Problem 5.18

(a) The impulse response for each individual system:
$h_{1}[n]=\delta[n]+\delta[n-1]$
$h_{2}[n]=\delta[n]-\delta[n-2]$
$h_{3}[n]=\delta[n-1]+\delta[n-2]$
(b) The impulse response of the overall system is:
$h[n]=h_{1}[n] * h_{2}[n] * h_{3}[n]$
$h_{2}[n] * h_{3}[n]=(\delta[n]-\delta[n-2]) *(\delta[n-1]+\delta[n-2])$
$=\delta[n-1]-\delta[n-2]-\delta[n-3]+\delta[n-4]$
Convolving $h_{2}[n] * h_{3}[n]$ with $h_{1}[n]$:
$=(\delta[n]+\delta[n-1]) *(\delta[n-1]-\delta[n-2]-\delta[n-3]+\delta[n-4])$
$=\delta[n-1]-2 \delta[n-3]+\delta[n-5]$
(c) Difference equation that defines the overall system in terms of $x[n]$ and $y[n]$:
$y[n]=h[n] * x[n]=(\delta[n-1]-2 \delta[n-3]+\delta[n-5]) * x[n]$
$\Longrightarrow y[n]=x[n-1]-2 x[n-3]+x[n-5]$.

