Problem 9.4

Given, LTI filter is described by the difference equation:
$y[n]=0.1(x[n]-x[n-1]+x[n-2])$
(a) The system function $H(z)$ for the system:
$H(z)=0.1\left(1-z^{-1}+z^{-2}\right)$
(b) Plot the poles and zeroes of $H(z)$ in the z-plane:
$H(z)=0.1\left(1-z^{-1}+z^{-2}\right)=\frac{0.1 z^{2}-0.1 z+0.1}{z^{2}}$.
There are 2 poles at $z=0$ and zeros are found by solving the numerator.
The zeros are $1 / 2+\sqrt{3} / 2 i$.
On converting to polar coordinates the zeros can be expressed as: $1 e^{j \frac{\pi}{3}}$

Plot on the z-plane:

Plot of Poles and Zeros in the Complex z-plane

(c) From $H(z)$ the expression of $H\left(e^{j \hat{\omega}}\right)$ can be expressed as: $H\left(e^{j \hat{\omega}}\right)=0.1\left(1-e^{-j \hat{\omega}}+e^{-j 2 \hat{\omega}}\right)$ since $z=e^{j \hat{\omega}}$.
(d) Frequency Response (Magnitude and Phase) from $-\pi \leq$ $\hat{\omega} \leq \pi$

(e) The output if the input is $x[n]=9-8 \cos [0.25 \pi(n-1)]+$ $7 \cos \left[\left(\frac{2 \pi}{3}\right) n\right]$ is given by :
$y[n]=9\left|H\left(e^{j 0}\right)\right|-8\left|H\left(e^{j 0.25 \pi}\right)\right| \cos \left(0.25 \pi(n-1)+\angle H\left(e^{j 0.25 \pi}\right)\right)+$ $7\left|H\left(e^{j \frac{2 \pi}{3}}\right)\right| \cos \left(\frac{2 \pi}{3} n+\angle H\left(e^{j \frac{2 \pi}{3} \pi}\right)\right)$.

Thus, $y[n]=0.9-8(0.0414) \cos \left(0.25 \pi(n-1)-\frac{\pi}{4}\right)+$ $\left.7(-0.2) \cos \left(\frac{2 \pi}{3} n-\frac{2 \pi}{3}\right)\right)$

