## Problem 7.19

Using filter design GUI to create impulse response of FIR LPF with M=37 and  $\hat{\omega_{co}}=0.3\pi$ 

(a) When input is  $x_1[n] = 10$ , the output  $y_1[n]$  reaches a steady state value of 10 as seen from the graph.

(b) When the input is  $x_2[n] = 10\cos(0.5\pi n)$ , required to find output of the form  $y_2[n] = A\cos(\hat{\omega}n + \phi_2)$ 

Take FFT on the coefficients of h[n] that were exported to the workspace of MATLAB from the GUI and finding the coefficient for  $H(e^{j\hat{\omega}})$  corresponding to an angle of  $0.5\pi$ . This is done by using,  $\hat{\omega} = \frac{2\pi k}{N}$ , where N = 37 and  $\hat{\omega} = 0.5\pi$ . The value of k is found out to be around 9. Hence, the 9th entry of the FFT values taken as described above will be  $H(e^{j0.5\pi})$ .  $H(e^{j0.5\pi}) = 0.0192 + 0.0150i$  which in polar coordinates can be expressed as:  $0.0243e^{j0.21\pi}$ .

 $y_2[n]$  can be expressed as:  $0.0243(10)\cos(0.5\pi n + 0.21\pi)$ Hence,  $y_2[n] = 0.243\cos(0.5\pi n + 0.21\pi)$ .

(c) The plots are:



