Problem 5.6

(a)Given system defined as:
$y[n]=\sum_{k=0}^{M} b_{k} x[n-k]$
(a) Given input $\mathrm{x}[\mathrm{n}]$ is nonzero for $0 \leq n \leq N-1$. To show $y[n]$ is non-zero from $0 \leq n \leq P-1$ and find P in terms of M and N .

Since $x[n]$ is non-zero for $0 \leq n \leq N-1$, it is zero when $n>0$ and $n>N-1$.
$y[n]$ can be expressed as:
$y[n]=b_{m} x[n-M]+b_{m-1} x[n-M+1]+b_{m-2} x[n-M+2]+$ $b_{m-3} x[n-M+3]+\ldots$
In order to find, largest n value for which $y[n]$ is non-zero, analyzing the term $x[n-M], n-M<N$ for $x[n-M]$ to be non-zero, which implies $n<M+N$ for $y[n]$ to be non-zero. Hence, the support of $y[n]$, which is P , can be expressed as $P=M+N$.
(b) Given, $x[n]$ is non-zero for $N_{1} \leq n \leq N_{2}$.

Length of $x[n]$ is $N_{2}-N_{1}+1$.
To show that $y[n]$ is non-zero over interval $N_{3} \leq n \leq N_{4}$.
The output $y[n]$ will start at $n=N_{1}$ and end at $n=N_{2}+M$.
Hence, $N_{3}=N_{1}$ and $N_{4}=N_{2}+M$.

The length of $y[n]=N_{4}-N_{3}+1=N_{2}+M-N_{1}+1$.

