Problem 4.1

Given in the question, $x(t)=11 \cos \left(7 \pi t-\frac{\pi}{3}\right)$.
The discrete-time signal $x[n]$ is obtained by sampling $\mathrm{x}(\mathrm{t})$ at a rate f_{s} samples $/ \mathrm{s}$, and the resultant $x[n]$ can be written as :
$x[n]=A \cos \left(\hat{\omega}_{1} n+\phi\right)$
From the equation of $x(t), \mathrm{A}=11, \omega=7 \pi \mathrm{rad} / \mathrm{s}, f=3.5 \mathrm{~Hz}$ and $\phi=-\frac{\pi}{3}$ radians.
(a) Sampling frequency is $f_{s}=9$ samples/s

The signal is over-sampled as $f_{s}>2 f$.
. $\mathrm{A}=11, \hat{\omega}_{1}=\frac{\omega}{f_{s}}=\frac{7 \pi}{9}$ radians, $\phi=-\frac{\pi}{3}$ radians.
(b) Sampling frequency is $f_{s}=6$ samples $/ \mathrm{s}$

The signal is under-sampled as $f_{s}<2 f$.
$\mathrm{A}=11, \hat{\omega}_{1}=\frac{\omega}{f_{s}}=\frac{7 \pi}{6}$ radians, which is greater than π radians, which does not satisfy the constraint of $0 \leq \hat{\omega}_{1} \leq \pi$. Hence computing the alias frequency, $2 \pi-\hat{\omega}_{1}=\frac{5 \pi}{6}$ radians, will satisfy the constraint.
$\phi=\frac{\pi}{3}$ radians, because the algebraic sign of the phase angle of the folded alias must be opposite to sign of phase angle of principal alias.
(c) Sampling frequency is $f_{s}=3$ samples $/ \mathrm{s}$

The signal is under-sampled as $f_{s}<2 f$.
$\mathrm{A}=11, \hat{\omega}_{1}=\frac{\omega}{f_{s}}=\frac{7 \pi}{3}>\pi$ radians. Hence computing the alias frequency, $2 \pi-\hat{\omega}_{1}=-\frac{\pi}{3}$ radians. Phase will then be, $\phi=\frac{\pi}{3}$. But, $-\frac{\pi}{3}$ is less than zero radians.
Hence, $x[n]=11 \cos \left(-\frac{\pi}{3} n+\frac{\pi}{3}\right)$ can be expressed as $x[n]=$ $11 \cos \left(\frac{\pi}{3} n-\frac{\pi}{3}\right)$ because of the property $\cos (-\theta)=\cos (\theta)$.

Thus,
$\mathrm{A}=11, \hat{\omega}_{1}=\frac{\pi}{3}$ radians and $\phi=-\frac{\pi}{3}$ radians.

