Problem 4.16

Discrete time signal is given by:

 $x[n] = \cos(0.7\pi n + 0.2\pi), f_s = 2000 \text{ samples/s.}$

(a) Two different continuous-time signals with frequencies between 7000 and 9000 Hz:

Computing the aliasing frequencies, $\hat{\omega}_1 = \hat{\omega} + 2\pi l$, and

 $\hat{\omega}_1 = \hat{\omega} - 2\pi l$, with $\hat{\omega} = 0.7\pi$ and l = 4 yields $f_1 = 8700$ Hz and $f_2 = 7300$ Hz, with $\phi_2 = -0.2\pi$ radians.

Hence,

 $x_1(t) = \cos(2\pi(8700)t + 0.2\pi).$

 $x_2(t) = \cos(2\pi(7300)t - 0.2\pi).$

(b) Continuous-time signals whose frequency lies between 7000 and 8000 Hz is:

$$x(t) = \cos(2\pi(7300)t - 0.2\pi).$$

(c) The general formula for the frequency f in terms of $\hat{\omega}$ such that the frequency satisfies $f \in [7000, 8000]$ Hz:

 $f=8000-\frac{f_s\times\hat{\omega}}{2\pi}$, $\phi=-0.2\pi$ radians.