Problem 5.14

Given for the FIR filter:
$y[n]=x[n]-a x[n-1]$
Find $y[n]$ when:
(a) $x[n]=a^{n} u[n]$

Then, $y[n]=h[n] * x[n], h[n]=\delta[n]-a \delta[n-1]$
$\Longrightarrow y[n]=x[n]-a x[n-1]=a^{n} u[n]-a\left[a^{n-1} u[n-1]\right]$
$=a^{n} u[n]-a^{0} a^{n} u[n-1]$
$u[n]=\delta[n]+u[n-1]$
Thus, $y[n]$ can be expressed as
$y[n]=a^{0} \delta[n]+a^{n} u[n-1]-a^{n} u[n-1]=\delta[n]$
(b) $x[n]=a^{n}(u[n]-u[n-8]) \Longrightarrow x[n]=a^{n} u[n]-a^{n} u[n-8]$

Since, from (a) $y[n]$ is computed for $x[n]=a^{n} u[n]$, as seen from (A). $y[n]$ can be expressed as, $y[n]=y_{1}[n]+y_{2}[n]$, where $y_{1}[n]=\delta[n]$. Hence, $y_{2}[n]$ can be computed corresponding to the second term, $-a^{n} u[n-8]$ and its value can be added to $y_{1}[n]$.

$$
\begin{aligned}
& y_{2}[n]=-a^{n} u[n-8]-a a^{n-1}(u[n-9]) \\
& =-a u[n-8]-a^{0} a^{n}(u[n-9]) \\
& u[n-8]=\delta[n-8]+u[n-9]
\end{aligned}
$$

$$
\begin{aligned}
& y_{2}[n]=-a^{8} \delta[n-8]-a^{n} u[n-9]+a^{n} u[n-9] \\
& =-a^{8} \delta[n-8]
\end{aligned}
$$

Thus, $y[n]=\delta[n]-a^{8} \delta[n-8]$.
(c) Plot of $x[n]$ and $y[n]$ for part (b):

Assuming $a=1$.

