilinear z-transform

Given the specifications of the SC filter in terms of the discrete

frequency (w) the following is a step by step design strategy:

* Prewarp the specs using the equation Q=2 f, tan(zw) to obtain the

continous time specs.

N

* Using available tables or formula for the continous time filter (e.g. Butterworth

Chebychev, Cauer, etc) obtain H(s) that meets the analog specs

* Apply the Bilinear z- transform s =2 f -

l—z_1
-1

1+z2

H (s) to obtain the discrete time function H(z),

* H(z) can be realized using the cascade approach.

%Eanﬁéﬁ

UNIVERSITY OF

CALGARY

H(Z) = H(S)‘S=2f i
Sl+z :

to the analog transfer function

Cascade Realization of SC Filters

* H(z) is realized as a cascade of first and second order SC building blocks.

* Fornodd, H(z)=

2
* For neven, H(z)= 1_[
k=1

mn

%Eanﬁéﬁ

INIVERSITY OF

CALERRY

n-1

-1
ao +a1Z . 2

-1 )
Opp + 2 +09Z

-1 -2
Qo T2 + A2

y )
Box + Bikz + Pz

1 oy ;)
by +biz " i Box +Bikz + Bz

n

Ist Order Biquad #I Biquad #2 [— -+ Biquad #(n-1)/2
Block

V.

.| Biquad #I Biquad #2 | = ---| Biquad #(n/2) |+ "

0

n-odd

n-even




Bilinear z transform of the general biquadratic transfer
function

ay +a1s+a2s2

Given H(s) = then

bo + bls + b2S2
H(2) = H(s),y
S 741

-1 -2
_ ao +a]Z +Ot2z

i )
Bo+ Bz + Pz

where
2
ay =ay+2fia +(2f;) ay
oy =24y -2a(2f,)°

ap =ag -2 fq +(2fs)202

and
Bo=bo+2f.b +(2f,) by
B =2by - 2b,(2,)?
\«;@@% By =by—-2fby +(2£,)’b,
ERERY o

SC Design Example using the Cascade approach

Ex.3 * Design a SC LP filter with equiripple response in both the passband
and the stopband, that meets the attentuation specifications shown

below. In your design use a sampling frequency f, = 8kHz.

Soln.
Prewarping the discrete time specs
OC((U) A ’ ‘
65dB a(Q) 6548
(dB) (dB)
0.5dB 05dB
0 . 0 .
0 ©,-9987 w,-19897  w(rad/s) 0 1000 2000 Q(rad | s)

“"*\«z;anﬁﬁ
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SC Design Example using the Cascade approach (Cont’d)

* From Cauer filter tables the desired order is 5th and the normalized transfer

function is given by,

Hs), - 0046205 2436405 41056773
s+0.392612 52 +0.192555+1.03402 5% +0.580545 +0.525
= H(s)= H(S)norm‘hq:i
1000
- H(s)= 30205 5% +4.36495 x 10° §2 +10.56773x10°

s+3926.12 5% +192.555+1.03402x10° 52 +580.545+5.25x10°
The discrete time transfer function is therefore

4 -1
2x107(1-2 ) 1-1934877 4272 0.8388-1.54467"' +0.838877

H(z)= -1 3 i) aq i)
1-0.60597 1-1.9604z" +0.9763z 1-1.2807z " +0.9415z2
= H](Z)‘Hz(Z)'H3(Z)
ERERR 8-73

SC Design Example using the Cascade approach (Cont’d)
- o1 v4C o—
The first order building block *\_{

<
o ¥sC

N
v [N e

S/H il i

m

(gl [ Y3C%/— +
g o

I
1€
12.C

Yo t+V3 YitV2 | -1
- + -4 -1
(1+)’5) (1+V5 )Z _2x10 (l_z )

Vi

—(2)=H(2)= = @
= v, ! 1_(1+y4)z_1 1-0.60597"
\Z}%Eagﬁﬂ
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SC Design Example(Cont'd)

Let us choose y; =y3 =y, =0

=>1}’2= 2x107™* and y5 =1/0.6059-1=0.6504...y, =33x107*
+Ys5

This design yields a high capacitance ratio ( = 3030) which is not practical.

33x107
A simple solution is to distribute the gain evenly over each section. Hence each

1
stage would have a gain of (2 X 10_4)3 = 0.058(= 117), which is more practical. For

the new design then y, =0.058 /0.6059 = 0.0965. Note: The

output is
valid for
both

0.6504
é___//;'__ phases

v 0.0965 1—1 —
in S / H I/ . | )

AN
L 1 3 )
\%\% 4 Q%ﬂ

o)

%
EREERR 8-75

SC Design Example (Cont’d)

Biquad #1 L,
H,(z)=-0.058 1_1'934?Z =z 5 - Using the simplified version of the general biquad
1-1.9604z" +0.9763z"
with the output taken from the second opamp yields.
Hy(2)=- Ya+[v2r1a = va =761 +[¥s —)’3)’14]2_2 —-0058 1-1.934877"+27
L+ 715 +[714(vo +710) =115 = 2]Z_1 +[1-79714 ]2_2 1-1.96047™" +0.97637~2
The design equations are:
74 =0.058

—Y2Y14 +Va +Ye =0.058x1.9348 =0.11222

Y6 —V3¥14 =0.058

l+y5=1

~114(Yo +710) + 715 +2 = 1.9604

I- YoY14 = 0.9763
There are 6 equations and 8 unknowns. We may therefore set y; =0 and y,4 =1. Solving
yields
Y4 =7Y6 =0.058,y9 =0.0237,y, =0.105,y;5 =0.0159 and y,;5 =0

Q%&éﬁ
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SC Design Example (Cont’d)

0.8388 —1.54467"' +0.83887
1-1.2807z" +0.94157”
general biquad with the output taken from the first opamp yields.

[74(}’9 + )’10) - 72(1 + Vls)] + [)’2 + V3(1 + }’15) ~YeY10 ~ V9(V4 + 76)]Z_1 + [7679 - )/3]2_2
H3(Z) == -1 -2
L+ 75 +[)/14()/9+ Vlo)_yls _2]Z +[1—}’9)/,4]Z

Biquad #2
H,(z) =-0.058

. Using the simplified version of the

The design equations are :
y4(y9 + }’10) - y2(1 + }’15) =0.058 x 0.8388 =0.0487

Vo + 75 (1+ 715) = YeVio = Vo (Vs + 76) = =0.058 x 1.5446 = —0.08959

Y6Vo — V5 = 0.058 x 0.8388 = 0.04865

l+y5=1

—V1a(Yo + Vo) + V15 +2=1.2807

1-vy7,, =0.9415
There are 6 equations and 8 unknowns. We may therefore set y, =0 and y,, =1. Solving
yields
v, =0.7128,y, =0.8316,y, =0.5474,y, = 0.058,y,, = 0.6608 and y,; =0

Final
Realization

0.6504

v 0.0965
SIH -

1st Order Stage

Biquad #1

0.6608

Biquad #2

083163




Switch Sharing

0.6504

0.0965

0.0159 3

— ]

y
1
0.0237

3| 0.105% | @
{—1(7
i 3
Switches can be (:.oss
shared to
(A
reduce ﬂ] -
hardware
0.6608 1
0.7128
@ 1
L4
UNIVERSITY OF 0.8316
CALGARY

V2

Design of SC Ladder Filters

® Procedure very similar to that of analog filters
® We have to employ a transformation because the analog

prototype filter operates in s and the corresponding SC filter

operates in terms of z.
® Most used s-z transformations are the LDI and the bilinear

transformation. Note the bilinear transformation has zero phase

error.

LDI (Approximate)

1 1
1 — —
= |z2-72

T | QT
7 =S1n —_—
& i

“"*\«z;anﬁﬁ
UNIVERSITY OF

CALGARY

 digital
frequency

analog

0 o frequency

BDI (Exact)

2(1-7"
S= L A
T\1+7

I

SLw= tan_l(

NN

 digital
frequency

QT

2

|

analog

o frequency




General procedure for the Approximate Design of SC

Ladder filters
* A doubly terminated LC two port is designed from the specifications.

The specifications are prewarped using the relationship
Q= 2sin(wT)
T 2

* Find the state equations of the resulting RLC circuit. The signs of the voltage
and current variables must be choosen such that inverting and noninverting
integrators alternate in the implementation.

* Construct the block diagram or SFG from the state equations. Transform it
directly or via the active RC circuit into the SC filter.

* If necessary, additional circuit transformations can be performed to improve
the response of the SCF. These include modifications of the termination

sections which improves the passband response or eliminating unnecessary

capacitive coupling between opamps in circuits with high clock rates.

%Eanﬁéﬁ
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Design Example - 3rd Order LPF

R, L
Y'Y YY)
+ +
+ + I,
Vin ¢~ V, C3 T Vs R, V,
LR+ () -I3R ‘+®+ I,R
> < —(3 )~
A \ \
/
R 1 1 1 R
R, C\Rs Los CiRs R,
\
‘/”'I E ‘ 2 " v
o o ~t S ~t S o Vo
@5 nem " O "

INIVERSITY OF

CALERRY 8-82




Design Example - 3rd Order LPF (Cont’d)

1Q -1 1Q

V

in

Equal-R T

(R=1 Ohm) —

—AM
R
k

G Ry

71

G

-1 1Q

Elimination of
k 1 opamp by
using negative

__i o resistors

* Inverting Integrator

Cl
RS
1 c, 1
H(s)=~ Hy,,(2)=-—"
RSCIS C] (I_Z l)
* Noninverting Integrator
L, L,
y 4 e
¢ 1
1 cC z
H(s)= H, . (z2)=—
(S) RLZS noninv L2 (l—z_l)
c, ¢ ! d
* Note H(Z)=Hinv(z)'Hnoninv(z)=_7'7.72 an
¢ L (1_Z—1) K

H(ej‘"T) =TT which is
K » 4sin? ()
1 1)2 2
(Z ] purely real (Zero phase error)
8-84




Termination

R, C, o
1
C Vo
” ¥ Co= b
_____ SR

* T S
Y .

Ry [

. ) C, =

Note that this termination results in a phase error.

v, 1 R,
(@) =
Vi L. R (RGs+])
T T
Vv, . C, C, c, /c,
22 (jw)=-—=- s .
v, T (TC] . ) T (Qj+1)
— jo+1
CS
\Q@N T . .
R 0= wﬁ, represents an approximation error
EREERRY ¢, 8-85

Final Realization

With
Switch
sharing
Vv,
R c
ﬁ]—(%
CS
I¢
No Switch 1<
sharing o
L
¢2 JM_/O N
) )
> C

L, o—.—/o—p

l\ AN
<
N

P 92
L G, S
l—
-, A
¢2 o4 —D
92 9
L v,
I¢

\%@J i
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Ladders with Finite Transmission Zeroes

® Procedure is the same as before except that we have to
manipulate the SV equations slightly.
I,

—— -
1 G I
_]> I, — 12
Ry — |y, R v — |y,
" LQ + + L; +
Vin Cl T C3 T RL Ve vin Cl T C3 T RL Vn
I / I
_|> I, — I,
Ry —> v, R Vi oy V)
h . . + i 2 .
in G C)I 1 G716 RSV, » Vin G G RS Vo
' S Ix.\Cz(V,—Vz)g \Cxx.\'CZ(VI—V)
;@
LRSS -87
* SV Equations are
Vs - Vl
11 =
RS
1 sC
Vi=———— (I -L)+— 2V,
s(Cy+Cy) s(Cy+Cy)
1 I SC2
= (I~ 1)+ 1
s(Cy +C3) s(Cy+C3)
Vo = IORL = V2
Vin 1 + + -1, +/0\
® — Y = > =
A N 6 U -
I j\ 1&
1 S I U O 1
R s(C1+G) A Ly |4 5(Cy+C3) v}
| |
| I
1‘ i : sC sC : i 1
( o2 2, (
- e (3 > .V,
gﬁ@, v, +\& ¢+ v,
LRSS -88




Final Realization (switch sharing)

Vin
o— ¢2 lc/S SS CA =C1+C2
ﬁl a 2 CB = Lz
W T C.=C,+C,
0 | o S UV
(0P} o)
Cc= =~ C
C o_/o_[)
4_{1“{ ’ O b2
2
c,
G,
C >~ Cc = C
[l
4_/0—/ 1
¢ 0P J‘H—/f’—[)
) 9
c v,
i
AN

“%&a&ﬁ
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Non-ldeal Opamp Effects

Non-ideal opamp effects such as DC offset voltage, finite DC gain,
finite opamp bandwidth, slew rate, and charge injection are important

considerations in SC filters.
® DC Offset voltage effect - consider the simple lossy integrator with

opamp offset voltage Voff'

I N

g
@ a 2
\2}%\5&:@/

UNIVERSITY OF
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Non-ldeal Opamp Effects (Cont'd)-DC Offset

1 1
=g oLyl
vcl(n—;)—vcl(n—l)]
bl =3 vealn=1)
c2( > Veoln

1 1
n_lz vo(n—z)—voﬁ(n—2)=v0(n—1)—v0ﬁ(n—1)+C1
1 1 1 1
but v, (n—z) = v(,ﬁc(n—z),vcz(n —2) = vvﬁ-(n —2),vcl(n— 1)=v;,(n-1)

1
vea(n=1)=v,(n-1) and v, (n) = voﬂ-(n - 2) =vyp(n-1)

+C2

Substitution and taking z - transforms yields,

Ciz™! (C,+Cy)
V,(2)=- L Vip(2)+ ——2—2—=V, 1 (2)
¢ l—z_l +sz_1 " 1- z_l + sz_l of
(C1+Cy)
If ‘/in = 0 = ‘/()(Z) = I—Z_l +C2Z_1 Voﬁ"(z)

Since V- is constant s =0 —z =1

C
V)= (1 + c;)vf’ﬁ

?;@;5’ * V, is independent of the feedback capacitor. It depends on the

ey ratio G/Cy. 8.9l
Simple Offset Cancelation scheme (PIS)
o By charge conservation we can write
aC{vOﬁc =|Voff = Vin (n - ;)]} + C{[Voﬁr -V, (n)] - voﬂ-} =0
Vin q)l |§
" =v,(n)=av, (n - ;) and taking z - transforms yields

If the clock phases at the input terminal are interchanged,
then H(z)=-a

Another circuit

o

a

Vi o

T

“"*\«z;anﬁﬁ

i Show that for this circuit H(z)= 72 Note the TF only valid for ¢, 9
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Effects of the finite DC gain

® Here we consider the opamp as having a finite DC gain AO but an infinite

bandwidth.

- b
_vo(n)— _VIZ(”)] =C, vo(n—z)—Az +C

ve, (M) —ve, (n - ;)}

' 1
I -v,|n-—
n- 1 0( 2) —v,(n-1)
2) Cylv n—)— =Cy|v,(n-1)-—2——~+
@ 2 o( > Ao 2 0( ) Ao
\Z}%Eagﬁﬂ
EREERRY 8-93
Effects of the finite DC gain (Cont'd)
-v (n) 1
but v, (n) = 20 = Vin(n) and ve, (n - 2) =0
Substitution and taking z - transforms yields,
V C
H@= Q=) 1
in Co+ 1220 _cyl1+— 7!
AO AO
1
(Cl/CZ)[l + (1 + CI/CZ)]
_ o
1) [ lecc)
AO AO
Compare with the ideal transfer function H;(z) = —(C]/CIZ)Z = _(lcl/iz)
<= -Z
Two observations:
* The gain is reduced from (C,;/C,) to a smaller value
* Pole previously at z =1 now has a smaller value

\Z}%Eagﬁﬂ
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Effects of the finite DC gain (Cont'd)

The ideal frequency response obtained from z = el is

. _ joT
H,-(e]wr) I CTAS) and therefore
.. (0T
2Jsm()
2
H(eJQ’T)=+~H,-(eJ“’T) where
1-m(w)- jO(w)

14

m(a))=—i l+& and O(w)= (CI/CZ) (CI/CZ) for oT <<1
A\ 26, oAt (wT ) A 0T
o2

* For A, >1000 and typical values of C;/C, and T,

o

m|<<1 and |0 <<1 (Except

near w=0)
¢ For high sampling rates (‘ST‘ << 1), 2=l =1+sT

_~G/C)[1+(1+C1/Cy)/A, T (145T)

H(s)=H =
()= H D atasr ST+(C1/Co A)/[1+(1+C/Cy)/A, ]
H(s)= _(CI/CZ)T
S+ (CI/CZAOT)
.. The s-domain pole of the integrator is o; = (G/G,) instead of s =0
AT
\@‘5 H(s)=""7i

EREERSY 5+0; 8-95

Effects of finite DC gain on the Low Q Biquad

Low Q Biquad v,/0

K, +Kys
* If each ideal integrator is replaced by its lossy counterpart

11 1[C1+C2

, Cr is the feedback capacitor

S

Qnew Q AowT CF CF

2 2, W0 )
Wo(new) = Wo + +0;1°0j»

* As an example if A, =1000, Q =15, and g’ =l (i=1,2)—=Q,,, =14.56
F

Note the effect is worse for high- Q biquads.
'\@n' The change in w, is less dramatic.
“"*\«z;anﬁﬁ
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Effects of finite DC gain on Ladder Filters

* Recall in a ladder filter each integrator simulates a reactive (L or C)

l+m

element of the passive prototype filter.

o,C
—AM—
If the element is C 1
c |
S Cc
- E{>
Ideal Integrator Lossy Integrator

1
sC/(l+m)+0,C/(1+m)

The branch simulated has the impedance Z(s) =

The quality factor of the capacitor is therefore,
QC=wCRC=Q= A,wT _ 1
o; (G/C) Hw)

* The change in element value C — C/(1+m) is usually neglible since the

doubly terminated ladder is insensitive to such variations.

==’ especially for narrow - band filters with high- Q poles.

UNIVERSITY OF

CALGARY 8-

@: The finite Q.. can result in significant changes in the gain response,
SN

Effects of finite DC gain on Ladder Filters (Cont'd)

If the elementis L

L L o;L
l+m l+m
- ]

Lossy Integrator

oL o Aol 1
R, 0; (G/Cy) 6(w)

and
1

T sL/(1+m)+0; L/(1+m)

Y(s)

\%\@N
\’4’\«¢5§@
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Effects of Finite Opamp Bandwidth

G
Consider the BEDI Y °—<\_{C
<
* For the opamp £(s) IS where w, = A,0'is the
Vi s+0 1 s
A, o

0

unity gain bandwidth product of the opamp.

4

The above equation can be written in the time domain as
1 dv,(t
v+ - POy

o 0

Using the opamp time domain behaviour the BEDI can be analyzed for samples
v, (nT),v,(nT +T), etc and the actual transfer function H(z)=V,(z)/V,,(z)

calculated and evaluated for z = /T |
* For the BEDI
Q@@? m(w) =—e "1[1-kcos(wT)]
UCNIVE%ITVOF 8 - 99

Effects of Finite Opamp Bandwidth (Cont'd)
and
O(w) =—-e " ksin(wT)

where
w,T

k=—C2  and ky =
C+C,

If we define a unity gain frequency w; of the integrator as |H, ( ]C"T) 1 then

w,T

m(w)=0(w)=-w;Te % where w;,T <<1 is assumed.

Thus if sz o 551 (o, —clock frequency), then both m(w) and 6(w)

wC
become negligible. In general w, = 5w, is usually adequate.
— The unity gain bandwidth of the opamp should be at least five times as large

as the clock frequency w,..

;\@p
\%{Eaé@if
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Effects of Finite Opamp Bandwidth (Cont'd)

* For the FEDI
m(w) = -(1-k)e™

and
O(w)=0
For w;, << w,,

w, T

(4

m(w;) = —a)l-Te_T

Hence w, = 5w, applies for the FEDI as well.

\%\@N
\’4’\«¢5§@
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Effects of Opamp Slew Rate

* All opamps exhibit finite slew rates that are dependent on currents and
capacitances in the output stage of the opamp. A typical output in response

to an input step function might therefore look like;

Vo

,3[4»\" r.\‘(‘/ll(’

* Slew rate is defined as the maximum rate of change dv, /dt . Thus
dv,| Ip
dt| Cp

where [; is assumed to be a load current and C; the load capacitor.

S=

r

* Note slew rate is not directly related to the frequency response.

\%\@N
\’4’\«¢5§@
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Effects of Opamp Slew Rate (Cont’'d)

* For SC circuits based on the assumption of a sine wave input whose

highest passband frequency is w, and amplitude is V___

2wBVmax
r = N
(tslew/’z—'Z)
Wlth 7'1' = ]; = g = L and Z‘slew + tsettle < 7-'2

c

* Note positive and negative slew rates exist.

%Eanﬁéﬁ
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Charge Injection

0 1

*Due to overlap capacitance C,, — Signal Independent
CO
AV, = _Cl+—lCO,. (Voo = Vss)
*Due to channel charge AQ_ — Signal Dependent

AV = AQ, 12 __ uC, W /L(VGS - VTH) _ uC, W /L(VDD -V - VTH)
&9 “T 2C, 2C,

%
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Solution - AV,

® Half-Size Dummy Switch driven by Complementary clocks.
® Transmission Gate
® Fully Differential Approach

Vin “—‘Q_{Cl (1)2 '
DN V+
<1>7¢2 by i

Vi1 ~
C
<1‘*74)2 o) i ?

= AV ,(+) & AV, ,(-) Cancel each other

“"*\«z;anﬁﬁ
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Solution - AV,

® Delay Clocking Scheme.

|
|

* Due to ¢, : Channel Charge Dependenton V,,
* Due to ¢, & ¢, : Channel Charge Dependent on GND — Can be removed
* Turning off ¢, & ¢, Earlier — Channel Charge of ¢, isolated from C,

® Use a Compensation Capacitor

=> Insert (-) AQ_, which is stored on the compensation capacitor

“"*\«z;anﬁﬁ
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