
GEORGIA INSTITUTE OF TECHNOLOGY
SCHOOL of ELECTRICAL and COMPUTER ENGINEERING

ECE 2026 Summer 2022
Lab #5: Sampling: A/D and D/A & Aliasing

Date: June 30, 2022

Pre-Lab: You should read the Pre-Lab section of the lab and do all the exercises in the Pre-Lab section
before your assigned lab time.

Verification: The Exercise section of each lab must be completed before your assigned Lab time and the
steps marked Instructor Verification must be demonstrated during the lab time. One of the laboratory in-
structors must verify the appropriate steps by signing on each step of the Instructor Verification worksheet.
Demonstrate each step to the TA or instructor.

Forgeries and plagiarism are a violation of the honor code and will be referred to the Dean of Students
for disciplinary action. You are allowed to discuss lab exercises with other students, but you cannot give
or receive any written material or electronic files. In addition, you are not allowed to use or copy material
from old lab reports from previous semesters. Your submitted work must be your own original work.

1 Overview

Please read through the information below prior to attending your lab. The objective of this lab is to introduce
more complicated signals that are related to the basic sinusoid. These signals which implement frequency
modulation (FM) and amplitude modulation (AM) are widely used in communication systems such as radio
and television. In addition, they can be used to create interesting sounds that mimic musical instruments.
The resulting signal can be analyzed to show its time-frequency behavior by using the spectrogram.

One objective in this lab is to study sampling and aliasing with simple signals: sinusoids and chirps. We
will use a MATLAB GUI for sampling and aliasing, called con2dis, which tracks an input sinusoid and its
spectrum through A/D and D/A converters. This demo is part of the SP-First Toolbox. Another objective in
this lab is to introduce digital images as a second useful signal type. We will show how the A-to-D sampling
and the D-to-A reconstruction processes are carried out for digital images.

1.1 Digital Images

In this lab we introduce digital images as a signal type for studying the effect of sampling, aliasing and
reconstruction. An image can be represented as a function x(t1, t2) of two continuous variables representing
the horizontal (t2) and vertical (t1) coordinates of a point in space.1 For monochrome images, the signal
x(t1, t2) would be a scalar function of the two spatial variables, but for color images the function x(·, ·)
would have to be a vector-valued function of the two variables. For example, an RGB color system needs
three values at each spatial location: one for red, one for green and one for blue. Video or TV which consists
of a sequence of images to show motion would add a time variable to the two spatial variables.

Monochrome images are displayed using black and white and shades of gray, so they are called gray-

scale images. In this lab we will consider only sampled gray-scale still images. which can be represented as
a two-dimensional array of numbers of the form

x[m,n] = x(mT1, nT2) 1 m M, and 1 n N

1The variables t1 and t2 do not denote time, they represent spatial dimensions. Thus, their units would be inches or some other
unit of length.

1

Jennifer Hasler

Jennifer Hasler

where T1 and T2 are the sample spacings in the horizontal and vertical directions. Typical values of M and
N are 256 or 512; e.g., a 512 ⇥ 512 image which has nearly the same resolution as a standard TV image
frame. In MATLAB we can represent an image as a matrix, so it would consist of M rows and N columns.
The matrix entry at (m,n) is the sample value x[m,n]—called a pixel (short for picture element).

An important property of light images such as photographs and TV pictures is that their values are
always non-negative and are also finite in magnitude; i.e.,

0 x[m,n] Xmax

This is because light images are formed by measuring the intensity of reflected or emitted light, and intensity
must always be a positive finite quantity. When stored in a computer or displayed on a monitor, the values
of x[m,n] have to be scaled relative to a maximum value Xmax. Usually an eight-bit integer representation
is used. With 8-bit integers, the maximum value (in the computer) would be Xmax = 28 � 1 = 255, and
there would be 28 = 256 gray levels for the display, from 0 to 255.

1.2 Displaying Images

As you will discover, the correct display of an image on a computer monitor can be tricky, especially if the
processing performed on the image generates negative values. We have provided the function show img.m

in the SP-First toolbox to handle most of these problems,2 but it will be helpful if the following points are

nkht
CD-ROM

show img.mnoted:

1. All image values must be non-negative for the purposes of display. Filtering may introduce negative
values, especially when a first-difference is used (e.g., a high-pass filter).

2. The default format for most gray-scale displays is eight bits, so the pixel values x[m,n] in the image
must be converted to integers in the range 0 x[m,n] 255 = 28 � 1.

3. The actual display on the monitor created with the show img function3 will handle the color map and
the “true” size of the image. The appearance of the image can be altered by running the pixel values
through a “color map.” In our case, we want a “grayscale display” where all three primary colors (red,
green and blue, or RGB) are used equally, creating what is called a “gray map.” In MATLAB the gray
color map is set up via

colormap(gray(256))

which gives a 256 ⇥ 3 matrix where all 3 columns are equal. The function colormap(gray(256))

creates a linear mapping, so that each input pixel amplitude is rendered with a screen intensity pro-
portional to its value (assuming the monitor is calibrated). For our lab experiments, non-linear color
mappings would introduce an extra level of complication, which we will avoid.

4. When the image values lie outside the range [0,255], or when the image is scaled so that it only
occupies a small portion of the range [0,255], the display may have poor quality. In this lab, we use
show img.m to automatically rescale the image to use the full range of pixel value: We can do this
by applying a linear mapping of the pixel values:4

xs[m,n] = µx[m,n] + �

2If you have the MATLAB Image Processing Toolbox, then the function imshow.m can be used instead.
3If the MATLAB function imagesc.m is used to display the image, two features will be missing: (1) the color map may be

incorrect because it will not default to gray, and (2) the size of the image will not be a true pixel-for-pixel rendition of the image on
the computer screen.

4The MATLAB function show img has an option to perform this scaling while making the image display.

2

The scaling constants µ and � can be derived from the min and max values of the image, so that all
pixel values are recomputed via:

xs[m,n] =

�
255.999

✓
x[m,n]� xmin

xmax � xmin

◆⌫

where bxc is the floor function, i.e., the greatest integer less than or equal to x.

Below is the help on show img; notice that unless the input parameter figno is specified, a new figure
window will be opened each time show img is called.

1 function [ph] = show img(img, figno, scaled, map)
2 %SHOW IMG display an image with possible scaling
3 % usage: ph = show img(img, figno, scaled, map)
4 % img = input image
5 % figno = figure number to use for the plot
6 % if 0, re-use the same figure
7 % if omitted a new figure will be opened
8 % optional args:
9 % scaled = 1 (TRUE) to do auto-scale (DEFAULT)

10 % not equal to 1 (FALSE) to inhibit scaling
11 % map = user-specified color map
12 % ph = figure handle returned to caller
13 %----

1.3 Review: Theory of Sampling, A-to-D and D-to-A Conversion

In this lab, the short-duration sinusoids and music signals will be created with the intention of playing them
out through a speaker. Therefore, it is necessary to take into account the fact that a conversion is needed from
the digital samples, which are numbers stored in the computer memory to the actual continuous waveform
that will be amplified and heard through the speakers (or headphones).

Chapter 4 treats sampling in detail, but this lab is usually done prior to lectures on sampling, so we pro-
vide a quick summary of essential facts here. The idealized process of sampling a signal and the subsequent
reconstruction of the signal from its samples is depicted in Fig. 1. This figure shows a continuous-time input
signal x(t), which is sampled by the continuous-to-discrete (C-to-D) converter to produce a sequence of
samples x[n] = x(nTs), where n is the integer sample index and Ts is the sampling period. The sampling

- - -C-to-D
Converter

D-to-C
Converter

x(t) x[n] = x(nTs) y(t)

Figure 1: Sampling and reconstruction of a continuous-time signal.

rate (in samples per second) is fs = 1/Ts. The discrete-to-continuous (D-to-C) converter creates a con-
tinuous output signal y(t) from the samples x[n]. As described in Chapter 4 of the text, the ideal D-to-C
converter takes the signal samples x(nTs) and interpolates a smooth curve through them. The Sampling

Theorem tells us that when the input signal x(t) is a sum of sine waves, the output y(t) will be equal to the
input x(t) if the sampling rate is more than twice the highest frequency (fmax) in the input, i.e., we need
fs > 2fmax. In other words, if we sample fast enough then there will be no problems resynthesizing the
continuous audio signal from x[n].

3

Jennifer Hasler

Most computers have a built-in hardware for the analog-to-digital (A-to-D) converter and the digital-
to-analog (D-to-A) converter (usually with a sound card or chip). These hardware systems are physical
realizations of the idealized concepts of C-to-D and D-to-C converters, respectively, but for purposes of this
lab we will assume that the hardware A/D and D/A are perfect realizations.

The digital-to-analog conversion process has many engineering design issues, but in its simplest form
the only thing we need to worry about (in this lab) is that the time spacing (Ts) between the signal samples
must correspond to the rate of the D-to-A hardware that is being used. From MATLAB, the sound output
is done by the soundsc(xx,fs) function which does support a variable D-to-A sampling rate (fs) to
the extent that the hardware on the machine has such variable rate capability. A convenient choice for the
D-to-A conversion rate is 11025 samples per second,5 so Ts = 1/11025 seconds; another common choice
is 8000 samples/sec. Both of these rates satisfy the requirement of sampling fast enough as required by
the Sampling Theorem. In fact, most piano notes have relatively low frequencies, so sampling rates much
lower thatn 8000 samples/sec could be used. If you are using soundsc(), the vector xx will be rescaled

automatically so that its maximum value equals the maximum allowed by the D-to-A converter, but if you
are using sound.m, you must scale the vector xx so that it lies between ±1. Consult help sound.

2 Pre-Lab

2.1 Sampling and Aliasing GUI

The first objective of this lab is to demonstrate usage of the con2dis GUI. If you have installed the SP-First

Toolbox, you will already have this demo on the matlabpath.
In this MATLAB GUI, you can change the frequency of an input signal that is a sinusoid, and you can

change the sampling frequency. Then the GUI will show the sampled signal, x[n], its spectrum, and also the
reconstructed output signal, y(t) with its spectrum. Figure 2 shows the interface for the con2dis GUI. The
top row shows plots in the time domain; the bottom row has the corresponding spectrum.

Figure 2: The con2dis MATLAB GUI interface. Input frequency is ! = 40⇡ rad/s. With a sampling rate
of fs = 24Hz, there is aliasing, so the output is not equal to the input. The spectrum of the discrete-time
signal x[n] has spectrum lines at !̂ = ⌥⇡/3, which are aliases of !̂ = ±40⇡/24 = ±5⇡/3.

5This sampling rate is one quarter of the 44,100-Hz rate used in audio CD players.

4

Jennifer Hasler

Jennifer Hasler

In the pre-Lab, you should perform the following steps with the con2dis GUI:

(a) Set the input to x(t) = cos(40⇡t+ 0.5⇡), as in Fig. 2. Determine the Nyquist rate for sampling x(t).

(b) Set the sampling rate to fs = 24 samples/sec. Notice that this rate is too low to satisfy the Nyquist
condition. Thus the output signal is not equal to the input, see Fig. 2.

(c) Determine the locations of the spectrum lines for the discrete-time signal, x[n], found in the middle
panels. Make sure that the Radian button is active so that the frequency axis for the discrete-time
signal is !̂.

(d) Determine the complex amplitudes for the spectral lines found in the yellow region of the bottom-
middle panel. Notice that a ⇤ on top of a spectral line indicates a line that was originally a negative
frequency component in the input signal.

(e) Use the relationship fout = !̂fs to determine the formula for the output signal, y(t). Apply the
formula to the spectrum in the bottom-right panel in order to write the correct cosine formula for the
time-domain signal shown in the top-right panel. What is the output frequency in Hz?

2.1.1 Relationships between the Frequency Domains: ! and !̂

As you work through the following exercises, keep track of your observations by filling in the worksheet at
the end of this assignment. Here are some issues to keep in mind:

• Is the question asking about a continuous-time signal x(t), or a discrete-time signal, x[n]?

• Is the question about the time domain (top row of plots), or the frequency domain (bottom row)?

• The frequency axis (!) for the spectrum of a continuous-time signal is different from the frequency
axis (!̂) of a discrete-time signal. The range of frequencies is also different: the important region of
the !̂-axis for the spectrum of a discrete-time signal always goes from !̂ = �⇡ to !̂ = ⇡.

• The spectrum of a discrete-time sinusoidal signal will have many spectral lines separated by 2⇡.

Note: read Sections 4-1 and 4-2 in Chapter 4 for more information about the spectra of discrete-time signals,
and for information about aliasing.

2.2 Aliasing the FM Signal

The Sampling Theorem tells us that the sampling rate fs must be greater than twice the maximum frequency
in the signal being sampled. An FM signal with a sinusoidal instantaneous frequency can be found as
follows:

x(t) = A cos(2⇡fct+ ↵ cos(2⇡�t+ �)) (1)

where fc centers the frequency plot, and ↵, � and � control the frequency modulation.
Change the FM parameters to be fc = 3300Hz, ↵ = 1200Hz, � = 1.5 , � = �0.5⇡ rads, and amplitude

A = 1. Make the signal duration equal to 3.04 secs, starting at t = 0. Use fs = 8000Hz, make a
spectrogram. In this case, there will be aliasing because the conditions of the Sampling Theorem are not
obeyed: the maximum instantaneous frequency is 5100 Hz, and fs = 8000 < 2fmax. Explain how the
aliasing shows up in the spectrogram. In particular, observe the highest frequency shown in the spectrogram,
and explain why it is equal to 1

2fs.

5

Jennifer Hasler

Jennifer Hasler

2.3 MATLAB Function to Display Images

You can load the images needed for this lab from *.mat files, or from *.png files. Image files with the
extension *.png, as well as other common formats like JPEG, can be read into MATLAB with the imread
function. Any file with the extension *.mat is in MATLAB’s binary format and must be loaded via the load
command. After loading, use the command whos to determine the name of the variable that holds the image
and its size.

Although MATLAB has several functions for displaying images on the CRT of the computer, we have
written a special function show img() for this lab. It is the visual equivalent of soundsc(), which we used
when listening to speech and tones; i.e., show img() is the “D-to-C” converter for images. This function
handles the scaling of the image values and allows you to open up multiple image display windows.

2.4 Get Test Images

In order to probe your understanding of image display, do the following simple displays:

(a) Load and display the 428⇥642 “lighthouse” image6 from lighthouse.png. The MATLAB command
ww = imread(’lighthouse.png’) will put the sampled image into the array ww, Use whos to
check the size and type of ww after loading. Notice that the array type for ww is uint8, so it would
be necessary to convert ww to double precision floating-point with the MATLAB command double if
calculations such as filtering are going to be done on ww. When you display the image it might be
necessary to set the colormap via colormap(gray(256)).

(b) Use the colon operator to extract the 440th row of the “lighthouse” image, and make a plot of that row
as a 1-D discrete-time signal.

ww440 = ww(440,:);

Observe that the range of signal values is between 0 and 255. Which values represent white and which
ones black? Can you identify the region where the 440th row crosses the fence? Can you match up a
black region between the image and the 1-D plot of the 440th row?

2.5 Sampling of Images

Images that are stored in digital form on a computer have to be sampled images because they are stored in
an M ⇥N array (i.e., a matrix). The sampling rate in the two spatial dimensions was chosen at the time the
image was digitized (in units of samples per inch if the original was a photograph). For example, the image
might have been “sampled” by a scanner where the resolution was chosen to be 300 dpi (dots per inch).7 If
we want a different sampling rate, we can simulate a lower sampling rate by simply throwing away samples
in a periodic way. For example, if every other sample is removed, the sampling rate will be halved—in
our example, the 300 dpi image would become a 150 dpi image. Usually this is called sub-sampling or
down-sampling.8 One potential problem with down-sampling is that aliasing might occur because fs is
being changed—it’s getting smaller by a factor of p. This can be illustrated in a dramatic fashion with the
lighthouse image to be demonstrated later.

6The image size of 428 ⇥ 642 is the horizontal by vertical dimensions. When stored in a MATLAB matrix the size command
will give the matrix dimensions, i.e., number of rows by number of columns, which is [642 428] for the lighthouse image.

7For this example, the sampling periods would be T1 = T2 = 1/300 inches.
8The Sampling Theorem applies to digital images, so there is a Nyquist Rate that depends on the maximum spatial frequency in

the image.

6

Jennifer Hasler

Jennifer Hasler

Jennifer Hasler

Down-sampling throws away samples, so it will shrink the size of the im-
age. This is what is done by the following scheme:

wp = ww(1:p:end,1:p:end);

when we are downsampling by a factor of p.

2.6 Printing Multiple Images on One Page

Note : This section is for demonstration purposes only and you DO NOT need to print anything for the lab.
The phrase “what you see is what you get” can be elusive when displaying and printing images. It is very

tricky to print images so that the hard copy matches exactly what is on the screen, because there is usually
some interpolation being done by the printer or by the program that is handling the images. One way to
think about this in signal processing terms is to think of the screen as one kind of D-to-A and the printer as
another kind; each one uses a different D-to-A reconstruction method to get the continuous-domain (analog)
output image that you see.

Another problem occurs when you try to put two images of different sizes into subplots of the same
MATLAB figure. It doesn’t work because MATLAB wants to force them to be the same size. Therefore, you
should display these different size images in separate MATLAB figure windows. In order to get a printout
with multiple images on one page, use the following procedure:

1. In MATLAB, use show img and trusize to put your images into separate figure windows at the
correct pixel resolution.

2. Use a Windows program such as PAINT to assemble the different images onto one page. This program
can be found under Accessories.

3. For each MATLAB figure window, do ALT-PRINT-SCREEN which will copy the active window con-
tents to the clipboard.

4. After each “window capture” in step 3, paste the clipboard contents into PAINT.9

5. Arrange the images so that you can make a comparison for your lab report.

6. Print the assembled images from PAINT to a printer.

3 In-Lab Exercise

For the lab exercise, you will synthesize some signals, and then study their frequency content by using the
spectrogram. The objective is to learn more about the connection between the time-domain definition of the
signal and its frequency-domain content.

For the instructor verification, you will have to demonstrate that you understand concepts in a given
subsection by answering questions from your lab instructor (or TA).

9An alternative is to use the free program called IRFANVIEW, which can do image editing and also has screen capture capability.
It can be obtained from www.irfanview.com. Other alternatives are Photoshop, or “The GIMP” at www.gimp.org/windows.

7

Jennifer Hasler

Jennifer Hasler

Jennifer Hasler

Jennifer Hasler

3.1 Sampling and Aliasing

Use the con2dis GUI to do the following exercises. The parameters of the input signal are its frequency f0
in Hz, and its phase ' in rads. The amplitude is one. The sampling rate for both the A/D converter and the
D/A converter is fs in samples/sec.

In all cases, provide a brief explanation of your answer. “Trial and error” is a poor justification, so try to
write something better than that.

(a) Set the input frequency to f0 = 15Hz. Determine the Nyquist Rate, i.e., the lower bound for the
sampling rate fs so that no aliasing occurs. The units of fs are samples per second. Justify your
answer.

(b) Set the input frequency to f0 = 15Hz and the input phase to ' = +⇡/4. Determine the locations of
the spectral lines in the spectrum of the discrete-time signal when the sampling rate is fs = 20Hz.
Do this for both spectral lines in the interval [�⇡,⇡]. Explain how you calculated the two values for
!̂.

(c) For the same parameters as the previous part, determine the complex amplitude for the spectral line
that lies between 0 and ⇡. Give the complex amplitude in polar form.

(d) Set the input frequency to f0 = 12Hz and the input phase to ' = +⇡/4. You can see many spectral
lines in the spectrum of the discrete-time signal when the sampling rate is fs = 20Hz. Find the
locations of the two spectral lines in the interval [�⇡,⇡]. Explain how you calculated these two
values for !̂.

(e) For the same parameters as the previous part, determine the complex amplitude for the spectral line
that lies between 0 and ⇡. Give that complex amplitude in polar form.

(f) Set the sampling rate to fs = 20Hz, and assume that the output signal has a frequency of 2 Hz,
and a phase of �3⇡/4. Determine three different values of the input frequency that will give this
output signal. In addition, determine the corresponding value of the input phase ' for each frequency.
EXPLAIN.

(g) Set the input frequency to f0 = 15Hz and the input phase is ' = +⇡/4. Determine the sampling
rate fs so that the output signal has a frequency of 4 Hz, and a phase of �⇡/4.

Instructor Verification (separate page)

3.2 Aliasing a Sinusoidal-FM Signal

Frequency modulated signals make good test cases for showing aliasing. Sketch the results of the following
on the verification sheet, and also provide an explanation that compares with the theory. An FM signal with
a sinusoidal instantaneous frequency can be found as follows:

x(t) = A cos(2⇡fct+ ↵ cos(2⇡�t+ �)) (2)

where fc centers the frequency plot, and ↵, � and � control the frequency modulation.

(a) Create a sinusoidal-FM chirp using Eq. (2) with the parameters chosen to be A = 2, fc = 800Hz,
↵ = 1000Hz, � = 1.5 and � = 0. Set the sampling rate to fs = 4000Hz, and the signal duration to
be 2 s starting at t = 0 s. Make a spectrogram that shows both positive and negative frequencies, i.e.,

8

Jennifer Hasler

Jennifer Hasler

Jennifer Hasler

use plotspec and add a tiny imaginary value to the real FM signal. Use a relatively short window
length.
Explain where the plot exhibits the correct value of the instantaneous frequency known from Eq. (2),
and also use aliasing to explain the positive frequency values observed at t = 0, 0.5, 1.0, and 1.5 s..

Instructor Verification (separate page)

3.3 Synthesizing a Test Image

In order to probe your understanding of the relationship between MATLAB matrices and image display, you
can generate a synthetic image from a mathematical formula. Then you can use the theory of sampling and
aliasing to explain how downsampling the cosine formula will provide surprising results.

(a) Generate a simple test image in which all of the columns are identical by using the following outer

product of vectors:
xpix = ones(256,1)*cos(2*pi*(0:255)/32);

Display the image and explain the gray-scale pattern that you see. Count the number of black stripes
across the image. Explain how you can predict that number from the period of the formula for xpix?

(b) In the previous part, which data value in xpix is represented by white? which one by black? Keep in
mind that the cosine has values between ±1.

Instructor Verification (separate page)

(c) Optional: Explain how you would produce an image with bands that are horizontal. Give the formula
that would create a 400⇥400 image with five horizontal black bands separated by white bands. Write
the MATLAB code to make this image and display it.

3.4 Aliasing in a Test Image

The banding structure in the test images is controlled by the frequency of the cosine. In other words, we can
rewrite the formula for the test image (above) as

wd = 2*pi*1/32; xpix = ones(256,1)*cos(wd*(0:255));

(a) Generate two test images with different frequencies, one with wd = 2*pi*4/32 and the other with
wd = 2*pi*12/32. Call these images xpix4 and xpix12. Display the images, and explain why the
image made from the higher frequency cosine has a shorter horizontal period.

(b) Now we apply downsampling by two, i.e., xpix4(1:2:end,1:2:end) and xpix12(1:2:end,1:2:end),
to both images from the previous part. Use subplot(2,2,n) to make a four-panel display; put xpix4
and xpix12 in the top row, and put the two down-sampled images in the bottom row of the 2⇥ 2 sub-
plot. Explain why the two down-sampled images look the same.

Instructor Verification (separate page)

9

Jennifer Hasler

Jennifer Hasler

Jennifer Hasler

Jennifer Hasler

Jennifer Hasler

