Problem 6.14

Given, LTI filter is a 5-point running sum described by the difference equation:
$y[n]=x[n]+x[n-1]+x[n-2]+x[n-3]+x[n-4]$
(a) Closed-loop form expression for frequency response of the system:
$H\left(e^{j \hat{\omega}}\right)=\frac{1-e^{j \hat{\omega}} 5}{1-e^{j \hat{\omega}}}=\frac{\sin (5 \hat{\omega} / 2)}{\sin (\hat{\omega} / 2)} e^{-j \hat{\omega} 2}$ where $D_{5}\left(e^{j \hat{\omega}}\right)=\frac{\sin (5 \hat{\omega} / 2)}{\sin (\hat{\omega} / 2)} e^{-j \hat{\omega} 2}$
(b) Frequencies where frequency response is zero in the range $-\pi \leq \hat{\omega} \leq \pi$:
$\hat{\omega}=0.4 \pi, 0.8 \pi,-0.4 \pi$ and -0.8π radians as
$D_{5}\left(e^{j \hat{\omega}}\right)=0$ at frequencies $\hat{\omega}=\frac{2 \pi k}{5}$ radians.
(c) Given input is: $x[n]=7+8 \cos (0.25 \pi n)+9 \cos (0.4 \pi n)$

Output $y[n]=7\left|H\left(e^{j 0}\right)\right|+8\left|H\left(e^{j 0.25 \pi}\right)\right| \cos \left(0.25 \pi n+\angle H\left(e^{j 0.25 \pi}\right)\right)$ $+9\left|H\left(e^{j 0.4 \pi}\right)\right| \cos \left(0.4 \pi n+\angle H\left(e^{j 0.4 \pi}\right)\right)$
Hence, $y[n]=35+19.28 \cos (0.25 \pi n-0.5 \pi)$
(d) Given input is: $x_{1}[n]=[7+8 \cos (0.25 \pi n)+9 \cos (0.4 \pi n)] u[n]$ For n greater than and equal to $4, y_{1}[n]=y[n]$.

