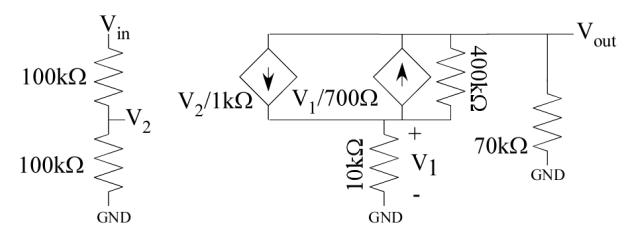
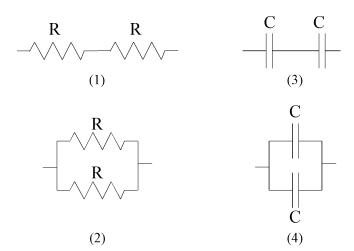

ECE 2040 Exam 1 Fall 2024


Name	_
 General Instructions instructions: Exam is closed book / closed notes other than the one-page of handwritten notes. Choose the best possible answer available in all cases. Blank scratch paper is allowed 	
Part I: Objective Questions	
Part II: Open Response Question (In the following pages)	
Final Score	

Part II: Open Response Question (20 points)

Start with creating the one-port Norton model for the following circuit, where I_{in} is a current source of a fixed value.

Using the Norton model you developed, solve for the output voltage (Vout) as a function of the input voltage (Vin), as well as the effective resistance at the output node, and creating a Thevenin representation for this circuit.


ECE 2040 Exam 1 Fall 2024

Part I: Objective Questions

Name ____

Each question is worth All of your answers ne Only the final answers	ed to be on this shee		considered cor	rect for each question
Choose the best possib	ole answer available	in all cases.		
1	11.		-	
2.	12.			
3	13.		-	
4	14.		-	
5	15.		-	
6	16.		-	
7	17.		-	
8.	18.		-	
9	19.		-	
10			_	

Use the following circuit diagrams for the following questions: $(R = 10k\Omega, C = 1nF)$

- 1. For the elements in (1) above, the equivalent resistance is
- a. $2.5k\Omega$
- b. $5k\Omega$
- c. $10k\Omega$
- d. $20k\Omega$
- e. $40k\Omega$
- 2. For the elements in (3) above, the equivalent capacitance is
- a. 0.25nF
- b. 0.5nF
- c. 1nF
- d. 2nF
- e. 4nF
- 3. For the elements in (4) above, the equivalent capacitance is
- a. 0.25nF
- b. 0.5nF
- c. 1nF
- d. 2nF
- e. 4nF

Using the following circuit

$$20k\Omega \stackrel{V_{out}}{\longrightarrow} 20k\Omega$$

$$2V \stackrel{}{\longrightarrow} \sqrt{\bigvee} - 4V$$

$$20k\Omega \stackrel{}{\Longrightarrow}$$

$$20k\Omega \stackrel{}{\Longrightarrow}$$

4. What is the correct Node matrix formulation?

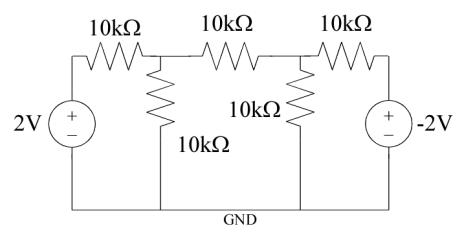
a.
$$\left[60k\Omega\right]V_{out} = \left[\frac{2V}{20k\Omega} + \frac{4V}{20k\Omega}\right]$$

b.
$$V_{out} = 1V$$

_{c.}
$$\left[\frac{3}{20k\Omega}\right]V_{out} = \left[\frac{2V}{20k\Omega} + \frac{4V}{20k\Omega}\right]$$

$$_{\mathrm{d.}} \left[\frac{1}{20k\Omega} \right] V_{out} = \left[\frac{2V}{20k\Omega} + \frac{4V}{20k\Omega} \right]$$

$$_{e.}$$
 $V_{out} = 3V$


 $5. \ \ What is the correct Mesh matrix formulation assuming two clockwise loops?$

$$\begin{bmatrix} 40k\Omega & 20k\Omega \\ 20k\Omega & 40k\Omega \end{bmatrix} \begin{bmatrix} J_1 \\ J_2 \end{bmatrix} = \begin{bmatrix} 2V \\ -4V \end{bmatrix}$$

$$\begin{bmatrix} 40k\Omega & -20k\Omega \\ -20k\Omega & 40k\Omega \end{bmatrix} \begin{bmatrix} J_1 \\ J_2 \end{bmatrix} = \begin{bmatrix} 2V \\ -4V \end{bmatrix}$$

$$\begin{bmatrix} 40k\Omega & 20k\Omega \\ 20k\Omega & 40k\Omega \end{bmatrix} \begin{bmatrix} J_1 \\ J_2 \end{bmatrix} = \begin{bmatrix} 2V \\ 4V \end{bmatrix}$$

$$\begin{bmatrix} 40k\Omega & -20k\Omega \\ -20k\Omega & 40k\Omega \end{bmatrix} \begin{bmatrix} J_1 \\ J_2 \end{bmatrix} = \begin{bmatrix} 2V \\ -4V \end{bmatrix}$$

6. What is the correct Node matrix formulation?

$$\text{a.}\begin{bmatrix} \frac{2}{10k\Omega} & -\frac{1}{10k\Omega} \\ -\frac{1}{10k\Omega} & \frac{2}{10k\Omega} \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \end{bmatrix} = \begin{bmatrix} 2V \\ -2V \end{bmatrix}$$

$$\mathbf{b.} \begin{bmatrix} \frac{3}{10k\Omega} & \frac{1}{10k\Omega} \\ \frac{1}{10k\Omega} & \frac{3}{10k\Omega} \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \end{bmatrix} = \begin{bmatrix} 2V \\ -2V \end{bmatrix}$$

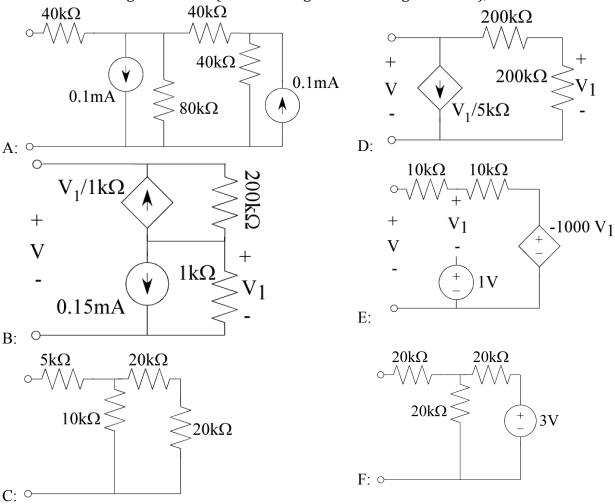
$$\begin{bmatrix} \frac{2}{10k\Omega} & \frac{1}{10k\Omega} \\ \frac{1}{10k\Omega} & \frac{2}{10k\Omega} \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \end{bmatrix} = \begin{bmatrix} 2V \\ -2V \end{bmatrix}$$

$$\operatorname{d.}\begin{bmatrix} \frac{3}{10k\Omega} & -\frac{1}{10k\Omega} \\ -\frac{1}{10k\Omega} & \frac{3}{10k\Omega} \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \end{bmatrix} = \begin{bmatrix} 2V \\ -2V \end{bmatrix}$$

$$\begin{bmatrix} \frac{1}{10k\Omega} & -\frac{1}{10k\Omega} \\ -\frac{1}{10k\Omega} & \frac{1}{10k\Omega} \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \end{bmatrix} = \begin{bmatrix} 2V \\ -2V \end{bmatrix}$$

7. What is the correct Mesh matrix formulation assuming three clockwise loops?

$$\begin{bmatrix} 20k\Omega & -10k\Omega & 0\\ -10k\Omega & 30k\Omega & -10k\Omega\\ 0 & -10k\Omega & 20k\Omega \end{bmatrix} \begin{bmatrix} J_1\\ J_2\\ J_3 \end{bmatrix} = \begin{bmatrix} 2V\\ 0\\ 2V \end{bmatrix}$$


$$\begin{bmatrix} 20k\Omega & -20k\Omega & 0\\ -20k\Omega & 20k\Omega & -10k\Omega\\ 0 & -10k\Omega & 20k\Omega \end{bmatrix} \begin{bmatrix} J_1\\ J_2\\ J_3 \end{bmatrix} = \begin{bmatrix} 2V\\ 0\\ 2V \end{bmatrix}$$

$$\text{c.} \begin{bmatrix} 20k\Omega & -20k\Omega & 0 \\ -20k\Omega & 30k\Omega & -10k\Omega \\ 0 & -10k\Omega & 20k\Omega \end{bmatrix} \begin{bmatrix} J_1 \\ J_2 \\ J_3 \end{bmatrix} = \begin{bmatrix} 2V \\ 0 \\ 2V \end{bmatrix}$$

$$\mathbf{d}. \begin{bmatrix} 20k\Omega & -20k\Omega & 0 \\ -20k\Omega & 30k\Omega & -20k\Omega \\ 0 & -20k\Omega & 20k\Omega \end{bmatrix} \begin{bmatrix} J_1 \\ J_2 \\ J_3 \end{bmatrix} = \begin{bmatrix} 2V \\ 0 \\ 2V \end{bmatrix}$$

$$\mathbf{e}. \begin{bmatrix} 20k\Omega & -20k\Omega & 0 \\ -20k\Omega & 20k\Omega & -20k\Omega \\ 0 & -20k\Omega & 20k\Omega \end{bmatrix} \begin{bmatrix} J_1 \\ J_2 \\ J_3 \end{bmatrix} = \begin{bmatrix} 2V \\ 0 \\ 2V \end{bmatrix}$$

Given the following six circuits (and choosing the closest right answer),

Which circuits have the resistance for the Thevenin equivalent circuit?

8. >300kΩ

9. $80k\Omega$

10. $9k\Omega$

11. $30k\Omega$

Which two circuits have zero voltage source for the Thevenin equivalent circuit?

- 12. Has no dependent Sources
- 13. Has a dependent source

Which circuits have the voltage source value for the Thevenin equivalent circuit?

14. -2V

15. 20 V

16. 1.5V

Which circuits have current source value for the Norton equivalent circuit? 17. 0.1mA 18. -25μA 19. 50μA

20. True (T) / False (F): The resistance for the Thevenin equivalent circuit is equal to the resistance for the Norton equivalent circuit.