
Project 3: Synthesis of Sinusoidal Signals—Music Synthesis

You will write up a formal lab report in IEEE double-column format with figures integrated with
the text. The exercises should written up in this week’s lab report. You should label the axes of
your plots, have a caption, and Figure number for every plot. Every plot should be referenced by
Figure number in your text discussion.

This project will require the Professor listening to your audio in class either the class session (thurs-
day) before the project is due. The quality of this response will be part of your project grade.

Forgeries and plagiarism are a violation of the honor code and will be referred to the
Dean of Students for disciplinary action. You are allowed to discuss lab exercises
with other students and you are allowed to consult old lab reports but the submitted
work should be original and it should be your own work.

1 Introduction to Music Synthesis with Sinusoids

This lab includes a project on music synthesis with sinusoids. The piece Für Elise has been selected
for doing the synthesis program. The project requires a listening test to judge the correctness of
the synthesized song. The music synthesis will be done with sinusoidal waveforms of the form

x(t) =
∑
k

Ak cos(ωkt+ φk) (1)

so it will be necessary to establish the connection between musical notes, their frequencies, and
sinusoids.

2 Structure of sound waveforms

In this lab, the periodic waveforms and music signals will be created with the intention of playing
them out through a speaker. Therefore, it is necessary to take into account the fact that a conversion
is needed from the digital samples, which are numbers stored in the computer memory to the actual
voltage waveform that will be amplified for the speakers.

2.1 Theory of Sampling

Chapter 4 treats sampling in detail, but we provide a quick summary of essential facts here. The
idealized process of sampling a signal and the subsequent reconstruction of the signal from its
samples is depicted in Fig. 1. This figure shows a continuous-time input signal x(t), which is sampled
by the continuous-to-discrete (C-to-D) converter to produce a sequence of samples x[n] = x(nTs),
where n is the integer sample index and Ts is the sampling period. The sampling rate is fs = 1/Ts
where the units are samples per second. As described in Chapter 4 of the text, the ideal discrete-
to-continuous (D-to-C) converter takes the input samples and interpolates a smooth curve between
them. The Sampling Theorem tells us that if the input signal x(t) is a sum of sine waves, then

1

- - -C-to-D
Converter

D-to-C
Converter

x(t) x[n] = x(nTs) y(t)

Figure 1: Sampling and reconstruction of a continuous-time signal.

the output y(t) will be equal to the input x(t) if the sampling rate is more than twice the highest
frequency fmax in the input, i.e., fs > 2fmax. In other words, if we sample fast enough then there
will be no problems synthesizing the continuous audio signals from x[n].

2.2 D-to-A Conversion

Most computers have a built-in analog-to-digital (A-to-D) converter and a digital-to-analog (D-to-
A) converter (usually on the sound card). These hardware systems are physical realizations of the
idealized concepts of C-to-D and D-to-C converters respectively, but for purposes of this lab we
will assume that the hardware A/D and D/A are perfect realizations.

The digital-to-analog conversion process has a number of aspects, but in its simplest form the
only thing we need to worry about in this lab is that the time spacing (Ts) between the signal
samples must correspond to the rate of the D-to-A hardware that is being used. From Matlab,
the sound output is done by the soundsc(xx,fs) function which does support a variable D-to-A
sampling rate if the hardware on the machine has such capability. A convenient choice for the
D-to-A conversion rate is 11025 samples per second,1 so Ts = 1/11025 seconds; another common
choice is 8000 samples/sec. Both of these rates satisfy the requirement of sampling fast enough
as explained in the next section. In fact, most piano notes have relatively low frequencies, so an
even lower sampling rate could be used. If you are using soundsc(), the vector xx will be scaled
automatically for the D-to-A converter, but if you are using sound.m, you must scale the vector xx
so that it lies between ±1. Consult help sound or help soundsc.

• The ideal C-to-D converter is, in effect, being implemented whenever we take samples of
a continuous-time formula, e.g., x(t) at t = tn. We do this in Matlab by first making a
vector of times, and then evaluating the formula for the continuous-time signal at tn, i.e.,
x[n] = x(nTs) if tn = nTs.

To begin, create a vector x1 of samples of a sinusoidal signal with A1 = 100, ω1 = 2π(800),
and φ1 = −π/3. Use a sampling rate of 2756.25 samples/second (equal to 44100/16), and
compute a total number of samples (approximately) equivalent to a time duration of 0.5
seconds. You may find it helpful to recall that a Matlab statement such as tt=(0:0.01:3);
would create a vector of numbers from 0 through 3 with increments of 0.01. Therefore, it
is only necessary to determine the time increment needed to obtain 2756.25 samples in one
second. You should use the sum Cexp() function from a previous lab for this part (with
modification of the sampling rate).

Use soundsc() to play the resulting vector through the D-to-A converter of the your com-
puter, assuming that the hardware can support the fs = 2756.25 Hz rate. Listen to the
output.

• Now create another vector x2 of samples of a second sinusoidal signal (0.8 secs. in duration)
for the case A2 = 80, ω2 = 2π(1000), and φ2 = +π/4. Listen to the signal reconstructed from
these samples. How does its sound compare to the signal in part (2.2)?

• Concatenate the two signals x1 and x2 from the previous parts and put a short duration
of 0.1 seconds of silence in between. You should be able to concatenate by using a statement

1This sampling rate is one quarter of the rate (44,100 Hz) used in audio CD players.

2

something like:
xx = [x1, zeros(1,N), x2];

assuming that both x1 and x2 are row vectors. Determine the correct value of N to make 0.1
seconds of silence. Listen to this new signal to verify that it is correct.

• To verify that the concatenation operation was done correctly in the previous part, make the
following plot:

tt = (1/2756.25)*(1:length(xx)); plot(tt, xx);

This will plot a huge number of points, but it will show the “envelope” of the signal and verify
that the amplitude changes from 100 to zero and then to 80 at the correct times. Notice that
the time vector tt was created to have exactly the same length as the signal vector xx.

• Now send the vector xx to the D-to-A converter again, but change the sampling rate parameter
in soundsc(xx, fs) to 11025 samples/second. Do not recompute the samples in xx, just tell
the D-to-A converter that the sampling rate is 11025 samples/second. Describe how the
duration and pitch of the signal were affected. Explain.

2.3 Structures in Matlab

Matlab can do structures. Structures are convenient for grouping information together. For ex-
ample, run the following program which plots a sinusoid:

x.Amp = 7;

x.phase = -pi/2;

x.freq = 100;

x.fs = 2756.25; %--- fs = 44100/16

x.timeInterval = 0:(1/x.fs):0.05;

x.values = x.Amp*cos(2*pi*(x.freq)*(x.timeInterval) + x.phase);

x.name = ’My Signal’;

x %---- echo the contents of the structure "x"

plot(x.timeInterval, x.values)

title(x.name)

Notice that the members of the structure can contain different types of variables: scalars, vectors
or strings.

2.4 Debugging Skills

Testing and debugging code is a big part of any programming job, as you know if you’ve been staying
up late on the first few labs. Almost any modern programming environment provides a symbolic
debugger so that break-points can be set and variables examined in the middle of program execution.
Nonetheless, many programmers still insist on using the old-fashioned method of inserting print
statements in the middle of their code (or the Matlab equivalent, leaving off a few semi-colons).
This is akin to riding a tricycle to commute around Atlanta.

There are two ways to use debugging tools in Matlab: via buttons in the edit window or via the
command line. For help on the edit-window debugging features, access the menu Help->Using the

M-File Editor which will pop up a browser window at the help page for editing and debugging.
For a summary of the command-line debugging tools, try help debug. Here is part of what you’ll
see:

3

dbstop - Set breakpoint.

dbclear - Remove breakpoint.

dbcont - Resume execution.

dbstack - List who called whom.

dbstatus - List all breakpoints.

dbstep - Execute one or more lines.

dbtype - List M-file with line numbers.

dbquit - Quit debug mode.

When a breakpoint is hit, MATLAB goes into debug mode. On the PC

and Macintosh the debugger window becomes active and on UNIX and VMS

the prompt changes to a K>. Any MATLAB command is allowed at the

prompt. To resume M-file function execution, use DBCONT or DBSTEP.

To exit from the debugger use DBQUIT.

One of the most useful modes of the debugger causes the program to jump into “debug mode”
whenever an error occurs. This mode can be invoked by typing:

dbstop if error

With this mode active, you can snoop around inside a function and examine local variables that
probably caused the error. You can also choose this option from the debugging menu in the Matlab
editor. It’s sort of like an automatic call to 911 when you’ve gotten into an accident. Try help

dbstop for more information.
Download the file coscos.m and use the debugger to find the error(s) in the function. Call the

function with the test case: [xn,tn] = coscos(2,3,20,1). Use the debugger to:

• Set a breakpoint to stop execution when an error occurs and jump into “Keyboard” mode,

• display the contents of important vectors while stopped,

• determine the size of all vectors by using either the size() function or the whos command.

• and, lastly, modify variables while in the “Keyboard” mode of the debugger.

function [xx,tt] = coscos(f1, f2, fs, dur)

% COSCOS multiply two sinusoids

%

t1 = 0:(1/fs):dur;

t2 = 0:(1/f2):dur;

cos1 = cos(2*pi*f1*t1);

cos2 = cos(2*pi*f2*t2);

xx = cos1 .* cos2;

tt = t1;

2.5 Piano Keyboard

Section 4 of this lab will consist of synthesizing the notes of a well known piece of music.2 Since
these signals require sinusoidal tones to represent piano notes, a quick introduction to the layout
of the piano keyboard is needed. On a piano, the keyboard is divided into octaves—the notes in
one octave being twice the frequency of the notes in the next lower octave. The white keys in each
octave are named A through G. In order to define the frequencies of all the keys, one key must be

2If you have little or no experience reading music, don’t be intimidated. Only a little music knowledge is needed
to carry out this lab. On the other hand, the experience of working in an application area where you must quickly
acquire new knowledge is a valuable one. Many real-world engineering problems have this flavor, especially in signal
processing which has such a broad applicability in diverse areas such as geophysics, medicine, radar, speech, etc.

4

Middle-C A-440

C3 D3 E3 F3 G3 A3 B3 C4 D4 E4 F4 G4 A4 B4 C5 D5 E5 F5 G5 A5 B5
40 42 44 45 47 49 51 52 54 56 57 59 61 6339373533323028

41 43

 OCTAVE

Figure 2: Layout of a piano keyboard. Key numbers are shaded. The notation C4 means the C-key
in the fourth octave.

designated as the reference. Usually, the reference note is the A above middle-C, called A-440 (or
A4) because its frequency is 440 Hz. (In this lab, we are using the number 40 to represent middle C.
This is somewhat arbitrary; for instance, the Musical Instrument Digital Interface (MIDI) standard
represents middle C with the number 60). Each octave contains 12 notes (5 black keys and 7 white)
and the ratio between the frequencies of the notes is constant between successive notes. As a result,
this ratio must be 21/12. Since middle C is 9 keys below A-440, its frequency is approximately 261
Hz. Consult the text for even more details.

Musical notation shows which notes are to be played and their relative timing (half, quarter, or
eighth). Figure 3 shows how the keys on the piano correspond to notes drawn in musical notation.
The white keys are labeled as A, B, C, D, E, F , and G; but the black keys are denoted with
“sharps” or “flats.” A sharp such as A# is one key number larger than A; a flat is one key lower,
e.g., A[

4 (A-flat) is key number 48.

A4 = (A-440)

TREBLE

BASS

F-SHARP

HALF NOTE
QUARTER NOTE

EIGHTH NOTE

D5
A4

C4 (middle-C)
D4

E4
F#4

G4
42 44 46 47

49

39 37 35 34
30 28

32

40

51 52 54

C5

B3 A3 G3 F#3 E3 D3 C3 B2

27

B4

Figure 3: Musical notation is a time-frequency diagram where vertical position indicates which
note is to be played. Notice that the shape of the note defines it as a half, quarter or eighth note,
which in turn defines the duration of the sound.

Another interesting relationship is the ratio of fifths and fourths as used in a chord. Strictly
speaking the fifth note should be 1.5 times the frequency of the base note. For middle-C the fifth
is G, but the frequency of G is 391.99 Hz which is not exactly 1.5 times 261.63. It is very close,
but the slight detuning introduced by the ratio 21/12 gives a better sound to the piano overall.
This innovation in tuning is called “equally-tempered” or “well-tempered” and was introduced in
Germany in the 1760’s and made famous by J. S. Bach in the “Well Tempered Clavier.”

Thus, you can use the ratio 21/12 to calculate the frequency of notes anywhere on the piano
keyboard. For example, the E-flat above middle-C (black key number 43) is 6 keys below A-440,
so its frequency should be f43 = 440× 2−6/12 = 440

√
2 ≈ 311 Hertz.

5

3 Warm-up

3.1 Note Frequency Function

Now write an M-file to produce a desired note for a given duration. Your M-file should be in the
form of a function called note synth.m. Your function should have the following form:

function xx = note_synth(X, keynum, dur)

% NOTE_SYNTH Produce a sinusoidal waveform corresponding to a

% given piano key number

%

% usage: xx = note_synth (X, keynum, dur)

%

% xx = the output sinusoidal waveform

% X = complex amplitude for the sinusoid, X = A*exp(j*phi).

% keynum = the piano keyboard number of the desired note

% dur = the duration (in seconds) of the output note

%

fs = 2756.25; %--- fs = 44100/16 %-- or use 8000 Hz

tt = 0:(1/fs):dur;

freq = %<=============== fill in this line

xx = real(X*exp(j*2*pi*freq*tt));

For the freq = line, use the formulas given above to determine the frequency for a sinusoid in terms
of its key number. You should start from a reference note (middle-C or A-440 is recommended)
and solve for the frequency based on this reference. Notice that the xx = real() line generates
the actual sinusoid as the real part of a complex exponential at the proper frequency.

3.2 Synthesize an Arpeggio

In a previous section you completed the note synth.m function which synthesizes the correct
sinusoidal signal for a particular key number. Now, use that function to finish the incomplete M-
file in Fig. 4 that will play successive notes in a chord (called an arpeggio). For the tone = line,
generate the actual sinusoid for keynum by making a call to the function note synth() written
previously. It is important to point out that the code in my arpeggio.m allocates a vector of zeros
large enough to hold the entire arpeggio, and then inserts each note into its proper place in the
vector xx.

3.2.1 Spectrogram of the Arpeggio

In this part, you must display the spectrogram of the arpeggio synthesized in the previous section.
Remember that the spectrogram displays an image that shows the changing frequency content of
a time signal. The horizontal axis in the spectrogram is time and its vertical axis is frequency.3

3The vertical axis is in Hz if the sampling rate has been given correctly as one of the arguments to the spectrogram
M-file.

6

%--- my_arpeggio.m

%---

arpeggio.keys = [45 49 52 57 52 49 45];

%------ NOTES: F A C F C A F

% key #49 is A-440

%

arpeggio.durs = 0.33 * ones(1,length(arpeggio.keys));

fs = 2756.25; %--- fs = 44100/16 %-- or 8000 Hz

xx = zeros(1,ceil(sum(arpeggio.durs)*fs)+length(arpeggio.keys));

n1 = 1;

for kk = 1:length(arpeggio.keys)

keynum = arpeggio.keys(kk);

tone = %<============= FILL IN THIS LINE

n2 = n1 + length(tone) - 1;

xx(n1:n2) = xx(n1:n2) + tone; %<=== Insert the note

n1 = n2 + 1;

end

soundsc(xx, fs)

Figure 4: Prototype code for arpeggio synthesis function.

4 Lab: Synthesis of Musical Notes

The audible range of musical notes consists of well-defined frequencies assigned to each note in
a musical score. Before starting the project, make sure that you have a working knowledge of
the relationship between a musical score, key number and frequency. In the process of actually
synthesizing the music, follow these steps:

• Use a sampling frequency of fs = 2756.25 Hz to play out the sound through the D-to-A system
of the computer. The sampling Theorem tells us that this rate is sufficient to represent music
signals with frequency less than 1378 Hz. Recall that Ts = 1/fs is the time between samples
of the sinusoids.

• Determine the total time duration needed for each note, and also determine the frequency (in
hertz) for each note (see Fig. 2 and the discussion of the well-tempered scale in the warm-up.)
A data file called furElise.mat will be provided with this information stored in Matlab
structures; this contains the portion of the piece needed for this lab. A second file called
furElise short.mat has the same information for the first few measures of the piece; you
may find this useful for initial debugging. Both of these files are contained in a ZIP archive
called furElise.zip which is linked from the lab page.

• Synthesize the waveform as a combination of concatenated sinusoids, and play it out through
the computer’s built-in speaker or headphones using soundsc().

• Include a spectrogram image of a portion of your synthesized music—probably about 1 or 2
secs—so that you can illustrate the fact that you have all the different notes. The window
length length might have to be adjusted, but start with an initial value of 512 for the window
length in specgram().

In addition, the spectrogram M-files will scale the frequency axis to run from zero to half the
sampling frequency, so it might be useful to “zoom in” on the region where the notes are.
Consult help zoom, or use the zoom tool in Matlab figure windows.

7

4.1 Für Elise

Für Elise is one of those pieces of classical music that everyone has heard. The first few measures
are shown in Fig. 5, and all the measures that you must synthesize can be found on the class
website. You must synthesize the entire portion of the Für Elise given in furElise.mat by using

&
?

83

83
π
œ œ#

‰

œ œ# œ œ œn œ

∑

jœ ≈ œ œ œ

œ œ œ ≈ ‰
Jœ ≈ œ œ# œ

œ œ œ# ≈ ‰
Jœ ≈ œ œ œ#

œ œ œ ≈ ‰

Fur Elise
L. van Beethoven

Figure 5: First few measures of the piece Für Elise.

sinusoids.4

4.2 Data File for Notes

Fortunately, a data file called furElise.mat has been provided with a transcription of the notes
and information related to their durations. The data files furElise.mat and furElise short.mat

are contained in a ZIP archive called furElise.zip which is linked from the lab page. The format
of a MAT file is not text; instead, it contains binary information that must be loaded into Matlab.
This is done with the load command, e.g.,

load furElise.mat

After the load command is executed two new variables will be present in the workspace, called
Treble and Bass. Use whos at the command prompt to see that you have these new variables.

The variables Treble and Bass are structures whose fields are vectors. Each structure gives
information about a single melody in the song; in music, such melodies are often called “voices.” For
example, Treble contains information about the treble notes (the notes with higher key numbers),
while Bass contains information about the bass notes (the notes with lower key numbers). Some
melodies contain only a few notes; they only add harmony at a few locations in the the song, but
are otherwise silent. The maximum number of notes that will ever be played simultaneously during
the song is two.

Each structure has four fields: keyNum, keyDur, measureNum, and measurePct. As an example,
the Bass structure looks like

Bass.keyNum = [# # # # ...] % Key Number for Note

% -1 denotes a rest

Bass.keyDur = [# # # # ...] % Note Duration

Bass.measureNum = [# # # # ...] % Measure Number

Bass.measurePct = [# # # # ...] % Offset within a Measure

The value of Bass.keyNum(j) is a single note’s key number. The note’s duration is given
in terms of musical notation: a quarter note is denoted as 0.25, an eighth note as 0.125, etc.
This duration is not in seconds. The actual time duration of the notes in seconds will have to

4Use sinusoids sampled at 2756.25 samples/sec.

8

be determined once the tempo of the song is defined, e.g., your code should be written with a
parameter that defines the time duration of a quarter note.

Measures and beats are the basic time intervals in a musical score. A measure is denoted in
the score by a vertical line that cuts from the top to the bottom of one line in the score. For
example, in Fig. 5 there are three such vertical lines dividing that part of the musical score into
four measures. Each measure contains a fixed number of beats which, in this case, equals three.
The label “3/8” at the left of Fig. 5 describes this relationship and is called the time signature of
the song. By convention, “3/8” denotes “3/8 time,” in which there are three beats per measure
and a single beat is the length of one eighth note.

The data file specifies the location of each note by giving the the measure number (as an integer
starting at 1) and the offset within the measure(as a percentage). For example, these are the fields
for the bass:

Bass.measureNum and Bass.measurePct.
For example, typing Treble.keyNum(12) at the Matlab command prompt returns the number

49, which describes the A-440 in the third measure. The note is a sixteenth note, so Treble.keyDur(12)
equals 0.0625. The location of this A-440 as the last note in the third measure means Treble.measureNum(12)
is 3, and Treble.measurePct(9) is 83.33333%, because its offset from the beginning is 5 out 6
possible sixteenth notes in the measure.

4.3 Timing

Musicians often think of the tempo, or speed of a song, in terms of “beats per minute” or BPM.
You should write the code so that the BPM is a global parameter that can be changed easily. For
example, you might let the BPM be defined with the statement:

bpm = 200;

If the tempo is defined only once, then it could be changed: for example, setting bpm = 100

would make the whole piece play slower so it would take twice as long.
Computer programs that let musicians record, modify, and play back notes played on a keyboard

or other electronic instrument are called “sequencers.”5 The timing resolution of a sequencer is
usually measured in “pulses per quarter note,” or PPQ. A real commercial sequencer would have a
very high PPQ to encapsulate the subtle timing nuances of a real human playing a real instrument.
The starting times of notes in the music file provided to you are not specified because the keys are
just played in succession. Thus you have rather poor “timing resolution” because the notes have
fixed durations.

Another timing issue is related to the fact that when a musical instrument is played, there will
be gaps between successive notes. Therefore, inserting very short pauses between individual notes
is necessary to replicate the correct musical sound because it imitates the natural transition that a
musician must make from one note to the next.

5Popular commercial sequencers include Mark of the Unicorn’s Digital Performer, Emagic’s Logic Audio, Stein-
berg’s Cubase and Opcode’s Studio Vision.

9

