Problem 6.15

Given the input to the C-to-D converter is:
$x(t)=7+8 \cos (1000 \pi t)+9 \cos (1600 \pi t+0.7 \pi)$.
Impulse response of the system: $h[n]=\sum_{k=0}^{4} \delta[n-k]$ and $f_{s}=4000$ samples $/ \mathrm{s}$.
The output of the C-D converter is $x[n]$ which is denoted as:
$x[n]=\left.x(t)\right|_{t=n / f_{s}}=7+8 \cos (0.25 \pi n)+9 \cos (0.4 \pi n+0.4 \pi)$
Using result obtained from Problem 6.14(c)in Homework 5 Solution,
$y[n]=35+19.28 \cos (0.25 \pi n-0.5 \pi)$
Hence expression for $y(t)$:
$y(t)=\left.y(n)\right|_{n=f_{s} t}=35+19.28 \cos (1000 \pi t-0.5 \pi)$

