Problem 6.20

(a) Required to find the FIR filter that nulls out the signal $x[n]=3+7 \cos (0.2 \pi n-0.4 \pi)$.
$\cos (0.2 \pi n)=\left(e^{j 0.2 \pi n}+e^{-j 0.2 \pi n}\right) / 2$. Hence, the input signals that need be nulled are of the form, $e^{j 0.2 \pi n}, e^{-j 0.2 \pi n}, e^{j 0 n}$.
Thus, the frequency response can be represented as:
$H\left(e^{j \hat{\omega}}\right)=\left(1-e^{j 0.2 \pi} e^{-j \hat{\omega}}\right)\left(1-e^{-j 0.2 \pi} e^{-j \hat{\omega}}\right)\left(1-e^{-j \hat{\omega}}\right)$
$=\left(1-2 \cos (0.2 \pi) e^{-j \hat{\omega}}+e^{-j \hat{\omega} 2}\right)\left(1-e^{-j \hat{\omega}}\right)$
$=1-2.61 e^{-j \hat{\omega}}+2.61 e^{-j \hat{\omega} 2}-e^{-j \hat{\omega} 3}$
The difference equation filter coefficients are: $\{1,-2.61,2.61,-1\}$
(b) To design the minimum order FIR filter that nulls out the signal:
$x[n]=\sum_{k=0}^{5}\left(k^{2}+9\right) \cos (0.2 \pi k n)$
Nulling of the signal will happen at the frequencies $\hat{\omega}_{k}=$ $\pm 0.2 \pi k, k=1,2,3,4,5$.
Required to find frequency response $H\left(e^{j \hat{\omega}}\right)=0$ at the above frequencies. This is possible when $H\left(e^{j \hat{\omega}}\right)=1-e^{-j \hat{\omega}_{k} 10}$ where $e^{-j \hat{\omega}_{k} 10}=e^{-j(0.2 \pi k) 10}=e^{-j 2 \pi k}=1$.

The filter coefficients of the difference equations for the nulling filter are: $b_{0}=1$ and $b_{10}=-1$.

