## Problem 5.14

Given for the FIR filter:  

$$y[n] = x[n] - ax[n-1]$$
  
Find  $y[n]$  when:  
(a)  $x[n] = a^n u[n]$   
Then,  $y[n] = h[n] * x[n]$ ,  $h[n] = \delta[n] - a\delta[n-1]$   
 $\implies y[n] = x[n] - ax[n-1] = a^n u[n] - a[a^{n-1}u[n-1]]$   
 $= a^n u[n] - a^0 a^n u[n-1]$   
 $u[n] = \delta[n] + u[n-1]$   
Thus,  $y[n]$  can be expressed as  
 $y[n] = a^0 \delta[n] + a^n u[n-1] - a^n u[n-1] = \delta[n]$  -(A)

(b)  $x[n] = a^n(u[n] - u[n-8]) \implies x[n] = a^nu[n] - a^nu[n-8]$ Since, from (a) y[n] is computed for  $x[n] = a^nu[n]$ , as seen from (A). y[n] can be expressed as,  $y[n] = y_1[n] + y_2[n]$ , where  $y_1[n] = \delta[n]$ . Hence,  $y_2[n]$  can be computed corresponding to the second term,  $-a^nu[n-8]$  and its value can be added to  $y_1[n]$ .

$$y_2[n] = -a^n u[n-8] - aa^{n-1}(u[n-9])$$
  
=  $-au[n-8] - a^0 a^n(u[n-9])$   
 $u[n-8] = \delta[n-8] + u[n-9]$ 

$$y_{2}[n] = -a^{8}\delta[n-8] - a^{n}u[n-9] + a^{n}u[n-9]$$
  
=  $-a^{8}\delta[n-8]$   
Thus,  $y[n] = \delta[n] - a^{8}\delta[n-8].$ 

(c) Plot of x[n] and y[n] for part (b): Assuming a = 1.



