Problem 4.12

Discrete time signal is given by:
$x[n]=9.1 \cos (0.4 \pi n+0.4 \pi), f_{s}=5000$ samples $/ \mathrm{s}$.
Three different continuous time signals that would have produced $x[n]$ with frequencies less than or equal to 8000 Hz .

1. $\hat{\omega}=0.4 \pi$. Then $\omega=\hat{\omega} \times f_{s}$ and $f=\frac{2 \pi}{\omega}=1000 \mathrm{~Hz}$.

Hence, $x(t)=9.1 \cos (2 \pi(1000) t+0.4 \pi)$.
2. Computing the Alias frequency: $\hat{\omega}+2 \pi=2.4 \pi$ radians. Then, $f=6000 \mathrm{~Hz}$.

Hence, $x(t)=9.1 \cos (2 \pi(6000) t+0.4 \pi)$.
3. Computing the aliased frequency given by, $2 \pi-\hat{\omega}=1.6 \pi$ radians. Then, $f=4000 \mathrm{~Hz}$ and $\phi=-0.4 \pi$.
Hence, $x(t)=9.1 \cos (2 \pi(4000) t-0.4 \pi)$.

