Problem 6.16

Given, input to the C-D converter is:
$x(t)=10+20 \cos \left(\omega_{0} t+\frac{\pi}{3}\right)$
(a) The impulse response of LTI system is $h[n]=\delta[n]$ and $\omega_{0}=2 \pi(500)$. The values of f_{s} for which $y(t)=x(t)$ is for $f_{s}>2 f_{\text {max }}$, where $f_{\max }=500 \mathrm{~Hz}$.
(b) Impulse response of LTI system is changed to: $h[n]=$ $\delta[n-10]$, required to find sampling rate and range of values for ω_{0} so output of the system is:
$y(t)=x(t-0.001)=10+20 \cos \left(\omega_{0}(t-0.001)+\frac{\pi}{3}\right)$ [Equation A]

From what's given in the question $y[n]$ can be expressed as:
$y[n]=\delta[n] * x[n]=x[n-10]$
Hence, $y[n]=10+20 \cos \left(\hat{\omega}[n-10]+\frac{\pi}{3}\right)$
$y(t)=\left.y[n]\right|_{n=f_{s} t}=10+20 \cos \left(\hat{\omega}\left(t f_{s}-10\right)+\frac{\pi}{3}\right)$
$=10+20 \cos \left(\omega_{0}\left(t f_{s}-10\right) / f_{s}+\frac{\pi}{3}\right)$ [Equation B]
Both Equation A and Equation B are equivalent so equating the ω_{0} terms, $-\omega_{0}(0.001)=\frac{-10 \omega_{0}}{f_{s}}$ and solving for f_{s}.
Hence $f_{s}=10000 \mathrm{~Hz}$.
(c) Given the LTI system is a 5-point moving averager with frequency response:
$H\left(e^{j \hat{\omega}}\right)=\frac{\sin (5 \hat{\omega} / 2)}{5 \sin (\hat{\omega} / 2)} e^{-j \hat{\omega} 2}$ and $f_{s}=2000$ samples $/ \mathrm{s}$.
In order for $y(t)$ to be a constant, the cosine signal must be nullified. Thus can be done by analyzing the null frequencies of $H\left(e^{j \hat{\omega}}\right)$. The null frequencies of $H\left(e^{j \hat{\omega}}\right)$ occur at $\hat{\omega}= \pm 2 \pi k / L, L=5$. Hence, the values of ω_{0} for which $y(t)$ is constant is: $\omega_{0}=\frac{\hat{\omega}}{f_{s}}= \pm 2 \pi(400) k$ radians.
Thus, value of $y(t)=10=A$.

