
GEORGIA INSTITUTE OF TECHNOLOGY
SCHOOL of ELECTRICAL and COMPUTER ENGINEERING

ECE 2026 Summer 2022
Lab #4: Spectrograms, Harmonic Lines, Sampling & Aliasing

Date: 23 June 2022

Pre-Lab: You should read the Pre-Lab section of the lab and do all the exercises in the Pre-Lab section
before your assigned lab time.

Verification: The Exercise section of each lab must be completed before your assigned Lab time and the
steps marked Instructor Verification must be demonstrated during the lab time. One of the laboratory in-
structors must verify the appropriate steps by signing off each step of the Instructor Verification worksheet
within Canvas. Demonstrate each step to the TA or instructor.

Forgeries and plagiarism are a violation of the honor code and will be referred to the Dean of Students
for disciplinary action. You are allowed to discuss lab exercises with other students, but you cannot give
or receive any written material or electronic files. In addition, you are not allowed to use or copy material
from old lab reports from previous semesters. Your submitted work must be your own original work.

1 Overview

Please read through the information below prior to attending your lab. The objective of this lab is to introduce
more complicated signals that are related to the basic sinusoid. These signals which implement frequency
modulation (FM) and amplitude modulation (AM) are widely used in communication systems such as radio
and television. In addition, they can be used to create interesting sounds that mimic musical instruments.
There are a number of demonstrations on the site: http://dspfirst.gatech.edu/chapters/03spect/
demos/spectrog/ that provide examples of these signals for many different conditions. The resulting
signal can be analyzed to show its time-frequency behavior by using the spectrogram.

This lab studies signal synthesis for AM and FM signals, and their time-frequency content as shown in
a spectrogram. An underlying objective of the lab is to learn more about the spectrogram. There are several
specific steps that will be considered in this lab:

1. Synthesize a beat-note signal with a MATLAB M-file, and display its spectrogram.

2. Study the frequency resolution of the spectrogram for two closely spaced sinusoids.

3. Spectrogram: Make empirical observations of the spectrogram as the section length is changed.

4. Synthesize a linear-FM chirp with a MATLAB M-file, and display its spectrogram.

5. Spectrogram: Create a spectrogram that displays negative frequencies, as well as positive ones.

2 Pre-Lab

We have spent a lot of time learning about the properties of sinusoidal waveforms of the form:

x(t) = A cos(2⇡f0t+ ') = <
n�

Aej'
�
ej2⇡f0t

o
(1)

In this lab, we will extend our treatment of sinusoidal waveforms to more complicated signals composed of
sums of sinusoidal signals, or sinusoids with changing frequency, i.e., frequency-modulated sinusoids.
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2.1 Review: Chirp, or Linearly Swept Frequency

A linear-FM chirp signal is a sinusoid whose instantaneous frequency changes linearly from a starting value
to an ending one. The formula for such a signal can be defined by creating a complex exponential signal

nkht
CD-ROM

Spectrograms
& Sounds:
Wideband FM

with a quadratic angle function  (t). Mathematically, we define  (t) as

 (t) = 2⇡µt2 + 2⇡f0t+ ' (2)

The derivative of  (t) yields an instantaneous cyclic frequency that changes linearly versus time.

fi(t) = 2µt+ f0 (hertz) (3)

The slope of fi(t) is equal to 2µ and its t = 0 intercept is f0. The frequency variation in (3) produced by the
time-varying angle function is called frequency modulation, so these signals are called FM signals. Finally,
since the linear variation of the frequency (3) can produce an audible sound similar to a siren or a bird chirp,
linear-FM signals are also called chirps.

If the signal starts at time t = t1 s with a frequency of f1 Hz, and ends at time t = t2 s with a frequency
of f2 Hz, then the slope of the line in (3) will be

SLOPE = 2µ =
f2 � f1
t2 � t1

(4)

Note that if the signal starts at time t = 0 s, then f1 = f0 is also the starting frequency. Otherwise, f0 =?

2.2 Review: MATLAB Synthesis of Chirp Signals

In MATLAB signals can only be synthesized by evaluating the signal’s defining formula at discrete instants
of time. These are called samples of the signal. For the chirp we use the following:

x(tn) = A cos(2⇡µt2n + 2⇡f0 tn + ')

where tn is the nth time sample. The following MATLAB code will synthesize a linear-FM chirp:

1 fSamp = 8000; %-- Number of time samples per second
2 dt = 1/fSamp;
3 tStart = 0;
4 tStop = 1.5;
5 tt = tStart:dt:tStop;
6 mu = 600;
7 fzero = 400;
8 phi = 2*pi*rand; %-- Random phase
9 %

10 %% psi = ????; ================== FILL IN THE CODE HERE
11 %
12 cc = real( 7.7*exp(j*psi) );
13 % soundsc( cc, fSamp ); %-- uncomment to hear the sound
14 plotspec( cc+j*1e-12, fSamp, 256 ), colorbar, grid on %-- with ...

negative frequencies

(a) Determine the total duration of this synthesized signal in seconds, and also the length of the tt vector.
Use MATLAB’s size command to check that the signal vector cc has the expected size.
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(b) Determine the range of frequencies (in hertz) that will be synthesized by the MATLAB script above,
i.e., determine the minimum and maximum frequencies (in Hz) that will be heard. This will require
that you relate the parameters µ, f0, and ' to the minimum and maximum frequencies. Examine the
MATLAB spectrogram to determine the instantaneous (cyclic) frequency fi(t) versus time. Zoom in
to verify the correct starting and ending frequencies.

(c) The spectrogram usually shows only the frequency components for f � 0, but with the “tiny imagi-
nary part” trick plotspec will show the negative frequency components. We will called this a two-
sided spectrogram. Since the chirp signal is real-valued, the spectrum must have conjugate symmetry,
so the magnitudes of the negative frequency components are a mirror image of those in the positive
frequency region.

(d) Use soundsc() to listen to the signal in order to determine whether the signal’s frequency content is
increasing or decreasing. Notice that soundsc() needs to know two things: the vector containing the
signal samples, and the rate at which the signal samples are to be played out. This rate should be the
same as the rate at which the signal values were created (fSamp in the code above).
For more information do help sound and help soundsc in MATLAB.

(e) The test case above generates a chirp sound whose frequency starts low and chirps up. Modify the
parameters so that the chirp starts at 3500 Hz and chirps down to 500 Hz.

2.3 More Spectrogram: Decibels and Section Length

The periodic full-wave rectified sine wave has a known Fourier series:

ak =
2

⇡(1� 4k2)
=

2

⇡(4k2 � 1)
ej⇡

Thus, in the spectrogram we should see all harmonic lines. Furthermore, there should be an infinite number
of harmonic frequency lines.

Where did all the harmonics go?

The answer is that the higher harmonics have amplitudes that are too small to be seen in a spectrogram that
displays values with a linear amplitude. Instead, a logarithmic amplitude scale is needed.

The common log scale used in engineering is decibels (dB), which is defined as 20 log10(A) where A
is amplitude. The built-in MATLAB spectrogram M-file uses a dB scale for amplitude when displaying its
spectrogram image. The decibel has two notable features:

1. Ratios become Differences: On a dB scale, a numbers are represented with logarithms, so the ratio
P/Q becomes

20 log10(P/Q) = 20 log10(P )� 20 log10(Q)

If A2 = (1/10)A1 then A2 is 20 dB lower than A1, because with logs, we get

20 log10(A2) = 20 log10((1/10)A1) = 20 log10(A1) + 20 log10(0.1) = 20 log10(A1)� 20 dB.

Since ratios become differences, dB is most often used to compare the relative size of values.

2. The dB range must be restricted because 20 log10(0) = �1. If we want to map the linear amplitude
range [0, 1] into dB, we must define a minimum dB level. Since 20 log10(1) = 0 dB is the maximum,
other dB values for [0, 1] will be negative. The minimum dB level will chop off the bottom of [0, 1]
and make it equal to [✏, 1] where ✏ is very small. For example, a dB range of 80 dB would define the
minimum to be �80 dB, so ✏ = 10�80/20 = 10�4 = 0.0001.
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• Express the numbers 0.1, 1, 2, 5, 10 and 100 in dB.

• Convert �6 dB, �60 dB, and �80 dB to numbers.

• In the language of dB, a factor of two is “6 dB.” In other words, if B2 is 6 dB bigger than B1, then it
is twice as big (approximately). Explain why this statement is true.

• Determine the dB difference between a1 and a3 for the full-wave rectified sine wave. In other words,
a3 is how many dB below a1.

• Explain why the dB difference depends only on the k indices.

• Determine (in dB) how far a15 is below a1 for the periodic full-wave rectified sine wave.

Another topic is displaying spectrogram of signals is section length which determines the time and fre-
quency resolution. Figure 1 shows a sinusoid analyzed with a constant section length, typically in power of 2
such as 32 or 512, overlapping 50% in time expressed in different colors and its corresponding spectrogram.
It is clear that at the signal transition regions the frequency content is not just a single spectral line.

SECTION 
LOCATIONS 

MIDDLE of SECTION 
is REFERENCE TIME 

Figure 1: An illustration of the edge effect in spectrogram display.

2.4 Beat Note Spectrograms and Frequency Resolution

Beat notes as as a sum of two sinusoids provide an interesting way to investigate the time-frequency char-
acteristics of spectrograms. Although some of the mathematical details require further study beyond this
course, it is not difficult to appreciate the following issue: there is a fundamental trade-off between knowing
which frequencies are present in a signal’s spectrum and knowing how those frequencies vary with time.
As discussed previously, a spectrogram estimates the frequency content over short sections of the signal;
this is the Section Length parameter.1 If we make the section length very short we can track rapid changes

1The section length is often called the window length; the two terms are used interchangeably in DSP.
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in the signal, usually changes in the frequency content. The tradeoff, however, is that shorter sections may
not provide enough data to do an accurate frequency measurement. On the other hand, long sections allow
the spectrogram to perform excellent frequency measurements, but fail to track sudden frequency changes.
For example, if a signal is the sum of two sinusoids whose frequencies are nearly the same, a very long
section length is needed to “resolve” the two sinusoidal components. This trade-off between the section
length (in time) and the frequency resolution is akin to Heisenburg’s Uncertainty Principle in physics. We
can summarize this discussion by stating the following hypothesis:

The frequency resolution of the spectrogram is inversely proportional to the Section Length. In
other words, when the true spectrum has two lines (at f1 and f2) these two lines will be visible
as distinct lines in the spectrogram if |f1�f2| ⇡ C/TSECT where C is a proportionality constant
and TSECT is the section duration in secs.

Note: When using plotspec(xx,fs,Lsect), the section length in samples is an input argument to the
spectrogram function. We can use the sampling rate to convert to duration, TSECT = LSECT/fs.

We will use beat note signals which consist of two closely spaced spectral lines to confirm this hypothe-
sis. A beat note signal may be viewed as a single frequency signal whose amplitude varies with time, or as
the sum of two sinusoidal signals with different constant frequencies. Both views can be used to explain the
effect of (window) section length when finding the spectrogram of a beat signal.

(a) Use the MATLAB code to create and plot a beat signal defined via:
b(t) = 10 cos(2⇡(f�)t+ '�) cos(2⇡(1024)t+ 'c),

with a duration of 5 s, and a sampling rate of fs = 8000 samples/sec. The frequency f� should be set
to 4 Hz, but will be varied in later parts. The phases can be random.

(b) When f� = 4 determine the locations of the two spectrum lines that you expect to see in the spectro-
gram. In other words, derive (mathematically) the spectrum of the signal defined in part (a).

(c) Make the spectrogram of b(t) using a (window) section length of LSECT = 256 using the commands2:
plotspec(xx,fSamp,256); colorbar, grid on, zoom on

Comment on what you see. Are there two spectral lines, i.e., (horizontal lines across the spectrogram)?
If necessary, use the zoom tool (in the MATLAB figure window), or zoom on, to examine the important
regions of the spectrogram.

(d) It should not be possible to see both spectrum lines with LSECT = 256. Recreate the spectrogram with
LSECT = 2048. You should now be able to discern two distinct frequencies (you may need to zoom
in to the spectral lines to distinguish them). Once you have two spectrum lines, record the value of
LSECT and determine whether the frequencies present in the spectrogram are correct.

2.5 Fourier Series

Another objective of this lab is to demonstrate usage of the fseriesdemo GUI. If you have installed the
SP-First Toolbox, you will already have this demo on the matlabpath.

In this MATLAB GUI, you can choose the signal from a few pre-determined signal types and change
the signal period. You can also decide the number of Fourier coefficients to compute and the corresponding
magnitude and phase will be displayed accordingly.

Figure 2 shows the interface for the fseriesdemo GUI.
2Use plotspec instead of specgram in order to get a linear amplitude scale rather than logarithmic.
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Figure 2: The fseriesdemo MATLAB GUI interface.

2.6 Triangle Wave and Its Fourier Series

The periodic triangular wave has a known Fourier Series. After consulting the text in Appendix C-2.2 on
Fourier Series, we can write:

ak =

8
><

>:

�2
⇡2k2 = 2

⇡2k2 e
j⇡ for k odd

1
2 for k = 0

0 for k even
(5)

• Evaluate the coefficients for k = 1, 3, 5 and 15. Then compute the ratios a3/a1, a5/a1 and a15/a1.

Comment: Here’s a general question: are the Fourier Series coefficients independent of time scaling ?

First of all, y(t) = x(bt) is scaling. For example, a plot of x(3t) will be squeezed along the horizontal axis
by a factor of b = 3.

What are the Fourier coefficients of y(t) = x(bt) in terms of the Fourier coefficients of x(t) ? If x(t)
has a period equal to T , then the period of y(t) is T/b because x(t) is squeezed by b. Thus, the fundamental
frequency of y(t) is 2⇡

(T/b) = b(2⇡T ), i.e., it is scaled by b.
Now we write the Fourier Series integral for y(t)

(1/(T/b))

T/2bZ

�T/2b

y(t)e�j((2⇡k)/(T/b))tdt = (b/T )

T/2bZ

�T/2b

x(bt)e�j(2⇡k/T )(bt)dt

Make a change of variables: � = bt, and with d� = b(dt), you get

b(1/T )

T/2Z

�T/2

x(�)e�j(2⇡k/T )�(1/b)d� = (1/T )

T/2Z

�T/2

x(�)e�j(2⇡k/T )�d� = ak

The scaling factor b cancels to give the RHS. So, time scaling doesn’t change the {ak} coefficients. The
Fourier Series coefficients of y(t) are exactly equal to the Fourier Series coefficients of x(t).
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Use the GUI to do the following exercises. The parameters of the input signal are its frequency f0 in Hz,
and its phase ' in rads. The amplitude is one. The sampling rate for both the A/D converter and the D/A
converter is fs in samples/sec.

2.7 Theory of Sampling

In this lab, the short-duration sinusoids and music signals will be created with the intention of playing them
out through a speaker. Therefore, it is necessary to take into account the fact that a conversion is needed from
the digital samples, which are numbers stored in the computer memory to the actual continuous waveform
that will be amplified and heard through the speakers (or headphones).

Chapter 4 treats sampling in detail, but this lab is usually done prior to lectures on sampling, so we pro-
vide a quick summary of essential facts here. The idealized process of sampling a signal and the subsequent
reconstruction of the signal from its samples is depicted in Fig. 3. This figure shows a continuous-time input
signal x(t), which is sampled by the continuous-to-discrete (C-to-D) converter to produce a sequence of
samples x[n] = x(nTs), where n is the integer sample index and Ts is the sampling period. The sampling

- - -C-to-D
Converter

D-to-C
Converter

x(t) x[n] = x(nTs) y(t)

Figure 3: Sampling and reconstruction of a continuous-time signal.

rate (in samples per second) is fs = 1/Ts. The discrete-to-continuous (D-to-C) converter creates a con-
tinuous output signal y(t) from the samples x[n]. As described in Chapter 4 of the text, the ideal D-to-C
converter takes the signal samples x(nTs) and interpolates a smooth curve through them. The Sampling
Theorem tells us that when the input signal x(t) is a sum of sine waves, the output y(t) will be equal to the
input x(t) if the sampling rate is more than twice the highest frequency (fmax) in the input, i.e., we need
fs > 2fmax. In other words, if we sample fast enough then there will be no problems resynthesizing the
continuous audio signal from x[n].

2.8 A-to-D and D-to-A Conversion

Most computers have a built-in hardware for the analog-to-digital (A-to-D) converter and the digital-to-
analog (D-to-A) converter (usually with a sound card or chip). These hardware systems are physical real-
izations of the idealized concepts of C-to-D and D-to-C converters, respectively, but for purposes of this lab
we will assume that the hardware A/D and D/A are perfect realizations.

The digital-to-analog conversion process has many engineering design issues, but in its simplest form
the only thing we need to worry about (in this lab) is that the time spacing (Ts) between the signal samples
must correspond to the rate of the D-to-A hardware that is being used. From MATLAB, the sound output
is done by the soundsc(xx,fs) function which does support a variable D-to-A sampling rate (fs) to
the extent that the hardware on the machine has such variable rate capability. A convenient choice for the
D-to-A conversion rate is 11025 samples per second,3 so Ts = 1/11025 seconds; another common choice
is 8000 samples/sec. Both of these rates satisfy the requirement of sampling fast enough as required by
the Sampling Theorem. In fact, most piano notes have relatively low frequencies, so sampling rates much
lower than 8000 samples/sec could be used. If you are using soundsc(), the vector xx will be rescaled
automatically so that its maximum value equals the maximum allowed by the D-to-A converter, but if you
are using sound.m, you must scale the vector xx so that it lies between ±1. Consult help sound.

3This sampling rate is one quarter of the 44,100-Hz rate used in audio CD players.
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3 In-Lab Exercise

For the lab exercise, you will synthesize some signals, and then study their frequency content by using the
spectrogram. The objective is to learn more about the connection between the time-domain definition of the
signal and its frequency-domain content.

For the instructor verification, you will have to demonstrate that you understand concepts in a given
subsection by answering questions from your lab instructor (or TA).

3.1 Spectrogram Window Length

Note: When using plotspec(xx,fs,Lsect), the section length in samples is an input argument to the
spectrogram function. We can use the sampling rate to convert to duration, TSECT = LSECT/fs.

We will use beat note signals which consist of two closely spaced spectral lines to confirm this hypothe-
sis. A beat note signal may be viewed as a single frequency signal whose amplitude varies with time, or as
the sum of two sinusoidal signals with different constant frequencies. Both views can be used to explain the
effect of (window) section length when finding the spectrogram of a beat signal.

(a) Use the MATLAB code that you used in the PreLab to create and plot a beat signal defined via:
b(t) = 10 cos(2⇡(f�)t+ '�) cos(2⇡(1300)t+ 'c),

with a duration of 5 s, and a sampling rate of fs = 8000 samples/sec. The frequency f� should be set
to 15 Hz. The phases can be random.

(b) When f� = 13 determine the locations of the two spectrum lines that you expect to see in the
spectrogram. In other words, derive (mathematically) the spectrum of the signal defined in part (a).

(c) Starting with LSECT = 256, create a spectrogram and determine if you can discern two spectrum lines.
If not, a longer section length is needed, so try doubling the section length. Try LSECT = 512, then
LSECT = 1024, and so on until you can discern two spectrum lines.4 Then reduce the value of LSECT

little by little to get the smallest LSECT that will work. Getting a value of LSECT to the nearest 500 is
sufficient.

Once you have two spectrum lines, record the value of LSECT and determine whether the frequencies
present in the spectrogram are correct. In addition, convert LSECT to the section duration in seconds, TSECT.

Instructor Verification (separate page)

3.2 Spectrogram for a Chirp with Aliases

Use the code provided in the pre-Lab section as a starting point in order to write a MATLAB script or function
that will synthesize a “chirp” signal. Then use that M-file in this section.

(a) What happens when we make a signal that “chirps” up to a very high frequency, and the instantaneous
frequency goes past half the sampling rate? Generate a chirp signal that starts at 900 Hz when t = 0 s,
and chirps up to 11, 400Hz, at t = 5 s. Use fs = 4000Hz. Determine the parameters needed in
Equation (2).

4Usually the window (section) length is chosen to be a power of two, because a special algorithm called the FFT is used in the
computation. The fastest FFT programs are those where the FFT length is a power of 2.
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(b) Generate the chirp signal in MATLAB and make a spectrogram with a short section length, LSECT, to
verify that you have the correct starting and ending frequencies.5 For your chosen LSECT, determine
the section duration TSECT in secs.

(c) Explain why the instantaneous frequency seen in the spectrogram is goes up and down between zero
and fs/2, i.e., it does not chirp up to 11,400 Hz. There are two effects that should be accounted for in
your explanation.
Note: If possible listen to the signal to verify that the spectrogram is faithfully representing the audio
signal that you hear.

Instructor Verification (separate page)

3.3 Spectrogram of Periodic Full-Wave Rectified Sinusoid

A periodic signal is known to have a Fourier Series, which is usually described as a harmonic line spectrum
because the only frequencies present in the spectrum are integer multiples of the fundamental frequency.
With the spectrogram, it is easy to exhibit this harmonic line characteristic. More detail about the materials
below can be found in Lectures 4 & 5, and the Fourier Series text in Section 3-5 and Appendix C.

(a) Write a simple MATLAB script that will generate a periodic full-wave rectified sine wave once the
period is given. The peak amplitude should be equal to 1. Here is a MATLAB one-liner that can form
the basis of this script:
tt=0:(1/fs):tStop;xx=Amp*abs(sin(2*pi*tt/T));

The values of fs, tStop, T, Amp will have to be determined.

(b) Generate a full-wave rectified sine wave with T=1 sec, using a sampling rate of fs = 1000Hz. The
duration should be 5 secs, and Amp = 1.

(c) Make a spectrogram with a long section duration.6 It is important to pick a section duration that is
equal to an integer number of periods of the periodic full-wave rectified sine waveform created in the
previous part. Define TSECT to get exactly 5 periods, and then determine the section length LSECT (an
integer) to be used in plotspec.

(d) You should expect to see a “harmonic line spectrum” in the spectrogram. Since frequency is along the
vertical axis, the harmonic lines will appear as horizontal lines in the spectrogram. Make a list of all
the harmonic frequencies that you can see in the spectrogram. Note the Fourier series coefficient can
be found as (see Section 3-5.2): ak = 2

⇡(1�4k2) =
2

⇡(4k2�1)e
j⇡.

(e) Determine the fundamental frequency for the harmonic lines. Note here the fundamental frequency
doubles the original frequency of the sine wave after the full-wave rectification operation.

(f) Measure the magnitudes of the first and third harmonic lines by using the fseriesdemo GUI first (see
Slide 21 of Lecture 07 for an illustration. Another example in in Figure 2 in the Pre-Lab part on
Page 6 of Lab 05 here) and then confirm your values with the Fourier Series coefficient formula:
ak = 2

⇡(1�4k2) =
2

⇡(4k2�1)e
j⇡.

Instructor Verification (separate page)

5There is no single correct answer for LSECT, but you should pick a value that makes a smooth plot and lets you easily see the
changing nature of the instantaneous frequency.

6A long section duration in the spectrogram yields what is called a narrowband spectrogram because it will provide excellent
resolution of the frequency components of a signal.
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3.4 Spectrogram in dB

A variation of the SP-First function plotspec has been written to incorporate the dB amplitude scale. This
new function is called plotspecDB, and its calling template is shown below:

1 function him = plotspecDB(xx,fsamp,Lsect,DBrange)
2 %PLOTSPECDB plot a Spectrogram as an image
3 % (display magnitude in decibels)
4 % usage: him = plotspec(xx,fsamp,Lsect,DBrange)
5 % him = handle to the image object
6 % xx = input signal
7 % fsamp = sampling rate
8 % Lsect = section length (integer, power of 2 is a good choice)
9 % amount of data to Fourier analyze at one time

10 % DBrange = defines the minimum dB value; max is always 0 dB

(a) Create a “dB-Spectrogram” for the 5-sec periodic full-wave rectified sine wave generated in Sect.
3.3. Use a dBrange equal to 80 dB. Notice that many more spectrum lines are now visible. List the
frequencies of all the harmonic spectrum lines, or give a general formula.

(b) Generate a second full-wave rectified sine wave by changing the period in 3.3 to T=2 sec. Then make
the dB-Spectrogram of this 5-sec full-wave rectified sine wave, being careful to select the section
duration as an integer number of periods. Try different values of TSECT with multiplier other than 5
times the new period. Identify one value of TSECT that gives the ”best” dB-spectrogram.
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