Problem 6.9

Given the frequency response of the LTI filter is:
$H\left(e^{j \hat{\omega}}\right)=\left(1+e^{-j 2 \hat{\omega}}\right)\left(1-\frac{1}{2} e^{-j \hat{\omega}}+\frac{1}{4} e^{-j 2 \hat{\omega}}\right)$
(a) Required to find Difference Equation:

After multiplying the two factors of $H\left(e^{j \hat{\omega}}\right)$, then
$H\left(e^{j \hat{\omega}}\right)=1-\frac{1}{2} e^{-j \hat{\omega}}+\frac{5}{4} e^{-j 2 \hat{\omega}}-\frac{1}{2} e^{-j 3 \hat{\omega}}+\frac{1}{4} e^{-j 4 \hat{\omega}}$
Hence, the difference equation is :
$y[n]=x[n]-\frac{1}{2} x[n-1]+\frac{5}{4} x[n-2]-\frac{1}{2} x[n-3]+\frac{1}{4} x[n-4]$
(b) The impulse response of the LTI filter is:

$$
h[n]=\delta[n]-\frac{1}{2} \delta[n-1]+\frac{5}{4} \delta[n-2]-\frac{1}{2} \delta[n-3]+\frac{1}{4} \delta[n-4]
$$

(c) To find values of $-\pi<\hat{\omega}<\pi$ for which $y[n]=0$.

This can be done by setting $H\left(e^{j \hat{\omega}}\right)=0$.
Thus, $\left(1+e^{-j 2 \hat{\omega}}\right)=0$ and $\left(1-\frac{1}{2} e^{-j \hat{\omega}}+\frac{1}{4} e^{-j 2 \hat{\omega}}\right)=0$
For the first term, the values of $\hat{\omega}$ are $\hat{\omega}=\frac{\pi}{2}$ or $-\frac{\pi}{2}$ radians.
The second term yields a quadratic equation which will have no real solution, hence, no values of $\hat{\omega}$.

