Problem 9.6

LTI 1 described can be expressed by taking z transform of the difference equation $y[n]$ as: $H_{1}(z)=\frac{1+z^{-1}+z^{-2}}{3}$.
LTI 2 is expressed by system function : $H_{2}(z)=\frac{1+z^{-1}+z^{-2}+z^{-3}}{4}$.
(a)System function of overall cascade system:
$H(z)=H_{1}(z) H_{2}(z)=\left(\frac{1+z^{-1}+z^{-2}}{3}\right)\left(\frac{1+z^{-1}+z^{-2}+z^{-3}}{4}\right)$
$=\left(\frac{1+2 z^{-1}+3 z^{-2}+3 z^{-3}+2 z^{-4}+z^{-5}}{12}\right)$
(b) Given, now the LTI 1 is 4-point averager, $H_{1}(z)=\frac{1+z^{-1}+z^{-2}+z^{-3}}{4}$ and LTI 2 is a 3-point averager, $H_{2}(z)=\frac{1+z^{-1}+z^{-2}}{3}$.
Thus, $Y_{2}(z)=H_{2}(z) X(z)=\frac{1-z^{-3}}{3}$, where $X(z)=1-z^{-1}$.
$W(z)=Y_{2}(z) H_{1}(z)=\left(\frac{1+z^{-1}+z^{-2}-z^{-4}-z^{-5}-z^{-6}}{12}\right)$
(c) The system function of the overall cascade system is :
$H(z)=H_{1}(z) H_{2}(z)=\left(\frac{1+2 z^{-1}+3 z^{-2}+3 z^{-3}+2 z^{-4}+z^{-5}}{12}\right)$.
Then the difference equation that relates $y[n]$ to $x[n]$:
$y[n]=x[n]+2 x[n-1]+3[n-2]+3 x[n-3]+2 x[n-4]+x[n-5]$
(d) Poles and Zeros of $H(z)$

Plot of Poles and Zeros in the Complex z-plane

