Problem 4.23

Given, $-f_{m}=13 \mathrm{rev} / \mathrm{s}$ and $f_{s}=15$ flash $/ \mathrm{s}$.
Position of spot at the $n^{\text {th }}$ flash can be denoted as:
$p[n]=r e^{j\left[2 \pi\left(\frac{f m}{f_{s}}\right) n\right]} e^{j \phi}$
$\Longrightarrow p[n]=r e^{j\left[2 \pi\left(\frac{13}{5}\right) n\right]} e^{j \phi}$
(a) The spot is initially at $t=0$ on the y-axis (imaginary) which corresponds to $n=0$:
$p[0]=r e^{0} e^{j \phi}$. (Equation 1)
$p(t)$ can also be represented as a complex number:
$p(t)=x(t)+j y(t)$. The coordinates of the spot at $n=0$ are (0, r).
Thus, $p[0]=j r$. (Equation 2)
Equating Equations 1 and 2 , yields, $e^{j \phi}=j$ which gives, $\phi=\frac{\pi}{2}$ radians.

Calculating the movement of the spot,
$\Delta \theta=-360^{\circ} \times-\frac{780}{900}=312^{\circ}=-48^{\circ}$.
Spot moves 48° clockwise or by $\frac{4 \pi}{15}$ radians in clockwise direction because of negative sign.
$p[n]$ is: $p[n]=r e^{j\left[2 \pi\left(\frac{13}{15}\right) n\right]} e^{j \frac{\pi}{2}}$ which can also be written as: $p[n]=r e^{j\left[-\frac{\pi}{15} n n\right]} e^{j \frac{\pi}{2}}$
(b) The position of spot in continuous-time can be denoted
as:
$p(t)=\left.p[n]\right|_{n=15 t}=r e^{j\left(-4 \pi t+\frac{\pi}{2}\right)}$
Spot rotates by an angle of -4π every second.
As $1 \mathrm{rev}=2 \pi$ radians, the apparent speed is $2 \mathrm{rev} / \mathrm{s}$ in the clockwise direction because of negative sign.
(c)Given : f_{m} is unknown. $f_{s}=13$ flashes/s and the spot moves counterclockwise by $x=15^{\circ}$ with each flash.
f_{m} is given by:
$f_{m}=13\left(l-\frac{1}{24}\right), \mathrm{l}$ is an integer.

