Problem 6.6

Given, LTI system is described by difference equation :
$y[n]=x[n]-x[n-4]$
(a)The frequency response is given by:
$H\left(e^{j \hat{\omega}}\right)=\sum_{k=0}^{4} b_{k} e^{-j \hat{\omega} k}=1-e^{-j \hat{\omega} 4}=e^{-j \hat{\omega} 2}\left\{e^{j \hat{\omega} 2}-e^{-j \hat{\omega} 2}\right\}=$ $2 j \sin (2 \hat{\omega}) e^{-j \hat{\omega} 2}=2 \sin (2 \hat{\omega}) e^{j \frac{\pi}{2}} e^{-j \hat{\omega} 2}$
(b) Input is $x[n]=4+\cos \left(0.25 \pi n-\frac{\pi}{4}\right)$.

Output signal can be represented as:
$y[n]=4\left|H\left(e^{j 0}\right)\right|+\left|H\left(e^{j 0.25 \pi}\right)\right| \cos \left(0.25 \pi n-\frac{\pi}{4}+\angle H\left(e^{j 0.25 \pi}\right)\right)$
$\left|H\left(e^{j 0}\right)\right|=0$ and $\left|H\left(e^{j 0.25 \pi}\right)\right|=2 \sin \left(\frac{\pi}{2}\right)=2$.
Therefore, $y[n]=2 \cos \left(0.25 \pi n-\frac{\pi}{4}\right)$
(c) The output when the signal is $x_{1}[n]=(4+\cos (0.25 \pi n-$ $\left.\left.\frac{\pi}{4}\right)\right) u[n]$ will be equal to the output in (b) when $n \geq 4$ as the value of the order of filter M is 4 .

