Problem 4.12

Discrete time signal is given by:

 $x[n] = 9.1 \cos(0.4\pi n + 0.4\pi), f_s = 5000 \text{ samples/s.}$

Three different continuous time signals that would have produced x[n] with frequencies less than or equal to 8000 Hz.

1. $\hat{\omega} = 0.4\pi$. Then $\omega = \hat{\omega} \times f_s$ and $f = \frac{2\pi}{\omega} = 1000$ Hz. Hence, $x(t) = 9.1 \cos(2\pi (1000)t + 0.4\pi)$.

2. Computing the Alias frequency: $\hat{\omega} + 2\pi = 2.4\pi$ radians. Then, f = 6000 Hz.

Hence, $x(t) = 9.1 \cos(2\pi (6000)t + 0.4\pi)$.

3. Computing the aliased frequency given by, $2\pi - \hat{\omega} = 1.6\pi$ radians. Then, f = 4000 Hz and $\phi = -0.4\pi$.

Hence, $x(t) = 9.1 \cos(2\pi (4000)t - 0.4\pi)$.