## Problem 6.4

Given, LTI system is described by difference equation :
$y[n]=2 x[n]-2 x[n-1]+2 x[n-2]$
(a) The frequency response is given by:
$H\left(e^{j \hat{\omega}}\right)=\sum_{k=0}^{2} b_{k} e^{-j \hat{\omega} k}=2-2 e^{-j \hat{\omega} 1}+2 e^{-j \hat{\omega} 2}$
We can simplify the above equation, by factoring out an exponential whose phase is half of the filter order, in this case, $\mathrm{M}=2$.
$H\left(e^{j \hat{\omega}}\right)=e^{-j \hat{\omega}}\left\{2 e^{j \hat{\omega}}-2+2 e^{-j \hat{\omega}}\right\}=(4 \cos \hat{\omega}-2) e^{-j \hat{\omega}}$ is the equation for frequency response.
(b) As $\cos \hat{\omega}$ has a period $2 \pi$, hence, $H\left(e^{j \hat{\omega}}\right)$ has a period $2 \pi$.
(c) Plot of the Magnitude and Phase Response for $-\pi<\hat{\omega}<3 \pi$ :


(d) Find the frequency $\hat{\omega}$ in $-\pi<\hat{\omega}<\pi$, for output response to be zero to input $e^{j \hat{\omega} n}$.

The magnitude of frequency response should be 0 for output response to be zero. Hence, $(4 \cos \hat{\omega}-2)=0 \Longrightarrow \cos \hat{\omega}=0.5$ Thus, $\hat{\omega}=\frac{\pi}{3}$ or $-\frac{\pi}{3}$ radians.
(e) Given, input to the system is $x[n]=\cos (0.5 \pi n) . \hat{\omega}=0.5 \pi$ So, the output signal will be of the form :
$y[n]=\left|H\left(e^{j 0.5 \pi}\right)\right| \cos \left(0.5 \pi+\angle H\left(e^{j 0.5 \pi}\right)\right)$.
Evaluating frequency response at $H\left(e^{j 0.5 \pi}\right) . H\left(e^{j 0.5 \pi}\right)=2 e^{j 0.5 \pi}$.
Thus, $y[n]=2 \cos (0.5 \pi n+0.5 \pi)$.

