Problem 4.8

Given, sampling rate of C-D and D-C converters is $f_{s}=700$ samples/s.
(a) Maximum frequency $f_{\max }=500 \mathrm{~Hz}$, from spectrum of $x(t)$. Hence, Nyquist rate is $2 \times f_{\max }=1000 \mathrm{~Hz}$.
As $f_{s}<1000 \mathrm{~Hz}$, (under-sampling) aliasing occurs.
(b) $x(t)=7 e^{-j(0.3 \pi)}[2 \cos (2 \pi(500) t)]+13 \cos [2 \pi(200) t+0.7 \pi]$
$\Longrightarrow x(t)=14[\cos (0.3 \pi)][\cos (2 \pi(500) t)]+26 \cos [2 \pi(200) t+0.7 \pi]$
Sampling frequency $=f_{s}=700 \mathrm{~Hz}$.
Then,
$x[n]=14[\cos (0.3 \pi)]\left[\cos \frac{10 \pi}{7} n\right]+26 \cos \left[\frac{4 \pi}{7} n+0.7 \pi\right]$
There will be aliasing as $\hat{\omega}_{1}=\frac{10 \pi}{7}$ will alias to $\hat{\omega}_{2}=-\frac{4 \pi}{7}$, called folded alias, by the property $\hat{\omega}=\frac{\omega_{1}}{f_{s}}-2 \pi l$.
Hence, $x[n]$ can be written as:
$x[n]=14[\cos (0.3 \pi)]\left[\cos \left(-\frac{4 \pi}{7} n\right)\right]+26 \cos \left[\frac{4 \pi}{7} n+0.7 \pi\right]$
$\Longrightarrow x[n]=14[\cos (0.3 \pi)]\left[\cos \left(\frac{4 \pi}{7} n\right)\right]+26 \cos \left[\frac{4 \pi}{7} n+0.7 \pi\right]$
By Inverse Euler formula,
$x[n]=e^{j \frac{4 \pi}{T}}\left[7 e^{-j 0.3 \pi}+13 e^{j 0.7 \pi}\right]+e^{-j \frac{4 \pi}{T}}\left[7 e^{-j 0.3 \pi}+13 e^{-j 0.7 \pi}\right]$

Spectrum:

(c) When $f_{s}=700 \mathrm{~Hz}, \omega=\frac{\hat{\omega}}{f_{s}}=400 \pi \mathrm{rad} / \mathrm{s}$.
$y(t)=14 \cos (0.3 \pi) \cos (400 \pi t)+26[\cos (400 \pi t+0.7 \pi)]$

