Problem 4.16

Discrete time signal is given by:
$x[n]=\cos (0.7 \pi n+0.2 \pi), f_{s}=2000$ samples $/ \mathrm{s}$.
(a) Two different continuous-time signals with frequencies between 7000 and 9000 Hz :

Computing the aliasing frequencies, $\hat{\omega}_{1}=\hat{\omega}+2 \pi l$, and
$\hat{\omega}_{1}=\hat{\omega}-2 \pi l$, with $\hat{\omega}=0.7 \pi$ and $l=4$ yields $f_{1}=8700 \mathrm{~Hz}$ and $f_{2}=7300 \mathrm{~Hz}$, with $\phi_{2}=-0.2 \pi$ radians.

Hence,
$x_{1}(t)=\cos (2 \pi(8700) t+0.2 \pi)$.
$x_{2}(t)=\cos (2 \pi(7300) t-0.2 \pi)$.
(b) Continuous-time signals whose frequency lies between 7000 and 8000 Hz is:
$x(t)=\cos (2 \pi(7300) t-0.2 \pi)$.
(c) The general formula for the frequency f in terms of $\hat{\omega}$ such that the frequency satisfies $f \in[7000,8000] \mathrm{Hz}$:
$f=8000-\frac{f_{s} \times \hat{\omega}}{2 \pi}, \phi=-0.2 \pi$ radians.

