Problem 5.9

Given filter coefficients are: $b_{k}=\{13,-13,13\}$ and $x[n]=0$, if n is even and $x[n]=1$, if n is odd.
Compute $y[n]$ by synthetic polynomial multiplication method:

\mathbf{n}	-4	-3	-2	-1	0	1	2	3	4	5
$\mathbf{x}[\mathbf{n}]$	0	1	0	1	0	1	0	1	0	1
$\mathbf{h}[\mathbf{n}]$					13	-13	13			
$\mathbf{h}[\mathbf{0}] \mathbf{x}[\mathbf{n}]$	0	13	0	13	0	13	0	13	0	13
$\mathbf{h}[\mathbf{1}] \mathbf{x}[\mathbf{n}-1]$	-13	0	-13	0	-13	0	-13	0	-13	0
$\mathbf{h}[\mathbf{2}] \mathbf{x}[\mathbf{n}-\mathbf{2}]$	0	13	0	13	0	13	0	13	0	13
$\mathbf{y [n]}$	-13	26	-13	26	-13	26	-13	26	-13	$\mathbf{2 6}$

Hence, from the table, $y[n]=-13$, if n is even and $y[n]=26$ if n is odd.

