Problem 8.9

Given DTFT of length-32 real sinusoid signal sequence consists of 2 Dirchlet peaks given by:
$Q\left(e^{j \hat{\omega}}\right)=\frac{1}{2} A \frac{\sin \left(\left(\frac{1}{2}\right)(32)\left(\hat{\omega}-\hat{\omega}_{0}\right)\right)}{\sin \left(\left(\frac{1}{2}\right)\left(\hat{\omega}-\hat{\omega}_{0}\right)\right)} e^{-j \frac{31}{2}\left(\hat{\omega}+\hat{\omega}_{0}\right)}+\frac{1}{2} A \frac{\sin \left(\left(\frac{1}{2}\right)(32)\left(\hat{\omega}+\hat{\omega}_{0}\right)\right)}{\sin \left(\left(\frac{1}{2}\right)\left(\hat{\omega}-\hat{\omega}_{0}\right)\right)} e^{-j \frac{31}{2}\left(\hat{\omega}+\hat{\omega}_{0}\right)}$
(a) Given signal is :
$s[n]=0.1+A \cos (\hat{\omega} n)$. After taking DFT of the signal the result is $S[k]$. Value of $S[k]=0$ for 29 of 30 coefficients and maximum at $k_{1}=10$.
$\hat{\omega}=\frac{2 \pi k}{N}=\frac{2 \pi k}{32}, N=32$.
Peak frequency occurs at $\hat{\omega_{1}}=\frac{2 \pi k_{1}}{32}$. As $k_{1}=10$, the frequency of sinusoid is given as $\hat{\omega}_{0}=\hat{\omega}_{k_{1}}=\frac{2 \pi k_{1}}{31}=\frac{20 \pi}{32}=\frac{10 \pi}{16}$ radians.
(b) Required to find k_{2} and k_{3} for which $S\left[k_{2}\right] \neq 0$ and $S\left[k_{3}\right] \neq 0$.
The first peak occurs at $k_{1}=10$, then second peak occurs at k_{2}. Hence, $\hat{\omega_{k_{2}}}=\omega_{\hat{N-k_{1}}}=\frac{2 \pi\left(32-k_{1}\right)}{32}=\frac{2 \pi\left(32-k_{1}\right)}{32}=\frac{44 \pi}{32}=\frac{11 \pi}{8}$ radians. Thus, $k_{2}=22$.

The third peak occurs when $k_{3}=0$.
(c) Given, $k_{1}=10$ and $\left|S\left[k_{1}\right]\right|=50$. Amplitude of signal can be determined using the equation of $Q\left(e^{j \hat{\omega}}\right)$.
Hence, $\left|Q\left(e^{j \hat{\omega}}\right)\right|=\lim _{\hat{\omega} \rightarrow \hat{\omega}_{0}} \frac{1}{2} A \frac{\sin \left(\left(\frac{1}{2}\right)(32)\left(\hat{\omega}-\hat{\omega}_{0}\right)\right)}{\sin \left(\left(\frac{1}{2}\right)\left(\hat{\omega}-\hat{\omega}_{0}\right)\right)}=\frac{1}{2} A \frac{1 / 2(32)}{1 / 2}$.
Since, $\left|Q\left(e^{j \hat{\omega}}\right)\right|=50$, then $A=100 / 32=50 / 16=3.125$.

