Problem 5.3

Given the length-L running sum is defined as:
$y[n]=\sum_{k=0}^{L-1} x[n-k]$
The input $x[n]$ is the unit step signal.
(a) Numerical values of $y[n]$ over time interval $-2 \leq n \leq 8$ with $L=4$:

Since $x[n]$ is a unit step signal it is zero for $\mathrm{t}<0$.
Hence, $y[-2], y[-1]$ are equal to 0 .
$y[0]=1, y[1]=2, y[2]=3, y[3]=4$.
$y[4]=y[5]=y[6]=y[7]=y[8]=4$.
(b) Plot of output $y[n]$:

(c) Formula for $y[n]$ that applies for any length L :

From the pattern of outputs obtained in (a),
$y[n]=0$ for $n<0$
$y[n]=n+1$ for $0 \leq n<L$
$y[n]=L$ for $n \geq L$

