Problem 6.8

Given, the frequency response of the LTI filter:

$$\begin{split} H(e^{j\hat{\omega}}) &= (1 - e^{-j\hat{\omega}})(1 - e^{j\frac{3\pi}{4}}e^{-j\hat{\omega}})(1 - e^{-j\frac{3\pi}{4}}e^{-j\hat{\omega}})\\ \text{(a) Required to find Difference Equation:}\\ H(e^{j\hat{\omega}}) &= (1 - e^{-j\hat{\omega}})(1 + \sqrt{2}e^{-j\hat{\omega}} + e^{-j2\hat{\omega}})\\ &= 1 + (\sqrt{2} - 1)e^{-j\hat{\omega}} - (\sqrt{2} - 1)e^{-j2\hat{\omega}} - e^{-j3\hat{\omega}}\\ &= 1 + 0.41e^{-j\hat{\omega}} - 0.41e^{-j2\hat{\omega}} - e^{-j3\hat{\omega}}\\ \text{The difference equation can be expressed as:}\\ y[n] &= x[n] + 0.41x[n-1] - 0.41x[n-2] - x[n-3] \end{split}$$

(b) Step response of the filter when input
$$x[n] = u[n]$$
:
 $y[n] = u[n] + 0.41u[n-1] - 0.41u[n-2] - u[n-3]$
Hence, $y[n] = 0$ for $n < 0, 1$ for $n = 0, 1.41$ for $n = 1, 1$ for
 $n = 24$ and 0 for $n \ge 3$.

(c) To find values of
$$-\pi < \hat{\omega} < \pi$$
 for which $y[n] = 0$.
For $y[n] = 0$, $H(e^{j\hat{\omega}}) = 0$.
Hence, $(1 - e^{-j\hat{\omega}}) = 0$, $((1 - e^{j\frac{3\pi}{4}}e^{-j\hat{\omega}}) = 0$ and $(1 - e^{-j\frac{3\pi}{4}}e^{-j\hat{\omega}})$.
Thus, $\hat{\omega} = 0$ or $\frac{3\pi}{4}$ or $\frac{-3\pi}{4}$ radians.